cost performance improvements
This commit is contained in:
parent
d8c0644709
commit
62ae152ba7
@ -5,6 +5,8 @@ Copyright © 2023 Project Coder Guille Gutierrez guillermo.gutierrezmorote@conco
|
||||
Code contributor Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
|
||||
Code contributor Oriol Gavalda Torrellas oriol.gavalda@concordia.ca
|
||||
"""
|
||||
import datetime
|
||||
|
||||
import pandas as pd
|
||||
import numpy_financial as npf
|
||||
from hub.city_model_structure.building import Building
|
||||
@ -72,12 +74,22 @@ class Cost:
|
||||
:return: DataFrame
|
||||
"""
|
||||
results = pd.DataFrame()
|
||||
start = datetime.datetime.now()
|
||||
global_capital_costs, global_capital_incomes = CapitalCosts(self._building, self._configuration).calculate()
|
||||
print(f'CapitalCosts: {datetime.datetime.now()-start}')
|
||||
start = datetime.datetime.now()
|
||||
global_end_of_life_costs = EndOfLifeCosts(self._building, self._configuration).calculate()
|
||||
print(f'EndOfLifeCosts: {datetime.datetime.now() - start}')
|
||||
start = datetime.datetime.now()
|
||||
global_operational_costs = TotalOperationalCosts(self._building, self._configuration).calculate()
|
||||
print(f'TotalOperationalCosts: {datetime.datetime.now() - start}')
|
||||
start = datetime.datetime.now()
|
||||
global_maintenance_costs = TotalMaintenanceCosts(self._building, self._configuration).calculate()
|
||||
print(f'TotalMaintenanceCosts: {datetime.datetime.now() - start}')
|
||||
start = datetime.datetime.now()
|
||||
global_operational_incomes = TotalOperationalIncomes(self._building, self._configuration).calculate()
|
||||
|
||||
print(f'OperationalIncomes: {datetime.datetime.now() - start}')
|
||||
start = datetime.datetime.now()
|
||||
df_capital_costs_skin = (
|
||||
global_capital_costs['B2010_opaque_walls'] +
|
||||
global_capital_costs['B2020_transparent'] +
|
||||
@ -151,5 +163,5 @@ class Cost:
|
||||
'global_maintenance_costs',
|
||||
'global_operational_incomes'
|
||||
]
|
||||
|
||||
print(f'Dataframes: {datetime.datetime.now()-start}')
|
||||
return results
|
||||
|
@ -28,22 +28,25 @@ class PeakLoad:
|
||||
heating = 0
|
||||
cooling = 0
|
||||
for system in self._building.energy_systems:
|
||||
for demand_type in system.demand_types:
|
||||
if demand_type == cte.HEATING:
|
||||
heating = 1
|
||||
if demand_type == cte.COOLING:
|
||||
cooling = 1
|
||||
if cte.HEATING in system.demand_types:
|
||||
heating = 1
|
||||
if cte.COOLING in system.demand_types:
|
||||
cooling = 1
|
||||
if cte.MONTH in self._building.heating_peak_load.keys() and cte.MONTH in self._building.cooling_peak_load.keys():
|
||||
peak_lighting = self._building.lighting_peak_load[cte.YEAR][0]
|
||||
peak_appliances = self._building.appliances_peak_load[cte.YEAR][0]
|
||||
monthly_electricity_peak = [0.9 * peak_lighting + 0.7 * peak_appliances] * 12
|
||||
conditioning_peak = []
|
||||
for i, value in enumerate(self._building.heating_peak_load[cte.MONTH]):
|
||||
if cooling * self._building.cooling_peak_load[cte.MONTH][i] > heating * value:
|
||||
conditioning_peak.append(cooling * self._building.cooling_peak_load[cte.MONTH][i])
|
||||
conditioning_peak = max(self._building.heating_peak_load[cte.MONTH], self._building.cooling_peak_load[cte.MONTH])
|
||||
for i in range(len(conditioning_peak)):
|
||||
if cooling == 1 and heating == 1:
|
||||
conditioning_peak[i] = conditioning_peak[i]
|
||||
continue
|
||||
elif cooling == 0:
|
||||
conditioning_peak[i] = self._building.heating_peak_load[cte.MONTH][i] * heating
|
||||
else:
|
||||
conditioning_peak.append(heating * value)
|
||||
conditioning_peak[i] = self._building.cooling_peak_load[cte.MONTH][i] * cooling
|
||||
monthly_electricity_peak[i] += 0.8 * conditioning_peak[i]
|
||||
|
||||
electricity_peak_load_results = pd.DataFrame(
|
||||
monthly_electricity_peak,
|
||||
columns=[f'electricity peak load W']
|
||||
|
@ -42,14 +42,16 @@ class Initialize:
|
||||
sra_file = str((output_path / f'{city.name}_sra.xml').resolve())
|
||||
subprocess.run(['sra', sra_file], stdout=subprocess.DEVNULL)
|
||||
ResultFactory('sra', city, output_path).enrich()
|
||||
|
||||
print(f'sra completed {datetime.datetime.now() - start}')
|
||||
for building in city.buildings:
|
||||
building.energy_systems_archetype_name = 'system 1 gas pv'
|
||||
EnergySystemsFactory('montreal_custom', city).enrich()
|
||||
print(f'energy systems completed {datetime.datetime.now() - start}')
|
||||
EnergyBuildingsExportsFactory('insel_monthly_energy_balance', city, output_path).export()
|
||||
_insel_files = glob.glob(f'{output_path}/*.insel')
|
||||
for insel_file in _insel_files:
|
||||
subprocess.run(['insel', str(insel_file)], stdout=subprocess.DEVNULL)
|
||||
print(f'insel completed {datetime.datetime.now() - start}')
|
||||
ResultFactory('insel_monthly_energy_balance', city, output_path).enrich()
|
||||
self._city = city
|
||||
print(f'init completed {datetime.datetime.now() - start}')
|
||||
@ -61,7 +63,9 @@ class UnitTests(unittest.TestCase):
|
||||
|
||||
def test_current_status(self):
|
||||
for building in self.init.city.buildings:
|
||||
start = datetime.datetime.now()
|
||||
result = Cost(building).life_cycle
|
||||
print(f'Cost calculation for building {building.name}: {datetime.datetime.now()-start}')
|
||||
self.assertIsNotNone(result)
|
||||
self.assertEqual(0, result.values[0])
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user