hub/tests/test_results_import.py

134 lines
6.5 KiB
Python
Raw Permalink Normal View History

2023-04-27 10:59:03 -04:00
"""
TestExports test and validate the city export formats
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
"""
2023-08-07 12:32:33 -04:00
2023-04-27 10:59:03 -04:00
import subprocess
from pathlib import Path
from unittest import TestCase
2023-05-01 10:37:51 -04:00
import hub.helpers.constants as cte
from hub.exports.energy_building_exports_factory import EnergyBuildingsExportsFactory
from hub.exports.exports_factory import ExportsFactory
2023-04-27 10:59:03 -04:00
from hub.helpers.dictionaries import Dictionaries
from hub.imports.construction_factory import ConstructionFactory
2023-05-01 10:37:51 -04:00
from hub.imports.geometry_factory import GeometryFactory
2023-04-27 10:59:03 -04:00
from hub.imports.results_factory import ResultFactory
2023-05-01 10:37:51 -04:00
from hub.imports.usage_factory import UsageFactory
2023-04-27 10:59:03 -04:00
class TestResultsImport(TestCase):
2023-04-27 10:59:03 -04:00
"""
TestImports class contains the unittest for import functionality
"""
def setUp(self) -> None:
"""
Test setup
:return: None
"""
self._example_path = (Path(__file__).parent / 'tests_data').resolve()
self._output_path = (Path(__file__).parent / 'tests_outputs').resolve()
file = 'Citylayers_neighbours_simp2.json'
file_path = (self._example_path / file).resolve()
self._city = GeometryFactory('geojson',
path=file_path,
height_field='heightmax',
year_of_construction_field='ANNEE_CONS',
function_field='CODE_UTILI',
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
2023-04-27 10:59:03 -04:00
ConstructionFactory('nrcan', self._city).enrich()
2023-09-25 03:34:57 -04:00
UsageFactory('comnet', self._city).enrich()
2023-04-27 10:59:03 -04:00
def test_sra_import(self):
ExportsFactory('sra', self._city, self._output_path).export()
2023-04-27 10:59:03 -04:00
sra_path = (self._output_path / f'{self._city.name}_sra.xml').resolve()
subprocess.run(['sra', str(sra_path)])
ResultFactory('sra', self._city, self._output_path).enrich()
2023-04-27 13:31:00 -04:00
# Check that all the buildings have radiance in the surfaces
2023-04-27 10:59:03 -04:00
for building in self._city.buildings:
for surface in building.surfaces:
self.assertIsNotNone(surface.global_irradiance)
def test_meb_import(self):
2023-06-07 12:55:03 -04:00
ExportsFactory('sra', self._city, self._output_path).export()
2023-04-27 10:59:03 -04:00
sra_path = (self._output_path / f'{self._city.name}_sra.xml').resolve()
subprocess.run(['sra', str(sra_path)])
ResultFactory('sra', self._city, self._output_path).enrich()
EnergyBuildingsExportsFactory('insel_monthly_energy_balance', self._city, self._output_path).export()
for building in self._city.buildings:
insel_path = (self._output_path / f'{building.name}.insel')
subprocess.run(['insel', str(insel_path)])
2023-04-27 13:31:00 -04:00
ResultFactory('insel_monthly_energy_balance', self._city, self._output_path).enrich()
# Check that all the buildings have heating and cooling values
2023-04-27 10:59:03 -04:00
for building in self._city.buildings:
2023-08-07 12:32:33 -04:00
self.assertIsNotNone(building.heating_demand[cte.MONTH])
self.assertIsNotNone(building.cooling_demand[cte.MONTH])
self.assertIsNotNone(building.heating_demand[cte.YEAR])
self.assertIsNotNone(building.cooling_demand[cte.YEAR])
2023-08-01 16:41:37 -04:00
self.assertIsNotNone(building.lighting_peak_load[cte.MONTH])
self.assertIsNotNone(building.lighting_peak_load[cte.YEAR])
self.assertIsNotNone(building.appliances_peak_load[cte.MONTH])
self.assertIsNotNone(building.appliances_peak_load[cte.YEAR])
2023-05-01 10:37:51 -04:00
def test_peak_loads(self):
# todo: this is not technically a import
2023-06-07 12:55:03 -04:00
ExportsFactory('sra', self._city, self._output_path).export()
2023-05-01 10:37:51 -04:00
sra_path = (self._output_path / f'{self._city.name}_sra.xml').resolve()
subprocess.run(['sra', str(sra_path)])
ResultFactory('sra', self._city, self._output_path).enrich()
for building in self._city.buildings:
self.assertIsNotNone(building.heating_peak_load)
self.assertIsNotNone(building.cooling_peak_load)
values = [0 for _ in range(8760)]
values[0] = 1000
expected_monthly_list = [0 for _ in range(12)]
expected_monthly_list[0] = 1000
for building in self._city.buildings:
2023-08-07 12:32:33 -04:00
building.heating_demand[cte.HOUR] = values
building.cooling_demand[cte.HOUR] = values
2023-05-01 10:37:51 -04:00
self.assertIsNotNone(building.heating_peak_load)
self.assertIsNotNone(building.cooling_peak_load)
2023-09-12 13:15:30 -04:00
def test_energy_plus_results_import(self):
2023-09-27 05:35:28 -04:00
ResultFactory('energy_plus_single_building', self._city, self._example_path).enrich()
2023-09-12 13:15:30 -04:00
for building in self._city.buildings:
csv_output_name = f'{building.name}_out.csv'
csv_output_path = (self._example_path / csv_output_name).resolve()
if csv_output_path.is_file():
self.assertEqual(building.name, '12')
self.assertIsNotNone(building.heating_demand)
self.assertIsNotNone(building.cooling_demand)
self.assertIsNotNone(building.domestic_hot_water_heat_demand)
self.assertIsNotNone(building.lighting_electrical_demand)
self.assertIsNotNone(building.appliances_electrical_demand)
total_demand = sum(building.heating_demand[cte.HOUR])
self.assertAlmostEqual(total_demand, building.heating_demand[cte.YEAR][0], 3)
total_demand = sum(building.heating_demand[cte.MONTH])
self.assertEqual(total_demand, building.heating_demand[cte.YEAR][0], 3)
if building.name != '12':
self.assertDictEqual(building.heating_demand, {})
self.assertDictEqual(building.cooling_demand, {})
self.assertDictEqual(building.domestic_hot_water_heat_demand, {})
self.assertDictEqual(building.lighting_electrical_demand, {})
self.assertDictEqual(building.appliances_electrical_demand, {})
def test_energy_plus_multiple_buildings_results_import(self):
ResultFactory('energy_plus_multiple_buildings', self._city, self._example_path).enrich()
csv_output_name = f'{self._city.name}_out.csv'
csv_output_path = (self._example_path / csv_output_name).resolve()
if csv_output_path.is_file():
for building in self._city.buildings:
self.assertIsNotNone(building.heating_demand)
self.assertIsNotNone(building.cooling_demand)
self.assertIsNotNone(building.domestic_hot_water_heat_demand)
self.assertIsNotNone(building.lighting_electrical_demand)
self.assertIsNotNone(building.appliances_electrical_demand)
total_demand = sum(building.heating_demand[cte.HOUR])
2024-02-16 00:01:54 -05:00
self.assertAlmostEqual(total_demand, building.heating_demand[cte.YEAR][0], 2)
total_demand = sum(building.heating_demand[cte.MONTH])
2024-02-16 00:01:54 -05:00
self.assertEqual(total_demand, building.heating_demand[cte.YEAR][0], 2)