Provisional Title:
The Big Little Book of CERC Terminology

Current Maintainer: Raman

November 2022






Preamble

This is to serve as a reference book when people use terminology. Changes
in terminology from the ones listed in the book must be explicitly highlighted
when presenting within the group for the group’s sanity and clarity.

This is a living document that has to be maintained by the group. All changes
will be performed by the Maintainer assigned to the book. The book is passed
from maintainer to maintainer so that there is only one maintainer at any point
of time.

Responsibilities of the Document Maintainer

e Ensure timely update of the definitions within the book. (Current update
rate: Once a week)

e Add definitions as and when new concepts are added or update definitions
when existing concepts are amended.

e Approach user if clarifications are required and try to come up with a
general meaning based on discussion with the software and scientific team.

Rules for suggesting edit and updates

1. Follow style of example listed in Chapter [§]

2. For edits in already existing definitions, reference the term and Chapter
number in Chapter [§ when suggesting the edit.

3. Give reason for edit in definition and why it makes sense.

4. If adding new term, please give definition and example suggestions, cite if
any.

5. For suggesting the edit, either add your name to the suggestion OR add

a new command and textcolor in the “main.tex” file so that we can reach
you if further clarifications are required. (refer to part titled ”Functions



ii

to assign different users with different colors” in “main.tex” file)



Chapter

CERC Platform and General
Terminology

CERC Platform: The platform is a collection of code and software that
when combined together provides concrete orientation on how to manage and
collate data from different sources in a coherent manner to form input files for
other software (in-house, third-party, proprietary or otherwise). The platform
also serves as the interface between the other software used to perform different
computations (based on the use-case in hand). The results from those compu-
tations are then used to represent/visualise the various flows of material and
energy that underpins all human and societal interactions. The platform repre-
sents systems and processes to adequate levels of abstraction, depending on the
use-case. The platform allows for simulation, optimization, Hardware-in-Loop
(HiL, check entry in Chapter@ tests and forecasting for the various sectors and
helps identify retrofit and strategic improvements for different objectives such
as GHG emissions reduction, cost reduction etc.

Example: The CERC platform can be used to collect data about the cement
manufacturing plants on the Montréal island, calculate their energy requirements
and emissions outputs and identify how to optimally produce the desired amount
of cement while also providing other services for Montréal city. The platform
can then be used to visualise the results using a graphical interface.

Central Data Model: A Central Data Model (CDM) is a semi-flexible data
structure intended to exchange information between data sources and modeling
tools. It must, therefore, homogenize the information fluxes to become inde-

pendent of the structures and needs of ones and others. Being semi-flexible



2 CHAPTER 1. CERC PLATFORM AND GENERAL TERMINOLOGY

means that the structure can be extended to include new domains or increase
the applicability of the old ones.

Example: The CERC CDM is designed to create digital twins of cities. Ini-
tially, it only modeled buildings but it is being extended step-by-step to include
other domains such as utility networks, traffic, waste management, etc.

HUB: HUB is the name given to the backend consisting of multiple workflows
enabling data collection, reconfiguration and analysis for the use-cases of the
CERC Platform

Example: For more details regarding the working of the HUB, refer to the
Documentation in Gitlab and the Urban Simulation Platform documentation
created by Hadise Rasoulian

Catalog/Catalogue: A catalog/catalogue is a rigid or semi-rigid data struc-
ture, in its simplest form, a file or group of files, that provide information
(technical/commercial) regarding components that form a system within any
domain. Catalogs are intended to facilitate coherent sharing of data sources be-
tween users, while also offering the opportunity to extend the content within the
catalogs. The components are listed with relevant details and associated data
is tabulated. Each catalog has unique identifying parameters/characteristics
that allow them to be unambiguously used within the CERC Platform. These
unique identifiers are very case-specific and are sometimes provided by Standard
organisations and manufacturers. Also listed could be the dominant/standard
component connection configurations and how they may be used to satisfy use-
cases/output requirements.

Example: Heat Pump catalogue should consist of the heat pump models pro-
duced, heat pump type, manufacturer name, output temperatures, nominal ca-
pacities, typical configurations for the heat pumps (e.g., configurations when
used for space heating only, Domestic Hot Water/DHW purposes only, both
space heating and DHW, combinations with solar thermal/PV), storage tank
data, circulation pump data, compressor type and associated technical data,
valve types etc. Building construction archetypes will be organized in a cata-
log with unique identifying parameters such as Year of Construction, Location
and Building Function.




Factory: A factory is any pipeline created within the platform to either
collect data together and form input data or be used for dispensing the outputs
and/or transforming and giving files of different formats. Factories broadly fall
within three categories: import, export and ‘catalog expose’ factories. The
pipelines used to collect data together and form the necessary inputs are the
import factories, the pipelines used for providing the results and creating cus-
tom formats for various workflows form the export factories while the ”catalog
expose” factories provide a homogeneous interface (with or across the different?)
the data sources. At present, the following factories have been developed/are
under development: Geometry, Usage, Sensors, Weather, Energy Systems, Con-
struction, Life Cycle Assessment (LCA) and Customised imports.

Example: The building geometry files are called and transformed into the ap-
propriate structure for simulation by the geometry imports factory. The collected
geometry can then be transformed into another file format using the geometry
export factory. Similarly, input files for schedules/usage falls under the usage
factory.

Library: A library is a collection of related modules (defined as per the
rules of the language, the library is coded in). It contains code that can be
used repeatedly in different programs and for different use-cases. Libraries may
include configuration data, documentation, help data, message templates or
examples. Library code is organized in such a way that it can be used by
multiple programs that have no connection to each other, while code that is
part of a program is organized to be used only within that one program.

Exzample: Scipy[l] and Pandas[Z] are examples of Python Libraries.

Frontend: The layer of abstraction that connects the user to the backend of
the hardware/platform/environment.

Exzample: The graphical interface of a smartphone/tablet is the frontend of the
phone/tablet. A web browser acts as a frontend to the data servers holding the
information on the different services that you require from the different websites.

Backend: The part of the platform/hardware/software that houses the com-
putational logic, data requisition and storage and the different abstractions of
the systems and/or pilot plants/emulation of parts of the system.



4 CHAPTER 1. CERC PLATFORM AND GENERAL TERMINOLOGY

Example: The hardware of a smartphone/tablet is one of the many backends
for the smartphone/tablet. The data servers hosting the information and ad-
dresses/URIs of the websites form the backend for the world-wide web.

Use-case: A use-case refers to a problem/scenario or set of scenarios that
provide information on the level of detail required from the abstractions created,
the time horizons and time steps required and the boundaries of the subject
under study. The use-case also decide the tools, softwares and methodology
required to tackle the problem.

Exzample: Energy Management of a building/systems and its systems is one of
the many use-cases that can be created from a group of buildings and knowledge
of the systems within those buildings. System sizing and retrofit is another use-
case.

Framework: The Cambridge dictionary defines a framework as both a sup-
porting structure around which something can be built and a system of rules,
ideas, or beliefs that is used to plan or decide something [3]. With reference to
the Platform, both apply, it is essentially a standard set of rules that guide the
development of applications, functions and tools which can be used for different
use-cases. This allows the platform to be extensible and adaptable.

Example: Django and Flask are two examples of Python web frameworks.

Workflow: A Workflow is a sequence of operations/tasks that ensures comple-
tion of any process from start to finish. This sequence is usually well-organised
and repeatable, but, will yield different results and will require different in-
teractions for different processes. Workflows are usually complex, have non-
computational elements, can loop and can be non-linear.

Example: Modern-day assembly lines are well-defined workflows that transform
raw materials to finished products within the industrial setting. A factory, both
in an industrial setting and with reference to the platform consists of many
workflows.




Pipeline: A pipeline is a chain of processing functions, classes and objects that
is usually linear and does not loop. It allows for easy tracking and completion
of tasks within parts of a process that is envisioned within a workflow. Rather
simplistically put, a pipeline is a subset of a workflow or a codified representation
of parts of a workflow, that runs without any intervention and within a fraction
of a time of an entire workflow to provide one output.

Example:

Workflow Example

Input Qutput
1 gl i
B Pipeline 3 » Pipeline 4 R

Figure 1.1: Workflow and pipeline example

Simulation: Simulation, according to [4], is “the process of designing a model
(using mathematical and logical assumptions) of a real system and conducting
experiments with this model for the purpose either of understanding the behav-
ior of the system or of evaluating various strategies (within the limits imposed
by a criterion or set of criteria) for the operation of the system”. These system
representations/models are predominantly used to calculate system behaviour
over a period of time and can be either static or dynamic. For further details
and more detailed explanation of terminology, refer to Section or relevant
sections in subsequent chapters (Cross-connections to be added).

Example: Input Simulation Example

Optimization: In a vernacular sense, optimization is just a method of finding
the best possible solution in any situation where there are multiple options
available. In mathematics, it is the process by which we can find the best
solution for problems where the calculation of the best solution is made difficult
due to the large number of constraints, changes in the conditions with time and
the large number of solutions which one can’t possibly calculate by hand in a
small amount of time. There are different kinds of optimization, each with their
own strengths and weaknesses. Optimization is usually chosen by the desired



6 CHAPTER 1. CERC PLATFORM AND GENERAL TERMINOLOGY

use-case. For further details and more detailed explanation of certain kinds of
optimization and associated terminology, refer to Section [L.2|or relevant sections
in subsequent chapters (Cross-connections to be added).

Example: Input Optimization Example

Model: A model is just a simplified representation or abstraction of how any
object (called system) functions as devised a designer (you or me) of the system.
This can be represented either by creating a scaled-down version and/or logical
and/or numerical statements. A model can also be a representation that defines
the rules and relationships between the logical and/or numerical statements
and the prerequisite information that is needed to mimic the behaviour of the
system to the level of accuracy desired by the designer of the model. Within
the platform, the term model is used predominantly in two forms: data models
(ontological models) and computational models.

Example: Any toy train network is a model of the real train network. The
model accuracy of the toy train network will vary depending on the designer’s
desire for detail and accuracy to the real-life system, associated rules and calcu-
lations.

Data model: A data model is a representation of either a whole system
or parts of it to communicate connections between data points and associated
structures (related to ontological and semantic modelling). The goal is to il-
lustrate the types of data used and stored within the system, the relationships
among these data types, the ways the data can be grouped and organized and
its formats and attributes. Data models can be of the following types: Logical
(big picture view of what it represents, contains and some relationships), Con-
ceptual(Detailed view of relationships between parts and associated datatypes)
or Physical (how and where is the data physically stored).

Example: That

Computational model: Computational models are models created to simu-
late, optimize and study complex systems and phenomena using a mix of math-
ematics, physical sciences and computer science. Computational models are
usually solved using computers owing to model complexity. Computational
models attempt to represent the system/behaviour of interest as a set of mathe-



1.1. SIMULATION 7

matical equations (partial differential or otherwise). This representation might
require high levels of detail depending on the degree of accuracy desired or might
utilise approximation methods and correlations to sacrifice accuracy for speed
of computation.

Example: Simulink, INSEL, EnergyPlus, Labview, FLUENT and other sim-
ulation softwares utilise computational models to represent fluid flows, energy
flows, energy systems and buildings among other systems and phenomena.

Machine Learning:

1.1 Simulation

Simulation Software:

Dynamic Simulation: Mathematical models of such systems would be nat-
urally viewed as dynamic in the sense that they evolve over time and therefore
incorporate time. A dynamic model includes time in the model. The word
dynamic is derived from the Greek word dynamis, meaning force and power,
with dynamics being the (time-dependent) interplay between forces. Time can
be included explicitly as a variable in a mathematical formula or be present
indirectly, for example through the time derivative of a variable or as events
occurring at certain points in time

Example: Dynamic simulations can utilise discrete or continuous-time steps

Static Simulation: A static model can be defined without involving time,
where the word static is derived from the Greek word statikos, meaning some-
thing that creates equilibrium. Static models are often used to describe systems
in steady-state or equilibrium situations, where the output does not change if
the input is the same. However, static models can display a rather dynamic
behavior when fed with dynamic input signals

Exzample:

Design Period:
Models:



8 CHAPTER 1. CERC PLATFORM AND GENERAL TERMINOLOGY

1.2 Optimization

Solvers:

Models:

1.3 Geographical Assets

NRCAN Vector and Raster assets: |https://ftp.geogratis.gc.ca/
pub/nrcan_rncan/

Example:

1.4 Visualisation

1.5 Programming

IDE: Acronym for Integrated Development Environment (IDE). IDEs are spe-
cial tools/software that allow programmers to develop new software. Different
IDEs will have different features integrated into them and cater to different
coding philosophies. As a result, there might be different flavours. Some of the
usual features of IDEs are:

e Programming language syntax check.
e Programming language syntax highlight.
e Code hints.

Code auto-completion.

e Easy compilation/execution.

e Version control integration

Example: PyCharm is an example of an IDE developed by JetBrains for
Python

Coding:

Classes:



https://ftp.geogratis.gc.ca/pub/nrcan_rncan/
https://ftp.geogratis.gc.ca/pub/nrcan_rncan/

1.6. GAMIFICATION 9

Example:

Objects:

Example:

Inheritance:

Example:

Unified Modeling Language:

Example:

Visual Programming/Coding: It’s referred to a coding style where the
program isn’t wrote by using written expressions with a specific syntax, but
combining visual elements connected in a specific way

Example:

1.6 Gamification



10 CHAPTER 1. CERC PLATFORM AND GENERAL TERMINOLOGY



Chapter
Buildings

Urban Building Energy Modelling: UBEM or Urban Energy Building
Modelling is used

2.1 Weather

EPW (EnergyPlus Weather File): EnergyPlus uses weather files of a cer-
tain format.

Example: EPW file for Montreal is used as an input for the EnergyPlus Sim-
ulations

World Meteorological Organization (WMO): Since weather systems and
climatic conditions extend beyond international boundaries, it is necessary to
exchange weather information freely throughout the world. This requires coor-
dination and standardization of practices and procedures for efficient exchange
of weather transmissions. To promote these services and to further the appli-
cation of meteorology to aviation, shipping, agriculture and other human ac-
tivities, the World Meteorological Organization was established by the United
Nations in 1951. Its weather reporting codes are called International Codes.

Example: WMO ID of Montreal International Airport is 716270, corresponding
Meteorological Service of Canada Climate ID for the Airport is 7025251

11



12 CHAPTER 2. BUILDINGS

CWEC (Canadian Weather Year for Energy Calculation):
TDY (Typical Downsized Year):

TMY (Typical Meteorological Year):

TRY (Typical Reference Year):

HVAC: Heating, Ventilation and Air Conditioning Systems provide the heating
and cooling requirements for each building. This may consist of a mix of different
systems varying depending on location and standardised practices. For further
details on the individual systems, refer the appropriate terms in Chapter [3]

Example:

Urban Heat Islands (UHI):

Exzample:

Example:

BCVTB (Building Control Virtual Test Bed): The Building Control
Virtual Test Bed is a project run and maintained by the Lawrence Berkeley
National Laboratory for the purpose of testing control and energy management
purposes in Hardware-in-Loop (HiL) settings. BCVTB uses Ptolemy, Energy-
Plus, OpenModelica and other related softwares. The BCVTB environment can
be found here: https://simulationresearch.lbl.gov/bcvtb/FrontPage

Example:



https://simulationresearch.lbl.gov/bcvtb/FrontPage

Chapter

Energy Systems

Carbon Sequestration Systems:

Example:

Heat Pumps:

Example:

Cogeneration/Polygeneration:

Example:

13




14

CHAPTER 3. ENERGY SYSTEMS



Chapter I

Electric Grid and Energy
Management

4.1 Energy Management

Flexibility:

Example:

15



16 CHAPTER 4. ELECTRIC GRID AND ENERGY MANAGEMENT



Chapter 5

Transport

OD matrix:

Example:

17



18

CHAPTER 5. TRANSPORT



Chapter 6

Circular Economy

6.1 Green Roofing

6.2 Waste Management

Black Water:

Example:

19



20

CHAPTER 6. CIRCULAR ECONOMY



Chapter

Experimental Setups and
Internet-of-Things

ADC Pin:
Hardware-in-Loop:

Testbed:

Example:

Pilot Plant:

Example:

FPGA: A field-programmable gate array (FPGA) is an integrated circuit
designed to be configured by a customer or a designer after manufacturing

Example:

21



22CHAPTER 7. EXPERIMENTAL SETUPS AND INTERNET-OF-THINGS

7.1 Internet-of-Things (IoT)

Internet-of-Things (IoT: A buzzword/keyword, much talked about, con-
cerning networks of sensors, devices and objects with access to the wider web.
An ToT network could be developed for a building, a neighbourhood, a city or
across many cities. Currently, there is little consensus on what it actually im-
plies. So, each time one uses IoT, the author/contributor has to define it for
their use-case.

Example:

Standards:

Example:

Protocols:



Chapter

Edit, Update Requests and New
terms

Example usage

SUGGESTED TERM/TERM DEFINITION CHANGE: INSERT NEW
DEFINITION HERE

Example: EXAMPLE OF TERM. You can also add images if you feel like to
clarify your definition here

New terms for definition and definition correction

23



24 CHAPTER 8. EDIT, UPDATE REQUESTS AND NEW TERMS



Bibliography

[1] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,

D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, I. Polat, Y. Feng, E. W.
Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen,
E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa,
P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental Al-
gorithms for Scientific Computing in Python,” Nature Methods, vol. 17, pp.
261-272, 2020.

W. McKinney, “Data Structures for Statistical Computing in Python,” in
Proceedings of the 9th Python in Science Conference, Stéfan van der Walt

and Jarrod Millman, Eds., 2010, pp. 56 — 61.

C. Dictionary, “Framework,” in Cambridge dictionary. Cambridge
University Press, 2022. [Online]. Available: https://dictionary.cambridge.
org/dictionary/english/framework

R. E. Shannon, Systems simulation; the art and science. Prentice-Hall,
1975.

25


https://dictionary.cambridge.org/dictionary/english/framework
https://dictionary.cambridge.org/dictionary/english/framework

26

BIBLIOGRAPHY



Index

Backend, 3
BCVTB, 12
Black Water, 19

Canada Atlas, 8

CANVEC, 8

Catalogue, 2

CCs, 13

Central Data Model, 1
Classes (programming), 8
Communication Standards, 22

Dynamic Simulation, 7
EPW, 11

Factory, 3
FPGA, 21
Framework, 4
Frontend, 3

HP, 13
HUB, 2
HVAC, 12

IDE, 8

INDEX FOR TERM, 23
Inheritance (programming), 9
ToT, 22

Library, 3

Model, 6
Computational, 6
Data, 6

Objects (programming), 9
Optimization, 5

Pilot Plant, 21

Pipeline, 5

Platform, 1

Polygeneration, 13
Cogeneration, 13

Simulation, 5
Static Simulation, 7

Testbed, 21

UHI, 12

Unified Modeling Language
(UML), 9

Use-case, 4

Visual Programming/Coding, 9

WMO, 11
Workflow, 4



	CERC Platform and General Terminology
	Simulation
	Optimization
	Geographical Assets
	Visualisation
	Programming
	Gamification

	Buildings
	Weather

	Energy Systems
	Electric Grid and Energy Management
	Energy Management

	Transport
	Circular Economy
	Green Roofing
	Waste Management

	Experimental Setups and Internet-of-Things
	Internet-of-Things (IoT)

	Edit, Update Requests and New terms

