First commit

This commit is contained in:
Guille Gutierrez 2023-06-01 17:11:05 -04:00
commit d0d596e208
7 changed files with 717 additions and 0 deletions

3
README.md Normal file
View File

@ -0,0 +1,3 @@
# costs
Object-oriented generalization for the cost workflow

25
costs/__init__.py Normal file
View File

@ -0,0 +1,25 @@
"""
Cost workflow initialization
"""
import glob
import os
from pathlib import Path
# constants
CURRENT_STATUS = 0
SKIN_RETROFIT = 1
SYSTEM_RETROFIT_AND_PV = 2
SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV = 3
RETROFITTING_SCENARIOS = [
CURRENT_STATUS,
SKIN_RETROFIT,
SYSTEM_RETROFIT_AND_PV,
SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV
]
tmp_folder = Path('./tmp').resolve()
out_path = Path('./outputs').resolve()
files = glob.glob(f'{out_path}/*')
for file in files:
if file != '.gitignore':
os.remove(file)

202
costs/configuration.py Normal file
View File

@ -0,0 +1,202 @@
"""
Configuration module
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Project Author Guille Gutierrez Guillermo.GutierrezMorote@concordia.ca
Code contributor Pilar Monsalvete Alvarez de Uribarri pilar_monsalvete@concordia.ca
Code contributor Oriol Gavalda Torrellas oriol.gavalda@concordia.ca
"""
from hub.catalog_factories.costs_catalog_factory import CostCatalogFactory
from hub.catalog_factories.catalog import Catalog
class Configuration:
"""
Configuration class
"""
def __init__(self,
number_of_years,
percentage_credit,
interest_rate,
credit_years,
consumer_price_index,
electricity_peak_index,
electricity_price_index,
gas_price_index,
discount_rate,
retrofitting_year_construction,
factories_handler
):
self._number_of_years = number_of_years
self._percentage_credit = percentage_credit
self._interest_rate = interest_rate
self._credit_years = credit_years
self._consumer_price_index = consumer_price_index
self._electricity_peak_index = electricity_peak_index
self._electricity_price_index = electricity_price_index
self._gas_price_index = gas_price_index
self._discount_rate = discount_rate
self._retrofitting_year_construction = retrofitting_year_construction
self._factories_handler = factories_handler
self._cost_catalog = CostCatalogFactory(factories_handler).catalog
@property
def number_of_years(self):
"""
Get number of years
"""
return self._number_of_years
@number_of_years.setter
def number_of_years(self, value):
"""
Set number of years
"""
self._number_of_years = value
@property
def percentage_credit(self):
"""
Get percentage credit
"""
return self._percentage_credit
@percentage_credit.setter
def percentage_credit(self, value):
"""
Set percentage credit
"""
self._percentage_credit = value
@property
def interest_rate(self):
"""
Get interest rate
"""
return self._interest_rate
@interest_rate.setter
def interest_rate(self, value):
"""
Set interest rate
"""
self._interest_rate = value
@property
def credit_years(self):
"""
Get credit years
"""
return self._credit_years
@credit_years.setter
def credit_years(self, value):
"""
Set credit years
"""
self._credit_years = value
@property
def consumer_price_index(self):
"""
Get consumer price index
"""
return self._consumer_price_index
@consumer_price_index.setter
def consumer_price_index(self, value):
"""
Set consumer price index
"""
self._consumer_price_index = value
@property
def electricity_peak_index(self):
"""
Get electricity peak index
"""
return self._electricity_peak_index
@electricity_peak_index.setter
def electricity_peak_index(self, value):
"""
Set electricity peak index
"""
self._electricity_peak_index = value
@property
def electricity_price_index(self):
"""
Get electricity price index
"""
return self._electricity_price_index
@electricity_price_index.setter
def electricity_price_index(self, value):
"""
Set electricity price index
"""
self._electricity_price_index = value
@property
def gas_price_index(self):
"""
Get gas price index
"""
return self._gas_price_index
@gas_price_index.setter
def gas_price_index(self, value):
"""
Set gas price index
"""
self._gas_price_index = value
@property
def discount_rate(self):
"""
Get discount rate
"""
return self._discount_rate
@discount_rate.setter
def discount_rate(self, value):
"""
Set discount rate
"""
self._discount_rate = value
@property
def retrofitting_year_construction(self):
"""
Get retrofitting year construction
"""
return self._retrofitting_year_construction
@retrofitting_year_construction.setter
def retrofitting_year_construction(self, value):
"""
Set retrofitting year construction
"""
self._retrofitting_year_construction = value
@property
def factories_handler(self):
"""
Get factories handler
"""
return self._factories_handler
@factories_handler.setter
def factories_handler(self, value):
"""
Set factories handler
"""
self._factories_handler = value
@property
def cost_catalog(self) -> Catalog:
"""
Get cost catalog
"""
return self._cost_catalog

161
costs/cost.py Normal file
View File

@ -0,0 +1,161 @@
"""
Cost module
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Project Author Guille Gutierrez Guillermo.GutierrezMorote@concordia.ca
Code contributor Pilar Monsalvete Alvarez de Uribarri pilar_monsalvete@concordia.ca
Code contributor Oriol Gavalda Torrellas oriol.gavalda@concordia.ca
"""
from pathlib import Path
import numpy_financial as npf
import pandas as pd
from hub.persistence.models.city_object import CityObject
from configuration import Configuration
from life_cycle_costs import LifeCycleCosts
class Cost:
"""
Cost class
"""
def __init__(self,
buildings: [CityObject],
buildings_results: dict,
number_of_years=31,
percentage_credit=0,
interest_rate=0.04,
credit_years=15,
consumer_price_index=0.04,
electricity_peak_index=0.05,
electricity_price_index=0.05,
gas_price_index=0.05,
discount_rate=0.03,
retrofitting_year_construction=2020,
factories_handler='montreal_custom'):
self._buildings = buildings
self._buildings_results = buildings_results
self._configuration = Configuration(number_of_years,
percentage_credit,
interest_rate, credit_years,
consumer_price_index,
electricity_peak_index,
electricity_price_index,
gas_price_index,
discount_rate,
retrofitting_year_construction,
factories_handler)
self._global_capital_costs = None
self._global_capital_incomes = None
self._global_end_of_life_costs = None
self._global_operational_costs = None
self._global_maintenance_costs = None
self._global_operational_incomes = None
def _life_cycle_costs(self, building: CityObject, building_results: dict):
lcc = LifeCycleCosts(building, building_results, self._configuration)
self._global_capital_costs, self._global_capital_incomes = lcc.calculate_capital_costs
self._global_end_of_life_costs = lcc.calculate_end_of_life_costs
self._global_operational_costs = lcc.calculate_total_operational_costs
self._global_maintenance_costs = lcc.calculate_total_maintenance_costs
self._global_operational_incomes = lcc.calculate_total_operational_incomes
@property
def life_cycle(self) -> pd.DataFrame:
"""
Get complete life cycle costs
:return: DataFrame
"""
results = pd.DataFrame()
for building_index, building in enumerate(self._buildings):
self._life_cycle_costs(building, self._buildings_results[building_index])
df_capital_costs_skin = (
self._global_capital_costs['B2010_opaque_walls'] +
self._global_capital_costs['B2020_transparent'] +
self._global_capital_costs['B3010_opaque_roof'] +
self._global_capital_costs['B10_superstructure']
)
df_capital_costs_systems = (
self._global_capital_costs['D3020_heat_generating_systems'] +
self._global_capital_costs['D3030_cooling_generation_systems'] +
self._global_capital_costs['D3080_other_hvac_ahu'] +
self._global_capital_costs['D5020_lighting_and_branch_wiring'] +
self._global_capital_costs['D301010_photovoltaic_system']
)
df_end_of_life_costs = self._global_end_of_life_costs['End_of_life_costs']
df_operational_costs = (
self._global_operational_costs['Fixed_costs_electricity_peak'] +
self._global_operational_costs['Fixed_costs_electricity_monthly'] +
self._global_operational_costs['Fixed_costs_electricity_peak'] +
self._global_operational_costs['Fixed_costs_electricity_monthly'] +
self._global_operational_costs['Variable_costs_electricity'] +
self._global_operational_costs['Fixed_costs_gas'] +
self._global_operational_costs['Variable_costs_gas']
)
df_maintenance_costs = (
self._global_maintenance_costs['Heating_maintenance'] +
self._global_maintenance_costs['Cooling_maintenance'] +
self._global_maintenance_costs['PV_maintenance']
)
df_operational_incomes = self._global_operational_incomes['Incomes electricity']
df_capital_incomes = (
self._global_capital_incomes['Subsidies construction'] +
self._global_capital_incomes['Subsidies HVAC'] +
self._global_capital_incomes['Subsidies PV']
)
life_cycle_costs_capital_skin = npf.npv(
self._configuration.discount_rate, df_capital_costs_skin.values.tolist()
)
life_cycle_costs_capital_systems = npf.npv(
self._configuration.discount_rate, df_capital_costs_systems.values.tolist()
)
life_cycle_costs_end_of_life_costs = npf.npv(
self._configuration.discount_rate, df_end_of_life_costs.values.tolist()
)
life_cycle_operational_costs = npf.npv(
self._configuration.discount_rate, df_operational_costs.values.tolist()
)
life_cycle_maintenance_costs = npf.npv(
self._configuration.discount_rate, df_maintenance_costs.values.tolist()
)
life_cycle_operational_incomes = npf.npv(
self._configuration.discount_rate, df_operational_incomes.values.tolist()
)
life_cycle_capital_incomes = npf.npv(
self._configuration.discount_rate, df_capital_incomes.values.tolist()
)
results[f'{building.name}_{building.city_id}'] = [life_cycle_costs_capital_skin,
life_cycle_costs_capital_systems,
life_cycle_costs_end_of_life_costs,
life_cycle_operational_costs,
life_cycle_maintenance_costs,
life_cycle_operational_incomes,
life_cycle_capital_incomes]
results.index = ['total_capital_costs_skin',
'total_capital_costs_systems',
'end_of_life_costs',
'total_operational_costs',
'total_maintenance_costs',
'operational_incomes',
'capital_incomes']
return results
def to_xlsx(self, path: Path):
"""
Export life cycle costs to xls file
:return: none
"""
for building_index, building in enumerate(self._buildings):
_path = (path / f'{building.name}_{building.city_id}').resolve()
self._life_cycle_costs(building, self._buildings_results[building_index])
with pd.ExcelWriter(path) as writer:
self._global_capital_costs.to_excel(writer, sheet_name='global_capital_costs')
self._global_end_of_life_costs.to_excel(writer, sheet_name='global_end_of_life_costs')
self._global_operational_costs.to_excel(writer, sheet_name='global_operational_costs')
self._global_maintenance_costs.to_excel(writer, sheet_name='global_maintenance_costs')
self._global_operational_incomes.to_excel(writer, sheet_name='global_operational_incomes')
self._global_capital_incomes.to_excel(writer, sheet_name='global_capital_incomes')

315
costs/life_cycle_costs.py Normal file
View File

@ -0,0 +1,315 @@
"""
Life cycle cost module
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Project Author Guille Gutierrez Guillermo.GutierrezMorote@concordia.ca
Code contributor Pilar Monsalvete Alvarez de Uribarri pilar_monsalvete@concordia.ca
Code contributor Oriol Gavalda Torrellas oriol.gavalda@concordia.ca
"""
from hub.persistence.models.city_object import CityObject
from configuration import Configuration
class LifeCycleCosts:
"""
Life cycle costs class
"""
def __init__(self, building: CityObject, building_results: dict, configuration: Configuration):
self._building = building
self._building_results = building_results
self._configuration = configuration
self._archetype = None
for archetype in self._configuration.cost_catalog.entries('archetypes').archetype:
if str(building.function) == str(archetype.function):
self._archetype = archetype
break
if not self._archetype:
raise KeyError('archetype not found')
@property
def calculate_capital_costs(self):
"""
Calculate capital cost
:return: pd.DataFrame
"""
capital_cost_pv = 0
capital_cost_opaque = 0
capital_cost_ground = 0
capital_cost_transparent = 0
capital_cost_roof = 0
capital_cost_heating_equipment = 0
capital_cost_cooling_equipment = 0
capital_cost_distribution_equipment = 0
capital_cost_other_hvac_ahu = 0
capital_cost_lighting = 0
chapters = archetype.capital_cost
peak_heating = building.heating_peak_load[cte.YEAR].values[0]/1000
peak_cooling = building.cooling_peak_load[cte.YEAR].values[0]/1000
# todo: change area pv when the variable exists
roof_area = 0
for roof in building.roofs:
roof_area += roof.solid_polygon.area
surface_pv = roof_area * 0.5
self._yearly_capital_costs.loc[0, 'B2010_opaque_walls'] = 0
self._yearly_capital_costs.loc[0]['B2020_transparent'] = 0
self._yearly_capital_costs.loc[0, 'B3010_opaque_roof'] = 0
self._yearly_capital_costs.loc[0]['B10_superstructure'] = 0
self._yearly_capital_costs.loc[0, 'D3020_heat_generating_systems'] = 0
self._yearly_capital_costs.loc[0, 'D3030_cooling_generation_systems'] = 0
self._yearly_capital_costs.loc[0, 'D3040_distribution_systems'] = 0
self._yearly_capital_costs.loc[0, 'D3080_other_hvac_ahu'] = 0
self._yearly_capital_costs.loc[0, 'D5020_lighting_and_branch_wiring'] = 0
self._yearly_capital_incomes.loc[0, 'Subsidies construction'] = 0
self._yearly_capital_incomes.loc[0, 'Subsidies HVAC'] = 0
self._yearly_capital_incomes.loc[0, 'Subsidies PV'] = 0
self._yearly_capital_costs.fillna(0, inplace=True)
if self._retrofitting_scenario in (SKIN_RETROFIT, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV):
chapter = chapters.chapter('B_shell')
capital_cost_opaque = self._building.wall_area * chapter.item('B2010_opaque_walls').refurbishment[0]
capital_cost_transparent = self._building.windows_area * chapter.item('B2020_transparent').refurbishment[0]
capital_cost_roof = self._building.roof_area * chapter.item('B3010_opaque_roof').refurbishment[0]
capital_cost_ground = self._building.area * chapter.item('B10_superstructure').refurbishment[0]
self._yearly_capital_costs.loc[0, 'B2010_opaque_walls'] = capital_cost_opaque * (1-PERCENTAGE_CREDIT)
self._yearly_capital_costs.loc[0]['B2020_transparent'] = capital_cost_transparent * (1-PERCENTAGE_CREDIT)
self._yearly_capital_costs.loc[0, 'B3010_opaque_roof'] = capital_cost_roof * (1-PERCENTAGE_CREDIT)
self._yearly_capital_costs.loc[0]['B10_superstructure'] = capital_cost_ground * (1-PERCENTAGE_CREDIT)
if self._retrofitting_scenario in (SYSTEM_RETROFIT_AND_PV, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV):
chapter = chapters.chapter('D_services')
capital_cost_pv = surface_pv * chapter.item('D301010_photovoltaic_system').initial_investment[0]
self._yearly_capital_costs.loc[0]['D301010_photovoltaic_system'] = capital_cost_pv
capital_cost_heating_equipment = (
peak_heating * chapter.item('D3020_heat_generating_systems').initial_investment[0]
)
capital_cost_cooling_equipment = (
peak_cooling * chapter.item('D3030_cooling_generation_systems').initial_investment[0]
)
capital_cost_distribution_equipment = (
peak_cooling * chapter.item('D3040_distribution_systems').initial_investment[0]
)
capital_cost_other_hvac_ahu = peak_cooling * chapter.item('D3080_other_hvac_ahu').initial_investment[0]
capital_cost_lighting = self._building.total_heating_area * chapter.item('D5020_lighting_and_branch_wiring').initial_investment[0]
self._yearly_capital_costs.loc[0, 'D3020_heat_generating_systems'] = capital_cost_heating_equipment * (1-PERCENTAGE_CREDIT)
self._yearly_capital_costs.loc[0, 'D3030_cooling_generation_systems'] = capital_cost_cooling_equipment * (1-PERCENTAGE_CREDIT)
self._yearly_capital_costs.loc[0, 'D3040_distribution_systems'] = capital_cost_distribution_equipment * (1-PERCENTAGE_CREDIT)
self._yearly_capital_costs.loc[0, 'D3080_other_hvac_ahu'] = capital_cost_other_hvac_ahu * (1-PERCENTAGE_CREDIT)
self._yearly_capital_costs.loc[0, 'D5020_lighting_and_branch_wiring'] = capital_cost_lighting * (1-PERCENTAGE_CREDIT)
for year in range(1, self._number_of_years):
chapter = chapters.chapter('D_services')
costs_increase = math.pow(1 + self._consumer_price_index, year)
self._yearly_capital_costs.loc[year, 'B2010_opaque_walls'] = -npf.pmt(INTEREST_RATE, CREDIT_YEARS,
capital_cost_opaque * (PERCENTAGE_CREDIT))
self._yearly_capital_costs.loc[year, 'B2020_transparent'] = -npf.pmt(INTEREST_RATE, CREDIT_YEARS,
capital_cost_transparent * (PERCENTAGE_CREDIT)
)
self._yearly_capital_costs.loc[year, 'B3010_opaque_roof'] = -npf.pmt(INTEREST_RATE, CREDIT_YEARS,capital_cost_roof
* (PERCENTAGE_CREDIT))
self._yearly_capital_costs.loc[year, 'B10_superstructure'] = -npf.pmt(INTEREST_RATE, CREDIT_YEARS,
capital_cost_ground * (PERCENTAGE_CREDIT))
self._yearly_capital_costs.loc[year, 'D3020_heat_generating_systems'] = -npf.pmt(INTEREST_RATE,CREDIT_YEARS,
capital_cost_heating_equipment
* (PERCENTAGE_CREDIT))
self._yearly_capital_costs.loc[year, 'D3030_cooling_generation_systems'] = -npf.pmt(INTEREST_RATE, CREDIT_YEARS,
capital_cost_cooling_equipment
* (PERCENTAGE_CREDIT))
self._yearly_capital_costs.loc[year, 'D3040_distribution_systems'] = -npf.pmt(INTEREST_RATE, CREDIT_YEARS,
capital_cost_distribution_equipment
* (PERCENTAGE_CREDIT))
self._yearly_capital_costs.loc[year, 'D3080_other_hvac_ahu'] = -npf.pmt(INTEREST_RATE, CREDIT_YEARS,
capital_cost_other_hvac_ahu
* (PERCENTAGE_CREDIT))
self._yearly_capital_costs.loc[year, 'D5020_lighting_and_branch_wiring'] = -npf.pmt(INTEREST_RATE, CREDIT_YEARS,
capital_cost_lighting
* (PERCENTAGE_CREDIT))
if (year % chapter.item('D3020_heat_generating_systems').lifetime) == 0:
reposition_cost_heating_equipment = peak_heating * chapter.item('D3020_heat_generating_systems').reposition[0] \
* costs_increase
self._yearly_capital_costs.loc[year, 'D3020_heat_generating_systems'] += reposition_cost_heating_equipment
if (year % chapter.item('D3030_cooling_generation_systems').lifetime) == 0:
reposition_cost_cooling_equipment = peak_cooling \
* chapter.item('D3030_cooling_generation_systems').reposition[0] \
* costs_increase
self._yearly_capital_costs.loc[year, 'D3030_cooling_generation_systems'] += reposition_cost_cooling_equipment
if (year % chapter.item('D3080_other_hvac_ahu').lifetime) == 0:
reposition_cost_hvac_ahu = peak_cooling * chapter.item('D3080_other_hvac_ahu').reposition[0] * costs_increase
self._yearly_capital_costs.loc[year, 'D3080_other_hvac_ahu'] = reposition_cost_hvac_ahu
if (year % chapter.item('D5020_lighting_and_branch_wiring').lifetime) == 0:
reposition_cost_lighting = self._building.total_heating_area * chapter.item('D5020_lighting_and_branch_wiring').reposition[0] \
* costs_increase
self._yearly_capital_costs.loc[year, 'D5020_lighting_and_branch_wiring'] += reposition_cost_lighting
if self._retrofitting_scenario in (SYSTEM_RETROFIT_AND_PV, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV):
if (year % chapter.item('D301010_photovoltaic_system').lifetime) == 0:
self._yearly_capital_costs.loc[year]['D301010_photovoltaic_system'] += surface_pv \
* chapter.item(
'D301010_photovoltaic_system').reposition[0] * costs_increase
capital_cost_skin = capital_cost_opaque + capital_cost_ground + capital_cost_transparent + capital_cost_roof
capital_cost_hvac = (
capital_cost_heating_equipment +
capital_cost_cooling_equipment +
capital_cost_distribution_equipment +
capital_cost_other_hvac_ahu + capital_cost_lighting
)
self._yearly_capital_incomes.loc[0, 'Subsidies construction'] = (
capital_cost_skin * archetype.income.construction_subsidy/100
)
self._yearly_capital_incomes.loc[0, 'Subsidies HVAC'] = capital_cost_hvac * archetype.income.hvac_subsidy/100
self._yearly_capital_incomes.loc[0, 'Subsidies PV'] = capital_cost_pv * archetype.income.photovoltaic_subsidy/100
self._yearly_capital_incomes.fillna(0, inplace=True)
return self._yearly_capital_costs, self._yearly_capital_incomes
@property
def calculate_end_of_life_costs(self):
"""
Calculate end of life costs
:return: pd.DataFrame
"""
archetype = self._archetype
for year in range(1, self._number_of_years + 1):
price_increase = math.pow(1 + self._consumer_price_index, year)
if year == self._number_of_years:
self._yearly_end_of_life_costs.at[
year, 'End_of_life_costs'] = self._building.total_heating_area * archetype.end_of_life_cost * price_increase
self._yearly_end_of_life_costs.fillna(0, inplace=True)
return self._yearly_end_of_life_costs
@property
def calculate_total_operational_costs(self):
"""
Calculate total operational costs
:return: pd.DataFrame
"""
building = self._building
archetype = self._archetype
factor_residential = self._building.total_heating_area / 80
# todo: split the heating between fuels
fixed_gas_cost_year_0 = 0
variable_gas_cost_year_0 = 0
electricity_heating = 0
domestic_hot_water_electricity = 0
if self._fuel_type == 1:
fixed_gas_cost_year_0 = archetype.operational_cost.fuels[1].fixed_monthly * 12 * factor_residential
variable_gas_cost_year_0 = (
(building.heating_consumption[cte.YEAR][0] + building.domestic_hot_water_consumption[cte.YEAR][0]) / 1000 *
archetype.operational_cost.fuels[1].variable[0]
)
if self._fuel_type == 0:
electricity_heating = building.heating_consumption[cte.YEAR][0] / 1000
domestic_hot_water_electricity = building.domestic_hot_water_consumption[cte.YEAR][0] / 1000
electricity_cooling = building.cooling_consumption[cte.YEAR][0] / 1000
electricity_lighting = building.lighting_electrical_demand[cte.YEAR]['insel meb'] / 1000
electricity_plug_loads = building.appliances_electrical_demand[cte.YEAR]['insel meb'] / 1000
electricity_distribution = 0
total_electricity_consumption = (
electricity_heating + electricity_cooling + electricity_lighting + domestic_hot_water_electricity +
electricity_plug_loads + electricity_distribution
)
# todo: change when peak electricity demand is coded. Careful with factor residential
peak_electricity_demand = 100 # self._peak_electricity_demand
variable_electricity_cost_year_0 = total_electricity_consumption * archetype.operational_cost.fuels[0].variable[0]
peak_electricity_cost_year_0 = peak_electricity_demand * archetype.operational_cost.fuels[0].fixed_power * 12
monthly_electricity_cost_year_0 = archetype.operational_cost.fuels[0].fixed_monthly * 12 * factor_residential
for year in range(1, self._number_of_years + 1):
price_increase_electricity = math.pow(1 + self._electricity_price_index, year)
price_increase_peak_electricity = math.pow(1 + self._electricity_peak_index, year)
price_increase_gas = math.pow(1 + self._gas_price_index, year)
self._yearly_operational_costs.at[year, 'Fixed_costs_electricity_peak'] = (
peak_electricity_cost_year_0 * price_increase_peak_electricity
)
self._yearly_operational_costs.at[year, 'Fixed_costs_electricity_monthly'] = (
monthly_electricity_cost_year_0 * price_increase_peak_electricity
)
self._yearly_operational_costs.at[year, 'Variable_costs_electricity'] = float(
variable_electricity_cost_year_0 * price_increase_electricity
)
self._yearly_operational_costs.at[year, 'Fixed_costs_gas'] = fixed_gas_cost_year_0 * price_increase_gas
self._yearly_operational_costs.at[year, 'Variable_costs_gas'] = (
variable_gas_cost_year_0 * price_increase_peak_electricity
)
self._yearly_operational_costs.at[year, 'Variable_costs_gas'] = (
variable_gas_cost_year_0 * price_increase_peak_electricity
)
self._yearly_operational_costs.fillna(0, inplace=True)
return self._yearly_operational_costs
@property
def calculate_total_operational_incomes(self):
"""
Calculate total operational incomes
:return: pd.DataFrame
"""
building = self._building
if cte.YEAR not in building.onsite_electrical_production:
onsite_electricity_production = 0
else:
onsite_electricity_production = building.onsite_electrical_production[cte.YEAR][0]/1000
for year in range(1, self._number_of_years + 1):
price_increase_electricity = math.pow(1 + self._electricity_price_index, year)
# todo: check the adequate assignation of price. Pilar
price_export = 0.075 # archetype.income.electricity_export
self._yearly_operational_incomes.loc[year, 'Incomes electricity'] = (
onsite_electricity_production * price_export * price_increase_electricity
)
self._yearly_operational_incomes.fillna(0, inplace=True)
return self._yearly_operational_incomes
@property
def calculate_total_maintenance_costs(self):
"""
Calculate total maintenance costs
:return: pd.DataFrame
"""
building = self._building
archetype = self._archetype
# todo: change area pv when the variable exists
roof_area = 0
for roof in building.roofs:
roof_area += roof.solid_polygon.area
surface_pv = roof_area * 0.5
peak_heating = building.heating_peak_load[cte.YEAR][cte.HEATING_PEAK_LOAD][0]
peak_cooling = building.cooling_peak_load[cte.YEAR][cte.COOLING_PEAK_LOAD][0]
maintenance_heating_0 = peak_heating * archetype.operational_cost.maintenance_heating
maintenance_cooling_0 = peak_cooling * archetype.operational_cost.maintenance_cooling
maintenance_pv_0 = surface_pv * archetype.operational_cost.maintenance_pv
for year in range(1, self._number_of_years + 1):
costs_increase = math.pow(1 + self._consumer_price_index, year)
self._yearly_maintenance_costs.loc[year, 'Heating_maintenance'] = (
maintenance_heating_0 * costs_increase
)
self._yearly_maintenance_costs.loc[year, 'Cooling_maintenance'] = (
maintenance_cooling_0 * costs_increase
)
self._yearly_maintenance_costs.loc[year, 'PV_maintenance'] = (
maintenance_pv_0 * costs_increase
)
self._yearly_maintenance_costs.fillna(0, inplace=True)
return self._yearly_maintenance_costs

2
resources.txt Normal file
View File

@ -0,0 +1,2 @@
numpy_financial
cerc_hub

9
tests/test_costs.py Normal file
View File

@ -0,0 +1,9 @@
import unittest
from costs.cost import Cost
class TestCosts(unittest.TestCase):
def test_costs(self):
cost = Cost()
self.assertEqual(True, False) # add assertion here