120 lines
5.2 KiB
Python
120 lines
5.2 KiB
Python
import json
|
|
import random
|
|
import datetime
|
|
from pathlib import Path
|
|
|
|
from hub.imports.geometry_factory import GeometryFactory
|
|
from hub.imports.construction_factory import ConstructionFactory
|
|
from hub.imports.usage_factory import UsageFactory
|
|
from hub.imports.results_factory import ResultFactory
|
|
from hub.exports.energy_building_exports_factory import EnergyBuildingsExportsFactory
|
|
from hub.exports.exports_factory import ExportsFactory
|
|
from hub.helpers.data.montreal_function_to_hub_function import MontrealFunctionToHubFunction
|
|
|
|
from sra import Sra
|
|
from meb import Meb
|
|
|
|
class EnergyValidation:
|
|
def __init__(self):
|
|
self.weather_file = Path('./data/CAN_PQ_Montreal.Intl.AP.716270_CWEC.epw').resolve()
|
|
self.climate_file_name = 'Montreal'
|
|
self.tmp_folder = Path('./tmp').resolve()
|
|
self.storage_path = Path('./storage').resolve()
|
|
self.climate_file = Path(f'{self.storage_path}/{self.climate_file_name}.cli').resolve()
|
|
self.meb_folder = Path('./results/meb').resolve()
|
|
self.ep_folder = Path('./results/ep').resolve()
|
|
|
|
def _sort_buildings(self, buildings_to_simulate):
|
|
sorted_buildings = {}
|
|
for building in buildings_to_simulate:
|
|
code_utili = building['properties']['CODE_UTILI']
|
|
if not sorted_buildings.get(code_utili):
|
|
sorted_buildings[code_utili] = []
|
|
sorted_buildings[code_utili].append(building)
|
|
return sorted_buildings
|
|
|
|
def run(self, building_set, building_quantities):
|
|
sorted_buildings = self._sort_buildings(building_set)
|
|
building_to_simulate = []
|
|
min_m2_satisfied = False
|
|
|
|
for code_utili in building_quantities:
|
|
if code_utili not in sorted_buildings:
|
|
print(f'CODE_UTILI:{code_utili} is not found in the provided dataset.')
|
|
else:
|
|
for building in range(building_quantities[code_utili]):
|
|
# only select buildings with an area of 500 m^2 or more
|
|
while not min_m2_satisfied:
|
|
building_to_simulate.append(sorted_buildings[code_utili][random.randrange(
|
|
len(sorted_buildings[code_utili]))])
|
|
if building_to_simulate[0]['bldgarea'] < 500:
|
|
building_to_simulate.clear()
|
|
else:
|
|
min_m2_satisfied = True
|
|
|
|
building_id = building_to_simulate[0]['id']
|
|
|
|
geojson = {
|
|
"type": "FeatureCollection",
|
|
"features": building_to_simulate
|
|
}
|
|
|
|
geojson_file = open(f'tmp/{building_id}_energy_validation.geojson', 'w')
|
|
geojson_file.write(json.dumps(geojson, indent=2))
|
|
geojson_file.close()
|
|
|
|
city = GeometryFactory('geojson',
|
|
path=f'tmp/{building_id}_energy_validation.geojson',
|
|
height_field='building_height',
|
|
year_of_construction_field='ANNEE_CONS',
|
|
function_field='CODE_UTILI',
|
|
function_to_hub=MontrealFunctionToHubFunction().dictionary).city
|
|
ConstructionFactory('nrcan', city).enrich()
|
|
UsageFactory('nrcan', city).enrich()
|
|
|
|
if city.climate_reference_city is None:
|
|
city.name = f'Concordia current status {building_id}'
|
|
city.climate_reference_city = city.location
|
|
self.climate_file_name = city.location
|
|
city.climate_file = self.climate_file
|
|
|
|
print(f'{building_id} starting sra')
|
|
start = datetime.datetime.now()
|
|
ExportsFactory('sra', city, self.tmp_folder, weather_file=self.weather_file, weather_format='epw').export()
|
|
sra_file = (self.tmp_folder / f'{city.name}_sra.xml').resolve()
|
|
Sra(sra_file, self.tmp_folder).run()
|
|
ResultFactory('sra', city, self.tmp_folder).enrich()
|
|
sra_time = datetime.datetime.now() - start
|
|
print(f"{building_id} SRA time: {sra_time}\n")
|
|
|
|
print(f'{building_id} starting meb')
|
|
start = datetime.datetime.now()
|
|
for building in city.buildings:
|
|
building.attic_heated = 0
|
|
building.basement_heated = 1
|
|
|
|
EnergyBuildingsExportsFactory('insel_monthly_energy_balance', city, self.meb_folder).export()
|
|
Meb(self.meb_folder).run()
|
|
|
|
meb_time = datetime.datetime.now() - start
|
|
print(f"{building_id} meb time: {meb_time}\n")
|
|
|
|
#print('starting energy plus')
|
|
building_to_simulate.clear()
|
|
|
|
|
|
|
|
|
|
data_file = open('data/VMTrial_cleaned.geojson', 'r')
|
|
city = json.load(data_file)
|
|
buildings = city['features']
|
|
|
|
test_batch = {
|
|
'1000': 50,
|
|
'4413': 10,
|
|
'1921': 5
|
|
}
|
|
|
|
test = EnergyValidation()
|
|
test.run(building_set=buildings, building_quantities=test_batch)
|