hub/pv_generation.py

208 lines
7.9 KiB
Python
Raw Permalink Normal View History

from hub.imports.energy_systems_factory import EnergySystemsFactory
from hub.imports.geometry_factory import GeometryFactory
from hub.helpers.dictionaries import Dictionaries
from hub.imports.construction_factory import ConstructionFactory
from hub.imports.results_factory import ResultFactory
from hub.exports.exports_factory import ExportsFactory
from hub.imports.weather_factory import WeatherFactory
from pv_assessment.solar_calculator import SolarCalculator
from pv_assessment.pv_system_assessment_without_consumption import PvSystemProduction
from scripts import random_assignation
import subprocess
from pathlib import Path
import geopandas as gpd
import matplotlib.pyplot as plt
from shapely.geometry import Polygon
import os
import pandas as pd
input_file_1 = "./data/updated_geojson_layers/output_layer_6.geojson"
# input_file_2 = "./data/updated_geojson_layers/output_layer_20.geojson"
# input_file_3 = "./data/updated_geojson_layers/output_layer_38.geojson"
# input_file_4 = "./data/updated_geojson_layers/output_layer_53.geojson"
output_path = (Path(__file__).parent.parent / 'hub / out_files').resolve()
output_path.mkdir(parents=True, exist_ok=True)
sra_output_path = output_path / 'sra_outputs'
sra_output_path.mkdir(parents=True, exist_ok=True)
pv_assessment_path = output_path / 'pv_outputs'
pv_assessment_path.mkdir(parents=True, exist_ok=True)
def process_city(input_file, name_suffix):
city_obj = GeometryFactory(
"geojson",
input_file,
height_field="height",
year_of_construction_field="contr_year",
function_field="function_c",
adjacency_field="adjacency",
lot_area_field='lot_area',
build_area_field='build_area',
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
ConstructionFactory('nrcan', city_obj).enrich()
WeatherFactory('epw', city_obj).enrich()
ExportsFactory('sra', city_obj, sra_output_path).export()
sra_path = (sra_output_path / f'{city_obj.name}_sra.xml').resolve()
subprocess.run(['sra', str(sra_path)])
ResultFactory('sra', city_obj, sra_output_path).enrich()
tilt_angle = 37
solar_parameters = SolarCalculator(city=city_obj,
surface_azimuth_angle=180,
tilt_angle=tilt_angle,
standard_meridian=-75)
solar_angles = solar_parameters.solar_angles
solar_parameters.tilted_irradiance_calculator()
random_assignation.call_random(city_obj.buildings, random_assignation.residential_systems_percentage)
EnergySystemsFactory('montreal_future', city_obj).enrich()
for building in city_obj.buildings:
PvSystemProduction(building=building,
pv_system=None,
battery=None,
tilt_angle=tilt_angle,
solar_angles=solar_angles,
pv_installation_type='rooftop',
simulation_model_type='explicit',
module_model_name=None,
inverter_efficiency=0.95,
system_catalogue_handler=None,
roof_percentage_coverage=0.75,
facade_coverage_percentage=0,
csv_output=False,
output_path=pv_assessment_path).enrich()
return city_obj
city1 = process_city(input_file_1, "_city1")
# city2 = process_city(input_file_2, "_city2")
# city3 = process_city(input_file_3, "_city3")
# city4 = process_city(input_file_4, "_city4")
print("All simulations done")
# PLOTTING STUFF
layers_file = "data/cmm_limites_avec_mtl.geojson"
main_dir = os.path.abspath(".")
layers_gdf = gpd.read_file(layers_file)
if layers_gdf.crs is None:
layers_gdf.set_crs(epsg=32188, inplace=True)
def city_to_gdf(city_obj):
buildings_data = []
for b in city_obj.buildings:
yearly_pv = b.pv_generation['year']
if isinstance(yearly_pv, list):
yearly_pv = sum(yearly_pv)
else:
yearly_pv = yearly_pv
if not b.surfaces:
continue
ground_surface = b.surfaces[0]
coords_3d = ground_surface.solid_polygon.coordinates
coords_2d = [(c[0], c[1]) for c in coords_3d]
footprint_poly = Polygon(coords_2d)
buildings_data.append({
"geometry": footprint_poly,
"yearly_pv": yearly_pv
})
gdf = gpd.GeoDataFrame(buildings_data, crs="EPSG:26911")
gdf = gdf.to_crs(layers_gdf.crs)
return gdf
gdf_city1 = city_to_gdf(city1)
# gdf_city2 = city_to_gdf(city2)
# gdf_city3 = city_to_gdf(city3)
# gdf_city4 = city_to_gdf(city4)
all_buildings_gdf = gpd.GeoDataFrame(pd.concat([gdf_city1], ignore_index=True), crs=gdf_city1.crs)
layers_of_interest = [f"layer_{i}" for i in range(6, 21)]
for layer_name in layers_of_interest:
layer_poly = layers_gdf[layers_gdf["region"] == layer_name]
if layer_poly.empty:
continue
layer_union = layer_poly.unary_union
if layer_union.is_empty:
continue
buildings_in_layer = all_buildings_gdf[all_buildings_gdf.geometry.within(layer_union)]
if buildings_in_layer.empty:
continue
fig, ax = plt.subplots(figsize=(20, 20), dpi=600)
layer_poly.plot(ax=ax, facecolor="none", edgecolor="black", linewidth=1)
vmin = buildings_in_layer["yearly_pv"].min()
vmax = buildings_in_layer["yearly_pv"].max()
buildings_in_layer.plot(column="yearly_pv", ax=ax,
cmap="viridis",
edgecolor="white",
linewidth=0.5,
legend=True,
legend_kwds={'label': "Yearly PV Generation (kWh)", 'orientation': "vertical"},
vmin=vmin, vmax=vmax)
ax.set_title(f"Yearly PV Generation - {layer_name}", fontsize=14)
ax.set_aspect('equal', 'box')
plt.tight_layout()
plt.savefig(os.path.join(main_dir, f"{layer_name}_pv_generation_multi_city.pdf"), dpi=300)
plt.close(fig)
fig, ax = plt.subplots(figsize=(20, 20), dpi=1200)
layers_gdf.plot(ax=ax, facecolor="none", edgecolor="grey", linewidth=0.5)
vmin = all_buildings_gdf["yearly_pv"].min()
vmax = all_buildings_gdf["yearly_pv"].max()
all_buildings_gdf.plot(column="yearly_pv", ax=ax,
cmap="plasma",
edgecolor="none",
legend=True,
legend_kwds={'label': "Yearly PV Generation (kWh)", 'orientation': "vertical"},
vmin=vmin, vmax=vmax)
ax.set_title("Yearly PV Generation - All Layers (All 4 Cities)", fontsize=14)
ax.set_aspect('equal', 'box')
plt.tight_layout()
plt.savefig(os.path.join(main_dir, "all_layers_pv_generation_all_4_cities.png"), dpi=1200)
plt.close(fig)
layer_sums = []
for idx, row in layers_gdf.iterrows():
region_name = row["region"]
poly_geom = row["geometry"]
b_in_poly = all_buildings_gdf[all_buildings_gdf.geometry.within(poly_geom)]
total_pv = b_in_poly["yearly_pv"].sum()
layer_sums.append({
"region": region_name,
"total_pv": total_pv,
"geometry": poly_geom
})
layers_pv_gdf = gpd.GeoDataFrame(layer_sums, crs=layers_gdf.crs)
fig, ax = plt.subplots(figsize=(10, 10), dpi=300)
vmin = layers_pv_gdf["total_pv"].min()
vmax = layers_pv_gdf["total_pv"].max()
layers_pv_gdf.plot(column="total_pv", ax=ax,
cmap="YlOrRd",
edgecolor="black",
legend=True,
legend_kwds={'label': "Total PV Generation per Layer (kWh)", 'orientation': "vertical"},
vmin=vmin, vmax=vmax)
ax.set_title("Total PV Generation by Layer (All 4 Cities)", fontsize=14)
ax.set_aspect('equal', 'box')
plt.tight_layout()
plt.savefig(os.path.join(main_dir, "layers_total_pv_all_4_cities.png"), dpi=300)
plt.close(fig)
print("All plots generated successfully for the 4 cities.")