2865 lines
96 KiB
Python
2865 lines
96 KiB
Python
|
"""
|
||
|
axes3d.py, original mplot3d version by John Porter
|
||
|
Created: 23 Sep 2005
|
||
|
|
||
|
Parts fixed by Reinier Heeres <reinier@heeres.eu>
|
||
|
Minor additions by Ben Axelrod <baxelrod@coroware.com>
|
||
|
Significant updates and revisions by Ben Root <ben.v.root@gmail.com>
|
||
|
|
||
|
Module containing Axes3D, an object which can plot 3D objects on a
|
||
|
2D matplotlib figure.
|
||
|
"""
|
||
|
|
||
|
from collections import defaultdict
|
||
|
from functools import reduce
|
||
|
import math
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from matplotlib import artist
|
||
|
import matplotlib.axes as maxes
|
||
|
import matplotlib.cbook as cbook
|
||
|
import matplotlib.collections as mcoll
|
||
|
import matplotlib.colors as mcolors
|
||
|
import matplotlib.docstring as docstring
|
||
|
import matplotlib.scale as mscale
|
||
|
from matplotlib.axes import Axes, rcParams
|
||
|
from matplotlib.colors import Normalize, LightSource
|
||
|
from matplotlib.transforms import Bbox
|
||
|
from matplotlib.tri.triangulation import Triangulation
|
||
|
|
||
|
from . import art3d
|
||
|
from . import proj3d
|
||
|
from . import axis3d
|
||
|
|
||
|
|
||
|
@cbook.deprecated("3.2", alternative="Bbox.unit()")
|
||
|
def unit_bbox():
|
||
|
box = Bbox(np.array([[0, 0], [1, 1]]))
|
||
|
return box
|
||
|
|
||
|
|
||
|
class Axes3D(Axes):
|
||
|
"""
|
||
|
3D axes object.
|
||
|
"""
|
||
|
name = '3d'
|
||
|
_shared_z_axes = cbook.Grouper()
|
||
|
|
||
|
@docstring.dedent_interpd
|
||
|
def __init__(
|
||
|
self, fig, rect=None, *args,
|
||
|
azim=-60, elev=30, zscale=None, sharez=None, proj_type='persp',
|
||
|
**kwargs):
|
||
|
"""
|
||
|
Parameters
|
||
|
----------
|
||
|
fig : Figure
|
||
|
The parent figure.
|
||
|
rect : (float, float, float, float)
|
||
|
The ``(left, bottom, width, height)`` axes position.
|
||
|
azim : float, optional
|
||
|
Azimuthal viewing angle, defaults to -60.
|
||
|
elev : float, optional
|
||
|
Elevation viewing angle, defaults to 30.
|
||
|
zscale : %(scale_type)s, optional
|
||
|
The z scale. Note that currently, only a linear scale is
|
||
|
supported.
|
||
|
sharez : Axes3D, optional
|
||
|
Other axes to share z-limits with.
|
||
|
proj_type : {'persp', 'ortho'}
|
||
|
The projection type, default 'persp'.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
.. versionadded:: 1.2.1
|
||
|
The *sharez* parameter.
|
||
|
"""
|
||
|
|
||
|
if rect is None:
|
||
|
rect = [0.0, 0.0, 1.0, 1.0]
|
||
|
self._cids = []
|
||
|
|
||
|
self.initial_azim = azim
|
||
|
self.initial_elev = elev
|
||
|
self.set_proj_type(proj_type)
|
||
|
|
||
|
self.xy_viewLim = Bbox.unit()
|
||
|
self.zz_viewLim = Bbox.unit()
|
||
|
self.xy_dataLim = Bbox.unit()
|
||
|
self.zz_dataLim = Bbox.unit()
|
||
|
# inhibit autoscale_view until the axes are defined
|
||
|
# they can't be defined until Axes.__init__ has been called
|
||
|
self.view_init(self.initial_elev, self.initial_azim)
|
||
|
self._ready = 0
|
||
|
|
||
|
self._sharez = sharez
|
||
|
if sharez is not None:
|
||
|
self._shared_z_axes.join(self, sharez)
|
||
|
self._adjustable = 'datalim'
|
||
|
|
||
|
super().__init__(fig, rect, frameon=True, *args, **kwargs)
|
||
|
# Disable drawing of axes by base class
|
||
|
super().set_axis_off()
|
||
|
# Enable drawing of axes by Axes3D class
|
||
|
self.set_axis_on()
|
||
|
self.M = None
|
||
|
|
||
|
# func used to format z -- fall back on major formatters
|
||
|
self.fmt_zdata = None
|
||
|
|
||
|
if zscale is not None:
|
||
|
self.set_zscale(zscale)
|
||
|
|
||
|
if self.zaxis is not None:
|
||
|
self._zcid = self.zaxis.callbacks.connect(
|
||
|
'units finalize', lambda: self._on_units_changed(scalez=True))
|
||
|
else:
|
||
|
self._zcid = None
|
||
|
|
||
|
self._ready = 1
|
||
|
self.mouse_init()
|
||
|
self.set_top_view()
|
||
|
|
||
|
self.patch.set_linewidth(0)
|
||
|
# Calculate the pseudo-data width and height
|
||
|
pseudo_bbox = self.transLimits.inverted().transform([(0, 0), (1, 1)])
|
||
|
self._pseudo_w, self._pseudo_h = pseudo_bbox[1] - pseudo_bbox[0]
|
||
|
|
||
|
self.figure.add_axes(self)
|
||
|
|
||
|
# mplot3d currently manages its own spines and needs these turned off
|
||
|
# for bounding box calculations
|
||
|
for k in self.spines.keys():
|
||
|
self.spines[k].set_visible(False)
|
||
|
|
||
|
def set_axis_off(self):
|
||
|
self._axis3don = False
|
||
|
self.stale = True
|
||
|
|
||
|
def set_axis_on(self):
|
||
|
self._axis3don = True
|
||
|
self.stale = True
|
||
|
|
||
|
def convert_zunits(self, z):
|
||
|
"""
|
||
|
For artists in an axes, if the zaxis has units support,
|
||
|
convert *z* using zaxis unit type
|
||
|
|
||
|
.. versionadded:: 1.2.1
|
||
|
|
||
|
"""
|
||
|
return self.zaxis.convert_units(z)
|
||
|
|
||
|
def _process_unit_info(self, xdata=None, ydata=None, zdata=None,
|
||
|
kwargs=None):
|
||
|
"""
|
||
|
Look for unit *kwargs* and update the axis instances as necessary
|
||
|
|
||
|
"""
|
||
|
super()._process_unit_info(xdata=xdata, ydata=ydata, kwargs=kwargs)
|
||
|
|
||
|
if self.xaxis is None or self.yaxis is None or self.zaxis is None:
|
||
|
return
|
||
|
|
||
|
if zdata is not None:
|
||
|
# we only need to update if there is nothing set yet.
|
||
|
if not self.zaxis.have_units():
|
||
|
self.zaxis.update_units(xdata)
|
||
|
|
||
|
# process kwargs 2nd since these will override default units
|
||
|
if kwargs is not None:
|
||
|
zunits = kwargs.pop('zunits', self.zaxis.units)
|
||
|
if zunits != self.zaxis.units:
|
||
|
self.zaxis.set_units(zunits)
|
||
|
# If the units being set imply a different converter,
|
||
|
# we need to update.
|
||
|
if zdata is not None:
|
||
|
self.zaxis.update_units(zdata)
|
||
|
|
||
|
def set_top_view(self):
|
||
|
# this happens to be the right view for the viewing coordinates
|
||
|
# moved up and to the left slightly to fit labels and axes
|
||
|
xdwl = 0.95 / self.dist
|
||
|
xdw = 0.9 / self.dist
|
||
|
ydwl = 0.95 / self.dist
|
||
|
ydw = 0.9 / self.dist
|
||
|
# This is purposely using the 2D Axes's set_xlim and set_ylim,
|
||
|
# because we are trying to place our viewing pane.
|
||
|
super().set_xlim(-xdwl, xdw, auto=None)
|
||
|
super().set_ylim(-ydwl, ydw, auto=None)
|
||
|
|
||
|
def _init_axis(self):
|
||
|
'''Init 3D axes; overrides creation of regular X/Y axes'''
|
||
|
self.xaxis = axis3d.XAxis('x', self.xy_viewLim.intervalx,
|
||
|
self.xy_dataLim.intervalx, self)
|
||
|
self.yaxis = axis3d.YAxis('y', self.xy_viewLim.intervaly,
|
||
|
self.xy_dataLim.intervaly, self)
|
||
|
self.zaxis = axis3d.ZAxis('z', self.zz_viewLim.intervalx,
|
||
|
self.zz_dataLim.intervalx, self)
|
||
|
for ax in self.xaxis, self.yaxis, self.zaxis:
|
||
|
ax.init3d()
|
||
|
|
||
|
def get_zaxis(self):
|
||
|
'''Return the ``ZAxis`` (`~.axis3d.Axis`) instance.'''
|
||
|
return self.zaxis
|
||
|
|
||
|
@cbook.deprecated("3.1", alternative="xaxis", pending=True)
|
||
|
@property
|
||
|
def w_xaxis(self):
|
||
|
return self.xaxis
|
||
|
|
||
|
@cbook.deprecated("3.1", alternative="yaxis", pending=True)
|
||
|
@property
|
||
|
def w_yaxis(self):
|
||
|
return self.yaxis
|
||
|
|
||
|
@cbook.deprecated("3.1", alternative="zaxis", pending=True)
|
||
|
@property
|
||
|
def w_zaxis(self):
|
||
|
return self.zaxis
|
||
|
|
||
|
def _get_axis_list(self):
|
||
|
return super()._get_axis_list() + (self.zaxis, )
|
||
|
|
||
|
def unit_cube(self, vals=None):
|
||
|
minx, maxx, miny, maxy, minz, maxz = vals or self.get_w_lims()
|
||
|
return [(minx, miny, minz),
|
||
|
(maxx, miny, minz),
|
||
|
(maxx, maxy, minz),
|
||
|
(minx, maxy, minz),
|
||
|
(minx, miny, maxz),
|
||
|
(maxx, miny, maxz),
|
||
|
(maxx, maxy, maxz),
|
||
|
(minx, maxy, maxz)]
|
||
|
|
||
|
def tunit_cube(self, vals=None, M=None):
|
||
|
if M is None:
|
||
|
M = self.M
|
||
|
xyzs = self.unit_cube(vals)
|
||
|
tcube = proj3d.proj_points(xyzs, M)
|
||
|
return tcube
|
||
|
|
||
|
def tunit_edges(self, vals=None, M=None):
|
||
|
tc = self.tunit_cube(vals, M)
|
||
|
edges = [(tc[0], tc[1]),
|
||
|
(tc[1], tc[2]),
|
||
|
(tc[2], tc[3]),
|
||
|
(tc[3], tc[0]),
|
||
|
|
||
|
(tc[0], tc[4]),
|
||
|
(tc[1], tc[5]),
|
||
|
(tc[2], tc[6]),
|
||
|
(tc[3], tc[7]),
|
||
|
|
||
|
(tc[4], tc[5]),
|
||
|
(tc[5], tc[6]),
|
||
|
(tc[6], tc[7]),
|
||
|
(tc[7], tc[4])]
|
||
|
return edges
|
||
|
|
||
|
@artist.allow_rasterization
|
||
|
def draw(self, renderer):
|
||
|
# draw the background patch
|
||
|
self.patch.draw(renderer)
|
||
|
self._frameon = False
|
||
|
|
||
|
# first, set the aspect
|
||
|
# this is duplicated from `axes._base._AxesBase.draw`
|
||
|
# but must be called before any of the artist are drawn as
|
||
|
# it adjusts the view limits and the size of the bounding box
|
||
|
# of the axes
|
||
|
locator = self.get_axes_locator()
|
||
|
if locator:
|
||
|
pos = locator(self, renderer)
|
||
|
self.apply_aspect(pos)
|
||
|
else:
|
||
|
self.apply_aspect()
|
||
|
|
||
|
# add the projection matrix to the renderer
|
||
|
self.M = self.get_proj()
|
||
|
renderer.M = self.M
|
||
|
renderer.vvec = self.vvec
|
||
|
renderer.eye = self.eye
|
||
|
renderer.get_axis_position = self.get_axis_position
|
||
|
|
||
|
# Calculate projection of collections and patches and zorder them.
|
||
|
# Make sure they are drawn above the grids.
|
||
|
zorder_offset = max(axis.get_zorder()
|
||
|
for axis in self._get_axis_list()) + 1
|
||
|
for i, col in enumerate(
|
||
|
sorted(self.collections,
|
||
|
key=lambda col: col.do_3d_projection(renderer),
|
||
|
reverse=True)):
|
||
|
col.zorder = zorder_offset + i
|
||
|
for i, patch in enumerate(
|
||
|
sorted(self.patches,
|
||
|
key=lambda patch: patch.do_3d_projection(renderer),
|
||
|
reverse=True)):
|
||
|
patch.zorder = zorder_offset + i
|
||
|
|
||
|
if self._axis3don:
|
||
|
# Draw panes first
|
||
|
for axis in self._get_axis_list():
|
||
|
axis.draw_pane(renderer)
|
||
|
# Then axes
|
||
|
for axis in self._get_axis_list():
|
||
|
axis.draw(renderer)
|
||
|
|
||
|
# Then rest
|
||
|
super().draw(renderer)
|
||
|
|
||
|
def get_axis_position(self):
|
||
|
vals = self.get_w_lims()
|
||
|
tc = self.tunit_cube(vals, self.M)
|
||
|
xhigh = tc[1][2] > tc[2][2]
|
||
|
yhigh = tc[3][2] > tc[2][2]
|
||
|
zhigh = tc[0][2] > tc[2][2]
|
||
|
return xhigh, yhigh, zhigh
|
||
|
|
||
|
def _on_units_changed(self, scalex=False, scaley=False, scalez=False):
|
||
|
"""
|
||
|
Callback for processing changes to axis units.
|
||
|
|
||
|
Currently forces updates of data limits and view limits.
|
||
|
"""
|
||
|
self.relim()
|
||
|
self.autoscale_view(scalex=scalex, scaley=scaley, scalez=scalez)
|
||
|
|
||
|
def update_datalim(self, xys, **kwargs):
|
||
|
pass
|
||
|
|
||
|
def get_autoscale_on(self):
|
||
|
"""
|
||
|
Get whether autoscaling is applied for all axes on plot commands
|
||
|
|
||
|
.. versionadded:: 1.1.0
|
||
|
This function was added, but not tested. Please report any bugs.
|
||
|
"""
|
||
|
return super().get_autoscale_on() and self.get_autoscalez_on()
|
||
|
|
||
|
def get_autoscalez_on(self):
|
||
|
"""
|
||
|
Get whether autoscaling for the z-axis is applied on plot commands
|
||
|
|
||
|
.. versionadded:: 1.1.0
|
||
|
This function was added, but not tested. Please report any bugs.
|
||
|
"""
|
||
|
return self._autoscaleZon
|
||
|
|
||
|
def set_autoscale_on(self, b):
|
||
|
"""
|
||
|
Set whether autoscaling is applied on plot commands
|
||
|
|
||
|
.. versionadded:: 1.1.0
|
||
|
This function was added, but not tested. Please report any bugs.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
b : bool
|
||
|
"""
|
||
|
super().set_autoscale_on(b)
|
||
|
self.set_autoscalez_on(b)
|
||
|
|
||
|
def set_autoscalez_on(self, b):
|
||
|
"""
|
||
|
Set whether autoscaling for the z-axis is applied on plot commands
|
||
|
|
||
|
.. versionadded:: 1.1.0
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
b : bool
|
||
|
"""
|
||
|
self._autoscaleZon = b
|
||
|
|
||
|
def set_zmargin(self, m):
|
||
|
"""
|
||
|
Set padding of Z data limits prior to autoscaling.
|
||
|
|
||
|
*m* times the data interval will be added to each
|
||
|
end of that interval before it is used in autoscaling.
|
||
|
|
||
|
accepts: float in range 0 to 1
|
||
|
|
||
|
.. versionadded:: 1.1.0
|
||
|
"""
|
||
|
if m < 0 or m > 1:
|
||
|
raise ValueError("margin must be in range 0 to 1")
|
||
|
self._zmargin = m
|
||
|
self.stale = True
|
||
|
|
||
|
def margins(self, *margins, x=None, y=None, z=None, tight=True):
|
||
|
"""
|
||
|
Convenience method to set or retrieve autoscaling margins.
|
||
|
|
||
|
Call signatures::
|
||
|
|
||
|
margins()
|
||
|
|
||
|
returns xmargin, ymargin, zmargin
|
||
|
|
||
|
::
|
||
|
|
||
|
margins(margin)
|
||
|
|
||
|
margins(xmargin, ymargin, zmargin)
|
||
|
|
||
|
margins(x=xmargin, y=ymargin, z=zmargin)
|
||
|
|
||
|
margins(..., tight=False)
|
||
|
|
||
|
All forms above set the xmargin, ymargin and zmargin
|
||
|
parameters. All keyword parameters are optional. A single
|
||
|
positional argument specifies xmargin, ymargin and zmargin.
|
||
|
Passing both positional and keyword arguments for xmargin,
|
||
|
ymargin, and/or zmargin is invalid.
|
||
|
|
||
|
The *tight* parameter
|
||
|
is passed to :meth:`autoscale_view`, which is executed after
|
||
|
a margin is changed; the default here is *True*, on the
|
||
|
assumption that when margins are specified, no additional
|
||
|
padding to match tick marks is usually desired. Setting
|
||
|
*tight* to *None* will preserve the previous setting.
|
||
|
|
||
|
Specifying any margin changes only the autoscaling; for example,
|
||
|
if *xmargin* is not None, then *xmargin* times the X data
|
||
|
interval will be added to each end of that interval before
|
||
|
it is used in autoscaling.
|
||
|
|
||
|
.. versionadded:: 1.1.0
|
||
|
"""
|
||
|
if margins and x is not None and y is not None and z is not None:
|
||
|
raise TypeError('Cannot pass both positional and keyword '
|
||
|
'arguments for x, y, and/or z.')
|
||
|
elif len(margins) == 1:
|
||
|
x = y = z = margins[0]
|
||
|
elif len(margins) == 3:
|
||
|
x, y, z = margins
|
||
|
elif margins:
|
||
|
raise TypeError('Must pass a single positional argument for all '
|
||
|
'margins, or one for each margin (x, y, z).')
|
||
|
|
||
|
if x is None and y is None and z is None:
|
||
|
if tight is not True:
|
||
|
cbook._warn_external(f'ignoring tight={tight!r} in get mode')
|
||
|
return self._xmargin, self._ymargin, self._zmargin
|
||
|
|
||
|
if x is not None:
|
||
|
self.set_xmargin(x)
|
||
|
if y is not None:
|
||
|
self.set_ymargin(y)
|
||
|
if z is not None:
|
||
|
self.set_zmargin(z)
|
||
|
|
||
|
self.autoscale_view(
|
||
|
tight=tight, scalex=(x is not None), scaley=(y is not None),
|
||
|
scalez=(z is not None)
|
||
|
)
|
||
|
|
||
|
def autoscale(self, enable=True, axis='both', tight=None):
|
||
|
"""
|
||
|
Convenience method for simple axis view autoscaling.
|
||
|
See :meth:`matplotlib.axes.Axes.autoscale` for full explanation.
|
||
|
Note that this function behaves the same, but for all
|
||
|
three axes. Therefore, 'z' can be passed for *axis*,
|
||
|
and 'both' applies to all three axes.
|
||
|
|
||
|
.. versionadded:: 1.1.0
|
||
|
"""
|
||
|
if enable is None:
|
||
|
scalex = True
|
||
|
scaley = True
|
||
|
scalez = True
|
||
|
else:
|
||
|
if axis in ['x', 'both']:
|
||
|
self._autoscaleXon = scalex = bool(enable)
|
||
|
else:
|
||
|
scalex = False
|
||
|
if axis in ['y', 'both']:
|
||
|
self._autoscaleYon = scaley = bool(enable)
|
||
|
else:
|
||
|
scaley = False
|
||
|
if axis in ['z', 'both']:
|
||
|
self._autoscaleZon = scalez = bool(enable)
|
||
|
else:
|
||
|
scalez = False
|
||
|
self.autoscale_view(tight=tight, scalex=scalex, scaley=scaley,
|
||
|
scalez=scalez)
|
||
|
|
||
|
def auto_scale_xyz(self, X, Y, Z=None, had_data=None):
|
||
|
# This updates the bounding boxes as to keep a record as to what the
|
||
|
# minimum sized rectangular volume holds the data.
|
||
|
X = np.reshape(X, -1)
|
||
|
Y = np.reshape(Y, -1)
|
||
|
self.xy_dataLim.update_from_data_xy(
|
||
|
np.column_stack([X, Y]), not had_data)
|
||
|
if Z is not None:
|
||
|
Z = np.reshape(Z, -1)
|
||
|
self.zz_dataLim.update_from_data_xy(
|
||
|
np.column_stack([Z, Z]), not had_data)
|
||
|
# Let autoscale_view figure out how to use this data.
|
||
|
self.autoscale_view()
|
||
|
|
||
|
def autoscale_view(self, tight=None, scalex=True, scaley=True,
|
||
|
scalez=True):
|
||
|
"""
|
||
|
Autoscale the view limits using the data limits.
|
||
|
See :meth:`matplotlib.axes.Axes.autoscale_view` for documentation.
|
||
|
Note that this function applies to the 3D axes, and as such
|
||
|
adds the *scalez* to the function arguments.
|
||
|
|
||
|
.. versionchanged:: 1.1.0
|
||
|
Function signature was changed to better match the 2D version.
|
||
|
*tight* is now explicitly a kwarg and placed first.
|
||
|
|
||
|
.. versionchanged:: 1.2.1
|
||
|
This is now fully functional.
|
||
|
|
||
|
"""
|
||
|
if not self._ready:
|
||
|
return
|
||
|
|
||
|
# This method looks at the rectangular volume (see above)
|
||
|
# of data and decides how to scale the view portal to fit it.
|
||
|
if tight is None:
|
||
|
# if image data only just use the datalim
|
||
|
_tight = self._tight or (
|
||
|
len(self.images) > 0
|
||
|
and len(self.lines) == len(self.patches) == 0)
|
||
|
else:
|
||
|
_tight = self._tight = bool(tight)
|
||
|
|
||
|
if scalex and self._autoscaleXon:
|
||
|
self._shared_x_axes.clean()
|
||
|
x0, x1 = self.xy_dataLim.intervalx
|
||
|
xlocator = self.xaxis.get_major_locator()
|
||
|
x0, x1 = xlocator.nonsingular(x0, x1)
|
||
|
if self._xmargin > 0:
|
||
|
delta = (x1 - x0) * self._xmargin
|
||
|
x0 -= delta
|
||
|
x1 += delta
|
||
|
if not _tight:
|
||
|
x0, x1 = xlocator.view_limits(x0, x1)
|
||
|
self.set_xbound(x0, x1)
|
||
|
|
||
|
if scaley and self._autoscaleYon:
|
||
|
self._shared_y_axes.clean()
|
||
|
y0, y1 = self.xy_dataLim.intervaly
|
||
|
ylocator = self.yaxis.get_major_locator()
|
||
|
y0, y1 = ylocator.nonsingular(y0, y1)
|
||
|
if self._ymargin > 0:
|
||
|
delta = (y1 - y0) * self._ymargin
|
||
|
y0 -= delta
|
||
|
y1 += delta
|
||
|
if not _tight:
|
||
|
y0, y1 = ylocator.view_limits(y0, y1)
|
||
|
self.set_ybound(y0, y1)
|
||
|
|
||
|
if scalez and self._autoscaleZon:
|
||
|
self._shared_z_axes.clean()
|
||
|
z0, z1 = self.zz_dataLim.intervalx
|
||
|
zlocator = self.zaxis.get_major_locator()
|
||
|
z0, z1 = zlocator.nonsingular(z0, z1)
|
||
|
if self._zmargin > 0:
|
||
|
delta = (z1 - z0) * self._zmargin
|
||
|
z0 -= delta
|
||
|
z1 += delta
|
||
|
if not _tight:
|
||
|
z0, z1 = zlocator.view_limits(z0, z1)
|
||
|
self.set_zbound(z0, z1)
|
||
|
|
||
|
def get_w_lims(self):
|
||
|
'''Get 3D world limits.'''
|
||
|
minx, maxx = self.get_xlim3d()
|
||
|
miny, maxy = self.get_ylim3d()
|
||
|
minz, maxz = self.get_zlim3d()
|
||
|
return minx, maxx, miny, maxy, minz, maxz
|
||
|
|
||
|
def set_xlim3d(self, left=None, right=None, emit=True, auto=False,
|
||
|
*, xmin=None, xmax=None):
|
||
|
"""
|
||
|
Set 3D x limits.
|
||
|
|
||
|
See :meth:`matplotlib.axes.Axes.set_xlim` for full documentation.
|
||
|
|
||
|
"""
|
||
|
if right is None and np.iterable(left):
|
||
|
left, right = left
|
||
|
if xmin is not None:
|
||
|
cbook.warn_deprecated('3.0', name='`xmin`',
|
||
|
alternative='`left`', obj_type='argument')
|
||
|
if left is not None:
|
||
|
raise TypeError('Cannot pass both `xmin` and `left`')
|
||
|
left = xmin
|
||
|
if xmax is not None:
|
||
|
cbook.warn_deprecated('3.0', name='`xmax`',
|
||
|
alternative='`right`', obj_type='argument')
|
||
|
if right is not None:
|
||
|
raise TypeError('Cannot pass both `xmax` and `right`')
|
||
|
right = xmax
|
||
|
|
||
|
self._process_unit_info(xdata=(left, right))
|
||
|
left = self._validate_converted_limits(left, self.convert_xunits)
|
||
|
right = self._validate_converted_limits(right, self.convert_xunits)
|
||
|
|
||
|
old_left, old_right = self.get_xlim()
|
||
|
if left is None:
|
||
|
left = old_left
|
||
|
if right is None:
|
||
|
right = old_right
|
||
|
|
||
|
if left == right:
|
||
|
cbook._warn_external(
|
||
|
f"Attempting to set identical left == right == {left} results "
|
||
|
f"in singular transformations; automatically expanding.")
|
||
|
reverse = left > right
|
||
|
left, right = self.xaxis.get_major_locator().nonsingular(left, right)
|
||
|
left, right = self.xaxis.limit_range_for_scale(left, right)
|
||
|
# cast to bool to avoid bad interaction between python 3.8 and np.bool_
|
||
|
left, right = sorted([left, right], reverse=bool(reverse))
|
||
|
self.xy_viewLim.intervalx = (left, right)
|
||
|
|
||
|
if auto is not None:
|
||
|
self._autoscaleXon = bool(auto)
|
||
|
|
||
|
if emit:
|
||
|
self.callbacks.process('xlim_changed', self)
|
||
|
# Call all of the other x-axes that are shared with this one
|
||
|
for other in self._shared_x_axes.get_siblings(self):
|
||
|
if other is not self:
|
||
|
other.set_xlim(self.xy_viewLim.intervalx,
|
||
|
emit=False, auto=auto)
|
||
|
if other.figure != self.figure:
|
||
|
other.figure.canvas.draw_idle()
|
||
|
self.stale = True
|
||
|
return left, right
|
||
|
set_xlim = set_xlim3d
|
||
|
|
||
|
def set_ylim3d(self, bottom=None, top=None, emit=True, auto=False,
|
||
|
*, ymin=None, ymax=None):
|
||
|
"""
|
||
|
Set 3D y limits.
|
||
|
|
||
|
See :meth:`matplotlib.axes.Axes.set_ylim` for full documentation.
|
||
|
|
||
|
"""
|
||
|
if top is None and np.iterable(bottom):
|
||
|
bottom, top = bottom
|
||
|
if ymin is not None:
|
||
|
cbook.warn_deprecated('3.0', name='`ymin`',
|
||
|
alternative='`bottom`', obj_type='argument')
|
||
|
if bottom is not None:
|
||
|
raise TypeError('Cannot pass both `ymin` and `bottom`')
|
||
|
bottom = ymin
|
||
|
if ymax is not None:
|
||
|
cbook.warn_deprecated('3.0', name='`ymax`',
|
||
|
alternative='`top`', obj_type='argument')
|
||
|
if top is not None:
|
||
|
raise TypeError('Cannot pass both `ymax` and `top`')
|
||
|
top = ymax
|
||
|
|
||
|
self._process_unit_info(ydata=(bottom, top))
|
||
|
bottom = self._validate_converted_limits(bottom, self.convert_yunits)
|
||
|
top = self._validate_converted_limits(top, self.convert_yunits)
|
||
|
|
||
|
old_bottom, old_top = self.get_ylim()
|
||
|
if bottom is None:
|
||
|
bottom = old_bottom
|
||
|
if top is None:
|
||
|
top = old_top
|
||
|
|
||
|
if bottom == top:
|
||
|
cbook._warn_external(
|
||
|
f"Attempting to set identical bottom == top == {bottom} "
|
||
|
f"results in singular transformations; automatically "
|
||
|
f"expanding.")
|
||
|
swapped = bottom > top
|
||
|
bottom, top = self.yaxis.get_major_locator().nonsingular(bottom, top)
|
||
|
bottom, top = self.yaxis.limit_range_for_scale(bottom, top)
|
||
|
if swapped:
|
||
|
bottom, top = top, bottom
|
||
|
self.xy_viewLim.intervaly = (bottom, top)
|
||
|
|
||
|
if auto is not None:
|
||
|
self._autoscaleYon = bool(auto)
|
||
|
|
||
|
if emit:
|
||
|
self.callbacks.process('ylim_changed', self)
|
||
|
# Call all of the other y-axes that are shared with this one
|
||
|
for other in self._shared_y_axes.get_siblings(self):
|
||
|
if other is not self:
|
||
|
other.set_ylim(self.xy_viewLim.intervaly,
|
||
|
emit=False, auto=auto)
|
||
|
if other.figure != self.figure:
|
||
|
other.figure.canvas.draw_idle()
|
||
|
self.stale = True
|
||
|
return bottom, top
|
||
|
set_ylim = set_ylim3d
|
||
|
|
||
|
def set_zlim3d(self, bottom=None, top=None, emit=True, auto=False,
|
||
|
*, zmin=None, zmax=None):
|
||
|
"""
|
||
|
Set 3D z limits.
|
||
|
|
||
|
See :meth:`matplotlib.axes.Axes.set_ylim` for full documentation
|
||
|
|
||
|
"""
|
||
|
if top is None and np.iterable(bottom):
|
||
|
bottom, top = bottom
|
||
|
if zmin is not None:
|
||
|
cbook.warn_deprecated('3.0', name='`zmin`',
|
||
|
alternative='`bottom`', obj_type='argument')
|
||
|
if bottom is not None:
|
||
|
raise TypeError('Cannot pass both `zmin` and `bottom`')
|
||
|
bottom = zmin
|
||
|
if zmax is not None:
|
||
|
cbook.warn_deprecated('3.0', name='`zmax`',
|
||
|
alternative='`top`', obj_type='argument')
|
||
|
if top is not None:
|
||
|
raise TypeError('Cannot pass both `zmax` and `top`')
|
||
|
top = zmax
|
||
|
|
||
|
self._process_unit_info(zdata=(bottom, top))
|
||
|
bottom = self._validate_converted_limits(bottom, self.convert_zunits)
|
||
|
top = self._validate_converted_limits(top, self.convert_zunits)
|
||
|
|
||
|
old_bottom, old_top = self.get_zlim()
|
||
|
if bottom is None:
|
||
|
bottom = old_bottom
|
||
|
if top is None:
|
||
|
top = old_top
|
||
|
|
||
|
if bottom == top:
|
||
|
cbook._warn_external(
|
||
|
f"Attempting to set identical bottom == top == {bottom} "
|
||
|
f"results in singular transformations; automatically "
|
||
|
f"expanding.")
|
||
|
swapped = bottom > top
|
||
|
bottom, top = self.zaxis.get_major_locator().nonsingular(bottom, top)
|
||
|
bottom, top = self.zaxis.limit_range_for_scale(bottom, top)
|
||
|
if swapped:
|
||
|
bottom, top = top, bottom
|
||
|
self.zz_viewLim.intervalx = (bottom, top)
|
||
|
|
||
|
if auto is not None:
|
||
|
self._autoscaleZon = bool(auto)
|
||
|
|
||
|
if emit:
|
||
|
self.callbacks.process('zlim_changed', self)
|
||
|
# Call all of the other y-axes that are shared with this one
|
||
|
for other in self._shared_z_axes.get_siblings(self):
|
||
|
if other is not self:
|
||
|
other.set_zlim(self.zz_viewLim.intervalx,
|
||
|
emit=False, auto=auto)
|
||
|
if other.figure != self.figure:
|
||
|
other.figure.canvas.draw_idle()
|
||
|
self.stale = True
|
||
|
return bottom, top
|
||
|
set_zlim = set_zlim3d
|
||
|
|
||
|
def get_xlim3d(self):
|
||
|
return tuple(self.xy_viewLim.intervalx)
|
||
|
get_xlim3d.__doc__ = maxes.Axes.get_xlim.__doc__
|
||
|
get_xlim = get_xlim3d
|
||
|
if get_xlim.__doc__ is not None:
|
||
|
get_xlim.__doc__ += """
|
||
|
.. versionchanged:: 1.1.0
|
||
|
This function now correctly refers to the 3D x-limits
|
||
|
"""
|
||
|
|
||
|
def get_ylim3d(self):
|
||
|
return tuple(self.xy_viewLim.intervaly)
|
||
|
get_ylim3d.__doc__ = maxes.Axes.get_ylim.__doc__
|
||
|
get_ylim = get_ylim3d
|
||
|
if get_ylim.__doc__ is not None:
|
||
|
get_ylim.__doc__ += """
|
||
|
.. versionchanged:: 1.1.0
|
||
|
This function now correctly refers to the 3D y-limits.
|
||
|
"""
|
||
|
|
||
|
def get_zlim3d(self):
|
||
|
'''Get 3D z limits.'''
|
||
|
return tuple(self.zz_viewLim.intervalx)
|
||
|
get_zlim = get_zlim3d
|
||
|
|
||
|
def get_zscale(self):
|
||
|
"""
|
||
|
Return the zaxis scale string %s
|
||
|
|
||
|
""" % (", ".join(mscale.get_scale_names()))
|
||
|
return self.zaxis.get_scale()
|
||
|
|
||
|
# We need to slightly redefine these to pass scalez=False
|
||
|
# to their calls of autoscale_view.
|
||
|
|
||
|
def set_xscale(self, value, **kwargs):
|
||
|
self.xaxis._set_scale(value, **kwargs)
|
||
|
self.autoscale_view(scaley=False, scalez=False)
|
||
|
self._update_transScale()
|
||
|
self.stale = True
|
||
|
|
||
|
def set_yscale(self, value, **kwargs):
|
||
|
self.yaxis._set_scale(value, **kwargs)
|
||
|
self.autoscale_view(scalex=False, scalez=False)
|
||
|
self._update_transScale()
|
||
|
self.stale = True
|
||
|
|
||
|
def set_zscale(self, value, **kwargs):
|
||
|
self.zaxis._set_scale(value, **kwargs)
|
||
|
self.autoscale_view(scalex=False, scaley=False)
|
||
|
self._update_transScale()
|
||
|
self.stale = True
|
||
|
|
||
|
set_xscale.__doc__, set_yscale.__doc__, set_zscale.__doc__ = map(
|
||
|
"""
|
||
|
Set the {}-axis scale.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
value : {{"linear"}}
|
||
|
The axis scale type to apply. 3D axes currently only support
|
||
|
linear scales; other scales yield nonsensical results.
|
||
|
|
||
|
**kwargs
|
||
|
Keyword arguments are nominally forwarded to the scale class, but
|
||
|
none of them is applicable for linear scales.
|
||
|
""".format,
|
||
|
["x", "y", "z"])
|
||
|
|
||
|
def set_zticks(self, *args, **kwargs):
|
||
|
"""
|
||
|
Set z-axis tick locations.
|
||
|
See :meth:`matplotlib.axes.Axes.set_yticks` for more details.
|
||
|
|
||
|
.. note::
|
||
|
Minor ticks are not supported.
|
||
|
|
||
|
.. versionadded:: 1.1.0
|
||
|
"""
|
||
|
return self.zaxis.set_ticks(*args, **kwargs)
|
||
|
|
||
|
@cbook._make_keyword_only("3.2", "minor")
|
||
|
def get_zticks(self, minor=False):
|
||
|
"""
|
||
|
Return the z ticks as a list of locations
|
||
|
See :meth:`matplotlib.axes.Axes.get_yticks` for more details.
|
||
|
|
||
|
.. note::
|
||
|
Minor ticks are not supported.
|
||
|
|
||
|
.. versionadded:: 1.1.0
|
||
|
"""
|
||
|
return self.zaxis.get_ticklocs(minor=minor)
|
||
|
|
||
|
def get_zmajorticklabels(self):
|
||
|
"""
|
||
|
Get the ztick labels as a list of Text instances
|
||
|
|
||
|
.. versionadded:: 1.1.0
|
||
|
"""
|
||
|
return self.zaxis.get_majorticklabels()
|
||
|
|
||
|
def get_zminorticklabels(self):
|
||
|
"""
|
||
|
Get the ztick labels as a list of Text instances
|
||
|
|
||
|
.. note::
|
||
|
Minor ticks are not supported. This function was added
|
||
|
only for completeness.
|
||
|
|
||
|
.. versionadded:: 1.1.0
|
||
|
"""
|
||
|
return self.zaxis.get_minorticklabels()
|
||
|
|
||
|
def set_zticklabels(self, *args, **kwargs):
|
||
|
"""
|
||
|
Set z-axis tick labels.
|
||
|
See :meth:`matplotlib.axes.Axes.set_yticklabels` for more details.
|
||
|
|
||
|
.. note::
|
||
|
Minor ticks are not supported by Axes3D objects.
|
||
|
|
||
|
.. versionadded:: 1.1.0
|
||
|
"""
|
||
|
return self.zaxis.set_ticklabels(*args, **kwargs)
|
||
|
|
||
|
def get_zticklabels(self, minor=False):
|
||
|
"""
|
||
|
Get ztick labels as a list of Text instances.
|
||
|
See :meth:`matplotlib.axes.Axes.get_yticklabels` for more details.
|
||
|
|
||
|
.. note::
|
||
|
Minor ticks are not supported.
|
||
|
|
||
|
.. versionadded:: 1.1.0
|
||
|
"""
|
||
|
return self.zaxis.get_ticklabels(minor=minor)
|
||
|
|
||
|
def zaxis_date(self, tz=None):
|
||
|
"""
|
||
|
Sets up z-axis ticks and labels that treat the z data as dates.
|
||
|
|
||
|
*tz* is a timezone string or :class:`tzinfo` instance.
|
||
|
Defaults to rc value.
|
||
|
|
||
|
.. note::
|
||
|
This function is merely provided for completeness.
|
||
|
Axes3D objects do not officially support dates for ticks,
|
||
|
and so this may or may not work as expected.
|
||
|
|
||
|
.. versionadded:: 1.1.0
|
||
|
This function was added, but not tested. Please report any bugs.
|
||
|
"""
|
||
|
self.zaxis.axis_date(tz)
|
||
|
|
||
|
def get_zticklines(self):
|
||
|
"""
|
||
|
Get ztick lines as a list of Line2D instances.
|
||
|
Note that this function is provided merely for completeness.
|
||
|
These lines are re-calculated as the display changes.
|
||
|
|
||
|
.. versionadded:: 1.1.0
|
||
|
"""
|
||
|
return self.zaxis.get_ticklines()
|
||
|
|
||
|
def clabel(self, *args, **kwargs):
|
||
|
"""
|
||
|
This function is currently not implemented for 3D axes.
|
||
|
Returns *None*.
|
||
|
"""
|
||
|
return None
|
||
|
|
||
|
def view_init(self, elev=None, azim=None):
|
||
|
"""
|
||
|
Set the elevation and azimuth of the axes in degrees (not radians).
|
||
|
|
||
|
This can be used to rotate the axes programmatically.
|
||
|
|
||
|
'elev' stores the elevation angle in the z plane (in degrees).
|
||
|
'azim' stores the azimuth angle in the (x, y) plane (in degrees).
|
||
|
|
||
|
if elev or azim are None (default), then the initial value
|
||
|
is used which was specified in the :class:`Axes3D` constructor.
|
||
|
"""
|
||
|
|
||
|
self.dist = 10
|
||
|
|
||
|
if elev is None:
|
||
|
self.elev = self.initial_elev
|
||
|
else:
|
||
|
self.elev = elev
|
||
|
|
||
|
if azim is None:
|
||
|
self.azim = self.initial_azim
|
||
|
else:
|
||
|
self.azim = azim
|
||
|
|
||
|
def set_proj_type(self, proj_type):
|
||
|
"""
|
||
|
Set the projection type.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
proj_type : {'persp', 'ortho'}
|
||
|
"""
|
||
|
self._projection = cbook._check_getitem({
|
||
|
'persp': proj3d.persp_transformation,
|
||
|
'ortho': proj3d.ortho_transformation,
|
||
|
}, proj_type=proj_type)
|
||
|
|
||
|
def get_proj(self):
|
||
|
"""
|
||
|
Create the projection matrix from the current viewing position.
|
||
|
|
||
|
elev stores the elevation angle in the z plane
|
||
|
azim stores the azimuth angle in the (x, y) plane
|
||
|
|
||
|
dist is the distance of the eye viewing point from the object point.
|
||
|
"""
|
||
|
relev, razim = np.pi * self.elev/180, np.pi * self.azim/180
|
||
|
|
||
|
xmin, xmax = self.get_xlim3d()
|
||
|
ymin, ymax = self.get_ylim3d()
|
||
|
zmin, zmax = self.get_zlim3d()
|
||
|
|
||
|
# transform to uniform world coordinates 0-1, 0-1, 0-1
|
||
|
worldM = proj3d.world_transformation(xmin, xmax,
|
||
|
ymin, ymax,
|
||
|
zmin, zmax)
|
||
|
|
||
|
# look into the middle of the new coordinates
|
||
|
R = np.array([0.5, 0.5, 0.5])
|
||
|
|
||
|
xp = R[0] + np.cos(razim) * np.cos(relev) * self.dist
|
||
|
yp = R[1] + np.sin(razim) * np.cos(relev) * self.dist
|
||
|
zp = R[2] + np.sin(relev) * self.dist
|
||
|
E = np.array((xp, yp, zp))
|
||
|
|
||
|
self.eye = E
|
||
|
self.vvec = R - E
|
||
|
self.vvec = self.vvec / np.linalg.norm(self.vvec)
|
||
|
|
||
|
if abs(relev) > np.pi/2:
|
||
|
# upside down
|
||
|
V = np.array((0, 0, -1))
|
||
|
else:
|
||
|
V = np.array((0, 0, 1))
|
||
|
zfront, zback = -self.dist, self.dist
|
||
|
|
||
|
viewM = proj3d.view_transformation(E, R, V)
|
||
|
projM = self._projection(zfront, zback)
|
||
|
M0 = np.dot(viewM, worldM)
|
||
|
M = np.dot(projM, M0)
|
||
|
return M
|
||
|
|
||
|
def mouse_init(self, rotate_btn=1, zoom_btn=3):
|
||
|
"""
|
||
|
Initializes mouse button callbacks to enable 3D rotation of the axes.
|
||
|
Also optionally sets the mouse buttons for 3D rotation and zooming.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
rotate_btn : int or list of int
|
||
|
The mouse button or buttons to use for 3D rotation of the axes;
|
||
|
defaults to 1.
|
||
|
zoom_btn : int or list of int
|
||
|
The mouse button or buttons to use to zoom the 3D axes; defaults to
|
||
|
3.
|
||
|
"""
|
||
|
self.button_pressed = None
|
||
|
self._cids = [
|
||
|
self.figure.canvas.mpl_connect(
|
||
|
'motion_notify_event', self._on_move),
|
||
|
self.figure.canvas.mpl_connect(
|
||
|
'button_press_event', self._button_press),
|
||
|
self.figure.canvas.mpl_connect(
|
||
|
'button_release_event', self._button_release),
|
||
|
]
|
||
|
# coerce scalars into array-like, then convert into
|
||
|
# a regular list to avoid comparisons against None
|
||
|
# which breaks in recent versions of numpy.
|
||
|
self._rotate_btn = np.atleast_1d(rotate_btn).tolist()
|
||
|
self._zoom_btn = np.atleast_1d(zoom_btn).tolist()
|
||
|
|
||
|
def can_zoom(self):
|
||
|
"""
|
||
|
Return *True* if this axes supports the zoom box button functionality.
|
||
|
|
||
|
3D axes objects do not use the zoom box button.
|
||
|
"""
|
||
|
return False
|
||
|
|
||
|
def can_pan(self):
|
||
|
"""
|
||
|
Return *True* if this axes supports the pan/zoom button functionality.
|
||
|
|
||
|
3D axes objects do not use the pan/zoom button.
|
||
|
"""
|
||
|
return False
|
||
|
|
||
|
def cla(self):
|
||
|
# docstring inherited.
|
||
|
|
||
|
super().cla()
|
||
|
self.zaxis.cla()
|
||
|
|
||
|
if self._sharez is not None:
|
||
|
self.zaxis.major = self._sharez.zaxis.major
|
||
|
self.zaxis.minor = self._sharez.zaxis.minor
|
||
|
z0, z1 = self._sharez.get_zlim()
|
||
|
self.set_zlim(z0, z1, emit=False, auto=None)
|
||
|
self.zaxis._set_scale(self._sharez.zaxis.get_scale())
|
||
|
else:
|
||
|
self.zaxis._set_scale('linear')
|
||
|
try:
|
||
|
self.set_zlim(0, 1)
|
||
|
except TypeError:
|
||
|
pass
|
||
|
|
||
|
self._autoscaleZon = True
|
||
|
self._zmargin = 0
|
||
|
|
||
|
self.grid(rcParams['axes3d.grid'])
|
||
|
|
||
|
def disable_mouse_rotation(self):
|
||
|
"""Disable mouse button callbacks."""
|
||
|
# Disconnect the various events we set.
|
||
|
for cid in self._cids:
|
||
|
self.figure.canvas.mpl_disconnect(cid)
|
||
|
self._cids = []
|
||
|
|
||
|
def _button_press(self, event):
|
||
|
if event.inaxes == self:
|
||
|
self.button_pressed = event.button
|
||
|
self.sx, self.sy = event.xdata, event.ydata
|
||
|
|
||
|
def _button_release(self, event):
|
||
|
self.button_pressed = None
|
||
|
|
||
|
def format_zdata(self, z):
|
||
|
"""
|
||
|
Return *z* string formatted. This function will use the
|
||
|
:attr:`fmt_zdata` attribute if it is callable, else will fall
|
||
|
back on the zaxis major formatter
|
||
|
"""
|
||
|
try:
|
||
|
return self.fmt_zdata(z)
|
||
|
except (AttributeError, TypeError):
|
||
|
func = self.zaxis.get_major_formatter().format_data_short
|
||
|
val = func(z)
|
||
|
return val
|
||
|
|
||
|
def format_coord(self, xd, yd):
|
||
|
"""
|
||
|
Given the 2D view coordinates attempt to guess a 3D coordinate.
|
||
|
Looks for the nearest edge to the point and then assumes that
|
||
|
the point is at the same z location as the nearest point on the edge.
|
||
|
"""
|
||
|
|
||
|
if self.M is None:
|
||
|
return ''
|
||
|
|
||
|
if self.button_pressed in self._rotate_btn:
|
||
|
return 'azimuth={:.0f} deg, elevation={:.0f} deg '.format(
|
||
|
self.azim, self.elev)
|
||
|
# ignore xd and yd and display angles instead
|
||
|
|
||
|
# nearest edge
|
||
|
p0, p1 = min(self.tunit_edges(),
|
||
|
key=lambda edge: proj3d._line2d_seg_dist(
|
||
|
edge[0], edge[1], (xd, yd)))
|
||
|
|
||
|
# scale the z value to match
|
||
|
x0, y0, z0 = p0
|
||
|
x1, y1, z1 = p1
|
||
|
d0 = np.hypot(x0-xd, y0-yd)
|
||
|
d1 = np.hypot(x1-xd, y1-yd)
|
||
|
dt = d0+d1
|
||
|
z = d1/dt * z0 + d0/dt * z1
|
||
|
|
||
|
x, y, z = proj3d.inv_transform(xd, yd, z, self.M)
|
||
|
|
||
|
xs = self.format_xdata(x)
|
||
|
ys = self.format_ydata(y)
|
||
|
zs = self.format_zdata(z)
|
||
|
return 'x=%s, y=%s, z=%s' % (xs, ys, zs)
|
||
|
|
||
|
def _on_move(self, event):
|
||
|
"""Mouse moving
|
||
|
|
||
|
button-1 rotates by default. Can be set explicitly in mouse_init().
|
||
|
button-3 zooms by default. Can be set explicitly in mouse_init().
|
||
|
"""
|
||
|
|
||
|
if not self.button_pressed:
|
||
|
return
|
||
|
|
||
|
if self.M is None:
|
||
|
return
|
||
|
|
||
|
x, y = event.xdata, event.ydata
|
||
|
# In case the mouse is out of bounds.
|
||
|
if x is None:
|
||
|
return
|
||
|
|
||
|
dx, dy = x - self.sx, y - self.sy
|
||
|
w = self._pseudo_w
|
||
|
h = self._pseudo_h
|
||
|
self.sx, self.sy = x, y
|
||
|
|
||
|
# Rotation
|
||
|
if self.button_pressed in self._rotate_btn:
|
||
|
# rotate viewing point
|
||
|
# get the x and y pixel coords
|
||
|
if dx == 0 and dy == 0:
|
||
|
return
|
||
|
self.elev = art3d._norm_angle(self.elev - (dy/h)*180)
|
||
|
self.azim = art3d._norm_angle(self.azim - (dx/w)*180)
|
||
|
self.get_proj()
|
||
|
self.stale = True
|
||
|
self.figure.canvas.draw_idle()
|
||
|
|
||
|
# elif self.button_pressed == 2:
|
||
|
# pan view
|
||
|
# project xv, yv, zv -> xw, yw, zw
|
||
|
# pan
|
||
|
# pass
|
||
|
|
||
|
# Zoom
|
||
|
elif self.button_pressed in self._zoom_btn:
|
||
|
# zoom view
|
||
|
# hmmm..this needs some help from clipping....
|
||
|
minx, maxx, miny, maxy, minz, maxz = self.get_w_lims()
|
||
|
df = 1-((h - dy)/h)
|
||
|
dx = (maxx-minx)*df
|
||
|
dy = (maxy-miny)*df
|
||
|
dz = (maxz-minz)*df
|
||
|
self.set_xlim3d(minx - dx, maxx + dx)
|
||
|
self.set_ylim3d(miny - dy, maxy + dy)
|
||
|
self.set_zlim3d(minz - dz, maxz + dz)
|
||
|
self.get_proj()
|
||
|
self.figure.canvas.draw_idle()
|
||
|
|
||
|
def set_zlabel(self, zlabel, fontdict=None, labelpad=None, **kwargs):
|
||
|
'''
|
||
|
Set zlabel. See doc for :meth:`set_ylabel` for description.
|
||
|
'''
|
||
|
if labelpad is not None:
|
||
|
self.zaxis.labelpad = labelpad
|
||
|
return self.zaxis.set_label_text(zlabel, fontdict, **kwargs)
|
||
|
|
||
|
def get_zlabel(self):
|
||
|
"""
|
||
|
Get the z-label text string.
|
||
|
|
||
|
.. versionadded:: 1.1.0
|
||
|
This function was added, but not tested. Please report any bugs.
|
||
|
"""
|
||
|
label = self.zaxis.get_label()
|
||
|
return label.get_text()
|
||
|
|
||
|
# Axes rectangle characteristics
|
||
|
|
||
|
def get_frame_on(self):
|
||
|
"""Get whether the 3D axes panels are drawn."""
|
||
|
return self._frameon
|
||
|
|
||
|
def set_frame_on(self, b):
|
||
|
"""
|
||
|
Set whether the 3D axes panels are drawn.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
b : bool
|
||
|
"""
|
||
|
self._frameon = bool(b)
|
||
|
self.stale = True
|
||
|
|
||
|
def grid(self, b=True, **kwargs):
|
||
|
'''
|
||
|
Set / unset 3D grid.
|
||
|
|
||
|
.. note::
|
||
|
|
||
|
Currently, this function does not behave the same as
|
||
|
:meth:`matplotlib.axes.Axes.grid`, but it is intended to
|
||
|
eventually support that behavior.
|
||
|
|
||
|
.. versionadded:: 1.1.0
|
||
|
'''
|
||
|
# TODO: Operate on each axes separately
|
||
|
if len(kwargs):
|
||
|
b = True
|
||
|
self._draw_grid = b
|
||
|
self.stale = True
|
||
|
|
||
|
def locator_params(self, axis='both', tight=None, **kwargs):
|
||
|
"""
|
||
|
Convenience method for controlling tick locators.
|
||
|
|
||
|
See :meth:`matplotlib.axes.Axes.locator_params` for full
|
||
|
documentation. Note that this is for Axes3D objects,
|
||
|
therefore, setting *axis* to 'both' will result in the
|
||
|
parameters being set for all three axes. Also, *axis*
|
||
|
can also take a value of 'z' to apply parameters to the
|
||
|
z axis.
|
||
|
|
||
|
.. versionadded:: 1.1.0
|
||
|
This function was added, but not tested. Please report any bugs.
|
||
|
"""
|
||
|
_x = axis in ['x', 'both']
|
||
|
_y = axis in ['y', 'both']
|
||
|
_z = axis in ['z', 'both']
|
||
|
if _x:
|
||
|
self.xaxis.get_major_locator().set_params(**kwargs)
|
||
|
if _y:
|
||
|
self.yaxis.get_major_locator().set_params(**kwargs)
|
||
|
if _z:
|
||
|
self.zaxis.get_major_locator().set_params(**kwargs)
|
||
|
self.autoscale_view(tight=tight, scalex=_x, scaley=_y, scalez=_z)
|
||
|
|
||
|
def tick_params(self, axis='both', **kwargs):
|
||
|
"""
|
||
|
Convenience method for changing the appearance of ticks and
|
||
|
tick labels.
|
||
|
|
||
|
See :meth:`matplotlib.axes.Axes.tick_params` for more complete
|
||
|
documentation.
|
||
|
|
||
|
The only difference is that setting *axis* to 'both' will
|
||
|
mean that the settings are applied to all three axes. Also,
|
||
|
the *axis* parameter also accepts a value of 'z', which
|
||
|
would mean to apply to only the z-axis.
|
||
|
|
||
|
Also, because of how Axes3D objects are drawn very differently
|
||
|
from regular 2D axes, some of these settings may have
|
||
|
ambiguous meaning. For simplicity, the 'z' axis will
|
||
|
accept settings as if it was like the 'y' axis.
|
||
|
|
||
|
.. note::
|
||
|
Axes3D currently ignores some of these settings.
|
||
|
|
||
|
.. versionadded:: 1.1.0
|
||
|
"""
|
||
|
cbook._check_in_list(['x', 'y', 'z', 'both'], axis=axis)
|
||
|
if axis in ['x', 'y', 'both']:
|
||
|
super().tick_params(axis, **kwargs)
|
||
|
if axis in ['z', 'both']:
|
||
|
zkw = dict(kwargs)
|
||
|
zkw.pop('top', None)
|
||
|
zkw.pop('bottom', None)
|
||
|
zkw.pop('labeltop', None)
|
||
|
zkw.pop('labelbottom', None)
|
||
|
self.zaxis.set_tick_params(**zkw)
|
||
|
|
||
|
# data limits, ticks, tick labels, and formatting
|
||
|
|
||
|
def invert_zaxis(self):
|
||
|
"""
|
||
|
Invert the z-axis.
|
||
|
|
||
|
.. versionadded:: 1.1.0
|
||
|
This function was added, but not tested. Please report any bugs.
|
||
|
"""
|
||
|
bottom, top = self.get_zlim()
|
||
|
self.set_zlim(top, bottom, auto=None)
|
||
|
|
||
|
def zaxis_inverted(self):
|
||
|
'''
|
||
|
Returns True if the z-axis is inverted.
|
||
|
|
||
|
.. versionadded:: 1.1.0
|
||
|
'''
|
||
|
bottom, top = self.get_zlim()
|
||
|
return top < bottom
|
||
|
|
||
|
def get_zbound(self):
|
||
|
"""
|
||
|
Return the lower and upper z-axis bounds, in increasing order.
|
||
|
|
||
|
.. versionadded:: 1.1.0
|
||
|
"""
|
||
|
bottom, top = self.get_zlim()
|
||
|
if bottom < top:
|
||
|
return bottom, top
|
||
|
else:
|
||
|
return top, bottom
|
||
|
|
||
|
def set_zbound(self, lower=None, upper=None):
|
||
|
"""
|
||
|
Set the lower and upper numerical bounds of the z-axis.
|
||
|
This method will honor axes inversion regardless of parameter order.
|
||
|
It will not change the :attr:`_autoscaleZon` attribute.
|
||
|
|
||
|
.. versionadded:: 1.1.0
|
||
|
"""
|
||
|
if upper is None and np.iterable(lower):
|
||
|
lower, upper = lower
|
||
|
old_lower, old_upper = self.get_zbound()
|
||
|
if lower is None:
|
||
|
lower = old_lower
|
||
|
if upper is None:
|
||
|
upper = old_upper
|
||
|
|
||
|
if self.zaxis_inverted():
|
||
|
if lower < upper:
|
||
|
self.set_zlim(upper, lower, auto=None)
|
||
|
else:
|
||
|
self.set_zlim(lower, upper, auto=None)
|
||
|
else:
|
||
|
if lower < upper:
|
||
|
self.set_zlim(lower, upper, auto=None)
|
||
|
else:
|
||
|
self.set_zlim(upper, lower, auto=None)
|
||
|
|
||
|
def text(self, x, y, z, s, zdir=None, **kwargs):
|
||
|
'''
|
||
|
Add text to the plot. kwargs will be passed on to Axes.text,
|
||
|
except for the `zdir` keyword, which sets the direction to be
|
||
|
used as the z direction.
|
||
|
'''
|
||
|
text = super().text(x, y, s, **kwargs)
|
||
|
art3d.text_2d_to_3d(text, z, zdir)
|
||
|
return text
|
||
|
|
||
|
text3D = text
|
||
|
text2D = Axes.text
|
||
|
|
||
|
def plot(self, xs, ys, *args, zdir='z', **kwargs):
|
||
|
"""
|
||
|
Plot 2D or 3D data.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
xs : 1D array-like
|
||
|
x coordinates of vertices.
|
||
|
ys : 1D array-like
|
||
|
y coordinates of vertices.
|
||
|
zs : scalar or 1D array-like
|
||
|
z coordinates of vertices; either one for all points or one for
|
||
|
each point.
|
||
|
zdir : {'x', 'y', 'z'}
|
||
|
When plotting 2D data, the direction to use as z ('x', 'y' or 'z');
|
||
|
defaults to 'z'.
|
||
|
**kwargs
|
||
|
Other arguments are forwarded to `matplotlib.axes.Axes.plot`.
|
||
|
"""
|
||
|
had_data = self.has_data()
|
||
|
|
||
|
# `zs` can be passed positionally or as keyword; checking whether
|
||
|
# args[0] is a string matches the behavior of 2D `plot` (via
|
||
|
# `_process_plot_var_args`).
|
||
|
if args and not isinstance(args[0], str):
|
||
|
zs, *args = args
|
||
|
if 'zs' in kwargs:
|
||
|
raise TypeError("plot() for multiple values for argument 'z'")
|
||
|
else:
|
||
|
zs = kwargs.pop('zs', 0)
|
||
|
|
||
|
# Match length
|
||
|
zs = np.broadcast_to(zs, len(xs))
|
||
|
|
||
|
lines = super().plot(xs, ys, *args, **kwargs)
|
||
|
for line in lines:
|
||
|
art3d.line_2d_to_3d(line, zs=zs, zdir=zdir)
|
||
|
|
||
|
xs, ys, zs = art3d.juggle_axes(xs, ys, zs, zdir)
|
||
|
self.auto_scale_xyz(xs, ys, zs, had_data)
|
||
|
return lines
|
||
|
|
||
|
plot3D = plot
|
||
|
|
||
|
def plot_surface(self, X, Y, Z, *args, norm=None, vmin=None,
|
||
|
vmax=None, lightsource=None, **kwargs):
|
||
|
"""
|
||
|
Create a surface plot.
|
||
|
|
||
|
By default it will be colored in shades of a solid color, but it also
|
||
|
supports color mapping by supplying the *cmap* argument.
|
||
|
|
||
|
.. note::
|
||
|
|
||
|
The *rcount* and *ccount* kwargs, which both default to 50,
|
||
|
determine the maximum number of samples used in each direction. If
|
||
|
the input data is larger, it will be downsampled (by slicing) to
|
||
|
these numbers of points.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X, Y, Z : 2d arrays
|
||
|
Data values.
|
||
|
|
||
|
rcount, ccount : int
|
||
|
Maximum number of samples used in each direction. If the input
|
||
|
data is larger, it will be downsampled (by slicing) to these
|
||
|
numbers of points. Defaults to 50.
|
||
|
|
||
|
.. versionadded:: 2.0
|
||
|
|
||
|
rstride, cstride : int
|
||
|
Downsampling stride in each direction. These arguments are
|
||
|
mutually exclusive with *rcount* and *ccount*. If only one of
|
||
|
*rstride* or *cstride* is set, the other defaults to 10.
|
||
|
|
||
|
'classic' mode uses a default of ``rstride = cstride = 10`` instead
|
||
|
of the new default of ``rcount = ccount = 50``.
|
||
|
|
||
|
color : color-like
|
||
|
Color of the surface patches.
|
||
|
|
||
|
cmap : Colormap
|
||
|
Colormap of the surface patches.
|
||
|
|
||
|
facecolors : array-like of colors.
|
||
|
Colors of each individual patch.
|
||
|
|
||
|
norm : Normalize
|
||
|
Normalization for the colormap.
|
||
|
|
||
|
vmin, vmax : float
|
||
|
Bounds for the normalization.
|
||
|
|
||
|
shade : bool
|
||
|
Whether to shade the facecolors. Defaults to True. Shading is
|
||
|
always disabled when `cmap` is specified.
|
||
|
|
||
|
lightsource : `~matplotlib.colors.LightSource`
|
||
|
The lightsource to use when `shade` is True.
|
||
|
|
||
|
**kwargs
|
||
|
Other arguments are forwarded to `.Poly3DCollection`.
|
||
|
"""
|
||
|
|
||
|
had_data = self.has_data()
|
||
|
|
||
|
if Z.ndim != 2:
|
||
|
raise ValueError("Argument Z must be 2-dimensional.")
|
||
|
if np.any(np.isnan(Z)):
|
||
|
cbook._warn_external(
|
||
|
"Z contains NaN values. This may result in rendering "
|
||
|
"artifacts.")
|
||
|
|
||
|
# TODO: Support masked arrays
|
||
|
X, Y, Z = np.broadcast_arrays(X, Y, Z)
|
||
|
rows, cols = Z.shape
|
||
|
|
||
|
has_stride = 'rstride' in kwargs or 'cstride' in kwargs
|
||
|
has_count = 'rcount' in kwargs or 'ccount' in kwargs
|
||
|
|
||
|
if has_stride and has_count:
|
||
|
raise ValueError("Cannot specify both stride and count arguments")
|
||
|
|
||
|
rstride = kwargs.pop('rstride', 10)
|
||
|
cstride = kwargs.pop('cstride', 10)
|
||
|
rcount = kwargs.pop('rcount', 50)
|
||
|
ccount = kwargs.pop('ccount', 50)
|
||
|
|
||
|
if rcParams['_internal.classic_mode']:
|
||
|
# Strides have priority over counts in classic mode.
|
||
|
# So, only compute strides from counts
|
||
|
# if counts were explicitly given
|
||
|
compute_strides = has_count
|
||
|
else:
|
||
|
# If the strides are provided then it has priority.
|
||
|
# Otherwise, compute the strides from the counts.
|
||
|
compute_strides = not has_stride
|
||
|
|
||
|
if compute_strides:
|
||
|
rstride = int(max(np.ceil(rows / rcount), 1))
|
||
|
cstride = int(max(np.ceil(cols / ccount), 1))
|
||
|
|
||
|
if 'facecolors' in kwargs:
|
||
|
fcolors = kwargs.pop('facecolors')
|
||
|
else:
|
||
|
color = kwargs.pop('color', None)
|
||
|
if color is None:
|
||
|
color = self._get_lines.get_next_color()
|
||
|
color = np.array(mcolors.to_rgba(color))
|
||
|
fcolors = None
|
||
|
|
||
|
cmap = kwargs.get('cmap', None)
|
||
|
shade = kwargs.pop('shade', cmap is None)
|
||
|
if shade is None:
|
||
|
cbook.warn_deprecated(
|
||
|
"3.1",
|
||
|
message="Passing shade=None to Axes3D.plot_surface() is "
|
||
|
"deprecated since matplotlib 3.1 and will change its "
|
||
|
"semantic or raise an error in matplotlib 3.3. "
|
||
|
"Please use shade=False instead.")
|
||
|
|
||
|
# evenly spaced, and including both endpoints
|
||
|
row_inds = list(range(0, rows-1, rstride)) + [rows-1]
|
||
|
col_inds = list(range(0, cols-1, cstride)) + [cols-1]
|
||
|
|
||
|
colset = [] # the sampled facecolor
|
||
|
polys = []
|
||
|
for rs, rs_next in zip(row_inds[:-1], row_inds[1:]):
|
||
|
for cs, cs_next in zip(col_inds[:-1], col_inds[1:]):
|
||
|
ps = [
|
||
|
# +1 ensures we share edges between polygons
|
||
|
cbook._array_perimeter(a[rs:rs_next+1, cs:cs_next+1])
|
||
|
for a in (X, Y, Z)
|
||
|
]
|
||
|
# ps = np.stack(ps, axis=-1)
|
||
|
ps = np.array(ps).T
|
||
|
polys.append(ps)
|
||
|
|
||
|
if fcolors is not None:
|
||
|
colset.append(fcolors[rs][cs])
|
||
|
|
||
|
# note that the striding causes some polygons to have more coordinates
|
||
|
# than others
|
||
|
polyc = art3d.Poly3DCollection(polys, *args, **kwargs)
|
||
|
|
||
|
if fcolors is not None:
|
||
|
if shade:
|
||
|
colset = self._shade_colors(
|
||
|
colset, self._generate_normals(polys), lightsource)
|
||
|
polyc.set_facecolors(colset)
|
||
|
polyc.set_edgecolors(colset)
|
||
|
elif cmap:
|
||
|
# doesn't vectorize because polys is jagged
|
||
|
avg_z = np.array([ps[:, 2].mean() for ps in polys])
|
||
|
polyc.set_array(avg_z)
|
||
|
if vmin is not None or vmax is not None:
|
||
|
polyc.set_clim(vmin, vmax)
|
||
|
if norm is not None:
|
||
|
polyc.set_norm(norm)
|
||
|
else:
|
||
|
if shade:
|
||
|
colset = self._shade_colors(
|
||
|
color, self._generate_normals(polys), lightsource)
|
||
|
else:
|
||
|
colset = color
|
||
|
polyc.set_facecolors(colset)
|
||
|
|
||
|
self.add_collection(polyc)
|
||
|
self.auto_scale_xyz(X, Y, Z, had_data)
|
||
|
|
||
|
return polyc
|
||
|
|
||
|
def _generate_normals(self, polygons):
|
||
|
"""
|
||
|
Takes a list of polygons and return an array of their normals.
|
||
|
|
||
|
Normals point towards the viewer for a face with its vertices in
|
||
|
counterclockwise order, following the right hand rule.
|
||
|
|
||
|
Uses three points equally spaced around the polygon.
|
||
|
This normal of course might not make sense for polygons with more than
|
||
|
three points not lying in a plane, but it's a plausible and fast
|
||
|
approximation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
polygons: list of (M_i, 3) array-like, or (..., M, 3) array-like
|
||
|
A sequence of polygons to compute normals for, which can have
|
||
|
varying numbers of vertices. If the polygons all have the same
|
||
|
number of vertices and array is passed, then the operation will
|
||
|
be vectorized.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
normals: (..., 3) array-like
|
||
|
A normal vector estimated for the polygon.
|
||
|
|
||
|
"""
|
||
|
if isinstance(polygons, np.ndarray):
|
||
|
# optimization: polygons all have the same number of points, so can
|
||
|
# vectorize
|
||
|
n = polygons.shape[-2]
|
||
|
i1, i2, i3 = 0, n//3, 2*n//3
|
||
|
v1 = polygons[..., i1, :] - polygons[..., i2, :]
|
||
|
v2 = polygons[..., i2, :] - polygons[..., i3, :]
|
||
|
else:
|
||
|
# The subtraction doesn't vectorize because polygons is jagged.
|
||
|
v1 = np.empty((len(polygons), 3))
|
||
|
v2 = np.empty((len(polygons), 3))
|
||
|
for poly_i, ps in enumerate(polygons):
|
||
|
n = len(ps)
|
||
|
i1, i2, i3 = 0, n//3, 2*n//3
|
||
|
v1[poly_i, :] = ps[i1, :] - ps[i2, :]
|
||
|
v2[poly_i, :] = ps[i2, :] - ps[i3, :]
|
||
|
return np.cross(v1, v2)
|
||
|
|
||
|
def _shade_colors(self, color, normals, lightsource=None):
|
||
|
"""
|
||
|
Shade *color* using normal vectors given by *normals*.
|
||
|
*color* can also be an array of the same length as *normals*.
|
||
|
"""
|
||
|
if lightsource is None:
|
||
|
# chosen for backwards-compatibility
|
||
|
lightsource = LightSource(azdeg=225, altdeg=19.4712)
|
||
|
|
||
|
with np.errstate(invalid="ignore"):
|
||
|
shade = ((normals / np.linalg.norm(normals, axis=1, keepdims=True))
|
||
|
@ lightsource.direction)
|
||
|
mask = ~np.isnan(shade)
|
||
|
|
||
|
if mask.any():
|
||
|
# convert dot product to allowed shading fractions
|
||
|
in_norm = Normalize(-1, 1)
|
||
|
out_norm = Normalize(0.3, 1).inverse
|
||
|
|
||
|
def norm(x):
|
||
|
return out_norm(in_norm(x))
|
||
|
|
||
|
shade[~mask] = 0
|
||
|
|
||
|
color = mcolors.to_rgba_array(color)
|
||
|
# shape of color should be (M, 4) (where M is number of faces)
|
||
|
# shape of shade should be (M,)
|
||
|
# colors should have final shape of (M, 4)
|
||
|
alpha = color[:, 3]
|
||
|
colors = norm(shade)[:, np.newaxis] * color
|
||
|
colors[:, 3] = alpha
|
||
|
else:
|
||
|
colors = np.asanyarray(color).copy()
|
||
|
|
||
|
return colors
|
||
|
|
||
|
def plot_wireframe(self, X, Y, Z, *args, **kwargs):
|
||
|
"""
|
||
|
Plot a 3D wireframe.
|
||
|
|
||
|
.. note::
|
||
|
|
||
|
The *rcount* and *ccount* kwargs, which both default to 50,
|
||
|
determine the maximum number of samples used in each direction. If
|
||
|
the input data is larger, it will be downsampled (by slicing) to
|
||
|
these numbers of points.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X, Y, Z : 2d arrays
|
||
|
Data values.
|
||
|
|
||
|
rcount, ccount : int
|
||
|
Maximum number of samples used in each direction. If the input
|
||
|
data is larger, it will be downsampled (by slicing) to these
|
||
|
numbers of points. Setting a count to zero causes the data to be
|
||
|
not sampled in the corresponding direction, producing a 3D line
|
||
|
plot rather than a wireframe plot. Defaults to 50.
|
||
|
|
||
|
.. versionadded:: 2.0
|
||
|
|
||
|
rstride, cstride : int
|
||
|
Downsampling stride in each direction. These arguments are
|
||
|
mutually exclusive with *rcount* and *ccount*. If only one of
|
||
|
*rstride* or *cstride* is set, the other defaults to 1. Setting a
|
||
|
stride to zero causes the data to be not sampled in the
|
||
|
corresponding direction, producing a 3D line plot rather than a
|
||
|
wireframe plot.
|
||
|
|
||
|
'classic' mode uses a default of ``rstride = cstride = 1`` instead
|
||
|
of the new default of ``rcount = ccount = 50``.
|
||
|
|
||
|
**kwargs
|
||
|
Other arguments are forwarded to `.Line3DCollection`.
|
||
|
"""
|
||
|
|
||
|
had_data = self.has_data()
|
||
|
if Z.ndim != 2:
|
||
|
raise ValueError("Argument Z must be 2-dimensional.")
|
||
|
# FIXME: Support masked arrays
|
||
|
X, Y, Z = np.broadcast_arrays(X, Y, Z)
|
||
|
rows, cols = Z.shape
|
||
|
|
||
|
has_stride = 'rstride' in kwargs or 'cstride' in kwargs
|
||
|
has_count = 'rcount' in kwargs or 'ccount' in kwargs
|
||
|
|
||
|
if has_stride and has_count:
|
||
|
raise ValueError("Cannot specify both stride and count arguments")
|
||
|
|
||
|
rstride = kwargs.pop('rstride', 1)
|
||
|
cstride = kwargs.pop('cstride', 1)
|
||
|
rcount = kwargs.pop('rcount', 50)
|
||
|
ccount = kwargs.pop('ccount', 50)
|
||
|
|
||
|
if rcParams['_internal.classic_mode']:
|
||
|
# Strides have priority over counts in classic mode.
|
||
|
# So, only compute strides from counts
|
||
|
# if counts were explicitly given
|
||
|
if has_count:
|
||
|
rstride = int(max(np.ceil(rows / rcount), 1)) if rcount else 0
|
||
|
cstride = int(max(np.ceil(cols / ccount), 1)) if ccount else 0
|
||
|
else:
|
||
|
# If the strides are provided then it has priority.
|
||
|
# Otherwise, compute the strides from the counts.
|
||
|
if not has_stride:
|
||
|
rstride = int(max(np.ceil(rows / rcount), 1)) if rcount else 0
|
||
|
cstride = int(max(np.ceil(cols / ccount), 1)) if ccount else 0
|
||
|
|
||
|
# We want two sets of lines, one running along the "rows" of
|
||
|
# Z and another set of lines running along the "columns" of Z.
|
||
|
# This transpose will make it easy to obtain the columns.
|
||
|
tX, tY, tZ = np.transpose(X), np.transpose(Y), np.transpose(Z)
|
||
|
|
||
|
if rstride:
|
||
|
rii = list(range(0, rows, rstride))
|
||
|
# Add the last index only if needed
|
||
|
if rows > 0 and rii[-1] != (rows - 1):
|
||
|
rii += [rows-1]
|
||
|
else:
|
||
|
rii = []
|
||
|
if cstride:
|
||
|
cii = list(range(0, cols, cstride))
|
||
|
# Add the last index only if needed
|
||
|
if cols > 0 and cii[-1] != (cols - 1):
|
||
|
cii += [cols-1]
|
||
|
else:
|
||
|
cii = []
|
||
|
|
||
|
if rstride == 0 and cstride == 0:
|
||
|
raise ValueError("Either rstride or cstride must be non zero")
|
||
|
|
||
|
# If the inputs were empty, then just
|
||
|
# reset everything.
|
||
|
if Z.size == 0:
|
||
|
rii = []
|
||
|
cii = []
|
||
|
|
||
|
xlines = [X[i] for i in rii]
|
||
|
ylines = [Y[i] for i in rii]
|
||
|
zlines = [Z[i] for i in rii]
|
||
|
|
||
|
txlines = [tX[i] for i in cii]
|
||
|
tylines = [tY[i] for i in cii]
|
||
|
tzlines = [tZ[i] for i in cii]
|
||
|
|
||
|
lines = ([list(zip(xl, yl, zl))
|
||
|
for xl, yl, zl in zip(xlines, ylines, zlines)]
|
||
|
+ [list(zip(xl, yl, zl))
|
||
|
for xl, yl, zl in zip(txlines, tylines, tzlines)])
|
||
|
|
||
|
linec = art3d.Line3DCollection(lines, *args, **kwargs)
|
||
|
self.add_collection(linec)
|
||
|
self.auto_scale_xyz(X, Y, Z, had_data)
|
||
|
|
||
|
return linec
|
||
|
|
||
|
def plot_trisurf(self, *args, color=None, norm=None, vmin=None, vmax=None,
|
||
|
lightsource=None, **kwargs):
|
||
|
"""
|
||
|
Plot a triangulated surface.
|
||
|
|
||
|
The (optional) triangulation can be specified in one of two ways;
|
||
|
either::
|
||
|
|
||
|
plot_trisurf(triangulation, ...)
|
||
|
|
||
|
where triangulation is a :class:`~matplotlib.tri.Triangulation`
|
||
|
object, or::
|
||
|
|
||
|
plot_trisurf(X, Y, ...)
|
||
|
plot_trisurf(X, Y, triangles, ...)
|
||
|
plot_trisurf(X, Y, triangles=triangles, ...)
|
||
|
|
||
|
in which case a Triangulation object will be created. See
|
||
|
:class:`~matplotlib.tri.Triangulation` for a explanation of
|
||
|
these possibilities.
|
||
|
|
||
|
The remaining arguments are::
|
||
|
|
||
|
plot_trisurf(..., Z)
|
||
|
|
||
|
where *Z* is the array of values to contour, one per point
|
||
|
in the triangulation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X, Y, Z : array-like
|
||
|
Data values as 1D arrays.
|
||
|
color
|
||
|
Color of the surface patches.
|
||
|
cmap
|
||
|
A colormap for the surface patches.
|
||
|
norm : Normalize
|
||
|
An instance of Normalize to map values to colors.
|
||
|
vmin, vmax : scalar, optional, default: None
|
||
|
Minimum and maximum value to map.
|
||
|
shade : bool
|
||
|
Whether to shade the facecolors. Defaults to True. Shading is
|
||
|
always disabled when *cmap* is specified.
|
||
|
lightsource : `~matplotlib.colors.LightSource`
|
||
|
The lightsource to use when *shade* is True.
|
||
|
**kwargs
|
||
|
All other arguments are passed on to
|
||
|
:class:`~mpl_toolkits.mplot3d.art3d.Poly3DCollection`
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
.. plot:: gallery/mplot3d/trisurf3d.py
|
||
|
.. plot:: gallery/mplot3d/trisurf3d_2.py
|
||
|
|
||
|
.. versionadded:: 1.2.0
|
||
|
"""
|
||
|
|
||
|
had_data = self.has_data()
|
||
|
|
||
|
# TODO: Support custom face colours
|
||
|
if color is None:
|
||
|
color = self._get_lines.get_next_color()
|
||
|
color = np.array(mcolors.to_rgba(color))
|
||
|
|
||
|
cmap = kwargs.get('cmap', None)
|
||
|
shade = kwargs.pop('shade', cmap is None)
|
||
|
|
||
|
tri, args, kwargs = \
|
||
|
Triangulation.get_from_args_and_kwargs(*args, **kwargs)
|
||
|
try:
|
||
|
z = kwargs.pop('Z')
|
||
|
except KeyError:
|
||
|
# We do this so Z doesn't get passed as an arg to PolyCollection
|
||
|
z, *args = args
|
||
|
z = np.asarray(z)
|
||
|
|
||
|
triangles = tri.get_masked_triangles()
|
||
|
xt = tri.x[triangles]
|
||
|
yt = tri.y[triangles]
|
||
|
zt = z[triangles]
|
||
|
verts = np.stack((xt, yt, zt), axis=-1)
|
||
|
|
||
|
polyc = art3d.Poly3DCollection(verts, *args, **kwargs)
|
||
|
|
||
|
if cmap:
|
||
|
# average over the three points of each triangle
|
||
|
avg_z = verts[:, :, 2].mean(axis=1)
|
||
|
polyc.set_array(avg_z)
|
||
|
if vmin is not None or vmax is not None:
|
||
|
polyc.set_clim(vmin, vmax)
|
||
|
if norm is not None:
|
||
|
polyc.set_norm(norm)
|
||
|
else:
|
||
|
if shade:
|
||
|
normals = self._generate_normals(verts)
|
||
|
colset = self._shade_colors(color, normals, lightsource)
|
||
|
else:
|
||
|
colset = color
|
||
|
polyc.set_facecolors(colset)
|
||
|
|
||
|
self.add_collection(polyc)
|
||
|
self.auto_scale_xyz(tri.x, tri.y, z, had_data)
|
||
|
|
||
|
return polyc
|
||
|
|
||
|
def _3d_extend_contour(self, cset, stride=5):
|
||
|
'''
|
||
|
Extend a contour in 3D by creating
|
||
|
'''
|
||
|
|
||
|
levels = cset.levels
|
||
|
colls = cset.collections
|
||
|
dz = (levels[1] - levels[0]) / 2
|
||
|
|
||
|
for z, linec in zip(levels, colls):
|
||
|
paths = linec.get_paths()
|
||
|
if not paths:
|
||
|
continue
|
||
|
topverts = art3d._paths_to_3d_segments(paths, z - dz)
|
||
|
botverts = art3d._paths_to_3d_segments(paths, z + dz)
|
||
|
|
||
|
color = linec.get_color()[0]
|
||
|
|
||
|
polyverts = []
|
||
|
normals = []
|
||
|
nsteps = round(len(topverts[0]) / stride)
|
||
|
if nsteps <= 1:
|
||
|
if len(topverts[0]) > 1:
|
||
|
nsteps = 2
|
||
|
else:
|
||
|
continue
|
||
|
|
||
|
stepsize = (len(topverts[0]) - 1) / (nsteps - 1)
|
||
|
for i in range(int(round(nsteps)) - 1):
|
||
|
i1 = int(round(i * stepsize))
|
||
|
i2 = int(round((i + 1) * stepsize))
|
||
|
polyverts.append([topverts[0][i1],
|
||
|
topverts[0][i2],
|
||
|
botverts[0][i2],
|
||
|
botverts[0][i1]])
|
||
|
|
||
|
# all polygons have 4 vertices, so vectorize
|
||
|
polyverts = np.array(polyverts)
|
||
|
normals = self._generate_normals(polyverts)
|
||
|
|
||
|
colors = self._shade_colors(color, normals)
|
||
|
colors2 = self._shade_colors(color, normals)
|
||
|
polycol = art3d.Poly3DCollection(polyverts,
|
||
|
facecolors=colors,
|
||
|
edgecolors=colors2)
|
||
|
polycol.set_sort_zpos(z)
|
||
|
self.add_collection3d(polycol)
|
||
|
|
||
|
for col in colls:
|
||
|
self.collections.remove(col)
|
||
|
|
||
|
def add_contour_set(
|
||
|
self, cset, extend3d=False, stride=5, zdir='z', offset=None):
|
||
|
zdir = '-' + zdir
|
||
|
if extend3d:
|
||
|
self._3d_extend_contour(cset, stride)
|
||
|
else:
|
||
|
for z, linec in zip(cset.levels, cset.collections):
|
||
|
if offset is not None:
|
||
|
z = offset
|
||
|
art3d.line_collection_2d_to_3d(linec, z, zdir=zdir)
|
||
|
|
||
|
def add_contourf_set(self, cset, zdir='z', offset=None):
|
||
|
zdir = '-' + zdir
|
||
|
for z, linec in zip(cset.levels, cset.collections):
|
||
|
if offset is not None:
|
||
|
z = offset
|
||
|
art3d.poly_collection_2d_to_3d(linec, z, zdir=zdir)
|
||
|
linec.set_sort_zpos(z)
|
||
|
|
||
|
def contour(self, X, Y, Z, *args,
|
||
|
extend3d=False, stride=5, zdir='z', offset=None, **kwargs):
|
||
|
"""
|
||
|
Create a 3D contour plot.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X, Y, Z : array-likes
|
||
|
Input data.
|
||
|
extend3d : bool
|
||
|
Whether to extend contour in 3D; defaults to False.
|
||
|
stride : int
|
||
|
Step size for extending contour.
|
||
|
zdir : {'x', 'y', 'z'}
|
||
|
The direction to use; defaults to 'z'.
|
||
|
offset : scalar
|
||
|
If specified, plot a projection of the contour lines at this
|
||
|
position in a plane normal to zdir
|
||
|
*args, **kwargs
|
||
|
Other arguments are forwarded to `matplotlib.axes.Axes.contour`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
matplotlib.contour.QuadContourSet
|
||
|
"""
|
||
|
had_data = self.has_data()
|
||
|
|
||
|
jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir)
|
||
|
cset = super().contour(jX, jY, jZ, *args, **kwargs)
|
||
|
self.add_contour_set(cset, extend3d, stride, zdir, offset)
|
||
|
|
||
|
self.auto_scale_xyz(X, Y, Z, had_data)
|
||
|
return cset
|
||
|
|
||
|
contour3D = contour
|
||
|
|
||
|
def tricontour(self, *args,
|
||
|
extend3d=False, stride=5, zdir='z', offset=None, **kwargs):
|
||
|
"""
|
||
|
Create a 3D contour plot.
|
||
|
|
||
|
.. versionchanged:: 1.3.0
|
||
|
Added support for custom triangulations
|
||
|
|
||
|
.. note::
|
||
|
This method currently produces incorrect output due to a
|
||
|
longstanding bug in 3D PolyCollection rendering.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X, Y, Z : array-likes
|
||
|
Input data.
|
||
|
extend3d : bool
|
||
|
Whether to extend contour in 3D; defaults to False.
|
||
|
stride : int
|
||
|
Step size for extending contour.
|
||
|
zdir : {'x', 'y', 'z'}
|
||
|
The direction to use; defaults to 'z'.
|
||
|
offset : scalar
|
||
|
If specified, plot a projection of the contour lines at this
|
||
|
position in a plane normal to zdir
|
||
|
*args, **kwargs
|
||
|
Other arguments are forwarded to `matplotlib.axes.Axes.tricontour`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
matplotlib.tri.tricontour.TriContourSet
|
||
|
"""
|
||
|
had_data = self.has_data()
|
||
|
|
||
|
tri, args, kwargs = Triangulation.get_from_args_and_kwargs(
|
||
|
*args, **kwargs)
|
||
|
X = tri.x
|
||
|
Y = tri.y
|
||
|
if 'Z' in kwargs:
|
||
|
Z = kwargs.pop('Z')
|
||
|
else:
|
||
|
# We do this so Z doesn't get passed as an arg to Axes.tricontour
|
||
|
Z, *args = args
|
||
|
|
||
|
jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir)
|
||
|
tri = Triangulation(jX, jY, tri.triangles, tri.mask)
|
||
|
|
||
|
cset = super().tricontour(tri, jZ, *args, **kwargs)
|
||
|
self.add_contour_set(cset, extend3d, stride, zdir, offset)
|
||
|
|
||
|
self.auto_scale_xyz(X, Y, Z, had_data)
|
||
|
return cset
|
||
|
|
||
|
def contourf(self, X, Y, Z, *args, zdir='z', offset=None, **kwargs):
|
||
|
"""
|
||
|
Create a 3D filled contour plot.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X, Y, Z : array-likes
|
||
|
Input data.
|
||
|
zdir : {'x', 'y', 'z'}
|
||
|
The direction to use; defaults to 'z'.
|
||
|
offset : scalar
|
||
|
If specified, plot a projection of the contour lines at this
|
||
|
position in a plane normal to zdir
|
||
|
*args, **kwargs
|
||
|
Other arguments are forwarded to `matplotlib.axes.Axes.contourf`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
matplotlib.contour.QuadContourSet
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
.. versionadded:: 1.1.0
|
||
|
The *zdir* and *offset* parameters.
|
||
|
"""
|
||
|
had_data = self.has_data()
|
||
|
|
||
|
jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir)
|
||
|
cset = super().contourf(jX, jY, jZ, *args, **kwargs)
|
||
|
self.add_contourf_set(cset, zdir, offset)
|
||
|
|
||
|
self.auto_scale_xyz(X, Y, Z, had_data)
|
||
|
return cset
|
||
|
|
||
|
contourf3D = contourf
|
||
|
|
||
|
def tricontourf(self, *args, zdir='z', offset=None, **kwargs):
|
||
|
"""
|
||
|
Create a 3D filled contour plot.
|
||
|
|
||
|
.. note::
|
||
|
This method currently produces incorrect output due to a
|
||
|
longstanding bug in 3D PolyCollection rendering.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X, Y, Z : array-likes
|
||
|
Input data.
|
||
|
zdir : {'x', 'y', 'z'}
|
||
|
The direction to use; defaults to 'z'.
|
||
|
offset : scalar
|
||
|
If specified, plot a projection of the contour lines at this
|
||
|
position in a plane normal to zdir
|
||
|
*args, **kwargs
|
||
|
Other arguments are forwarded to
|
||
|
`matplotlib.axes.Axes.tricontourf`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
matplotlib.tri.tricontour.TriContourSet
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
.. versionadded:: 1.1.0
|
||
|
The *zdir* and *offset* parameters.
|
||
|
.. versionchanged:: 1.3.0
|
||
|
Added support for custom triangulations
|
||
|
"""
|
||
|
had_data = self.has_data()
|
||
|
|
||
|
tri, args, kwargs = Triangulation.get_from_args_and_kwargs(
|
||
|
*args, **kwargs)
|
||
|
X = tri.x
|
||
|
Y = tri.y
|
||
|
if 'Z' in kwargs:
|
||
|
Z = kwargs.pop('Z')
|
||
|
else:
|
||
|
# We do this so Z doesn't get passed as an arg to Axes.tricontourf
|
||
|
Z, *args = args
|
||
|
|
||
|
jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir)
|
||
|
tri = Triangulation(jX, jY, tri.triangles, tri.mask)
|
||
|
|
||
|
cset = super().tricontourf(tri, jZ, *args, **kwargs)
|
||
|
self.add_contourf_set(cset, zdir, offset)
|
||
|
|
||
|
self.auto_scale_xyz(X, Y, Z, had_data)
|
||
|
return cset
|
||
|
|
||
|
def add_collection3d(self, col, zs=0, zdir='z'):
|
||
|
'''
|
||
|
Add a 3D collection object to the plot.
|
||
|
|
||
|
2D collection types are converted to a 3D version by
|
||
|
modifying the object and adding z coordinate information.
|
||
|
|
||
|
Supported are:
|
||
|
- PolyCollection
|
||
|
- LineCollection
|
||
|
- PatchCollection
|
||
|
'''
|
||
|
zvals = np.atleast_1d(zs)
|
||
|
zsortval = (np.min(zvals) if zvals.size
|
||
|
else 0) # FIXME: arbitrary default
|
||
|
|
||
|
# FIXME: use issubclass() (although, then a 3D collection
|
||
|
# object would also pass.) Maybe have a collection3d
|
||
|
# abstract class to test for and exclude?
|
||
|
if type(col) is mcoll.PolyCollection:
|
||
|
art3d.poly_collection_2d_to_3d(col, zs=zs, zdir=zdir)
|
||
|
col.set_sort_zpos(zsortval)
|
||
|
elif type(col) is mcoll.LineCollection:
|
||
|
art3d.line_collection_2d_to_3d(col, zs=zs, zdir=zdir)
|
||
|
col.set_sort_zpos(zsortval)
|
||
|
elif type(col) is mcoll.PatchCollection:
|
||
|
art3d.patch_collection_2d_to_3d(col, zs=zs, zdir=zdir)
|
||
|
col.set_sort_zpos(zsortval)
|
||
|
|
||
|
super().add_collection(col)
|
||
|
|
||
|
def scatter(self, xs, ys, zs=0, zdir='z', s=20, c=None, depthshade=True,
|
||
|
*args, **kwargs):
|
||
|
"""
|
||
|
Create a scatter plot.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
xs, ys : array-like
|
||
|
The data positions.
|
||
|
zs : float or array-like, optional, default: 0
|
||
|
The z-positions. Either an array of the same length as *xs* and
|
||
|
*ys* or a single value to place all points in the same plane.
|
||
|
zdir : {'x', 'y', 'z', '-x', '-y', '-z'}, optional, default: 'z'
|
||
|
The axis direction for the *zs*. This is useful when plotting 2D
|
||
|
data on a 3D Axes. The data must be passed as *xs*, *ys*. Setting
|
||
|
*zdir* to 'y' then plots the data to the x-z-plane.
|
||
|
|
||
|
See also :doc:`/gallery/mplot3d/2dcollections3d`.
|
||
|
|
||
|
s : scalar or array-like, optional, default: 20
|
||
|
The marker size in points**2. Either an array of the same length
|
||
|
as *xs* and *ys* or a single value to make all markers the same
|
||
|
size.
|
||
|
c : color, sequence, or sequence of colors, optional
|
||
|
The marker color. Possible values:
|
||
|
|
||
|
- A single color format string.
|
||
|
- A sequence of colors of length n.
|
||
|
- A sequence of n numbers to be mapped to colors using *cmap* and
|
||
|
*norm*.
|
||
|
- A 2-D array in which the rows are RGB or RGBA.
|
||
|
|
||
|
For more details see the *c* argument of `~.axes.Axes.scatter`.
|
||
|
depthshade : bool, optional, default: True
|
||
|
Whether to shade the scatter markers to give the appearance of
|
||
|
depth. Each call to ``scatter()`` will perform its depthshading
|
||
|
independently.
|
||
|
**kwargs
|
||
|
All other arguments are passed on to `~.axes.Axes.scatter`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
paths : `~matplotlib.collections.PathCollection`
|
||
|
"""
|
||
|
|
||
|
had_data = self.has_data()
|
||
|
|
||
|
xs, ys, zs = np.broadcast_arrays(
|
||
|
*[np.ravel(np.ma.filled(t, np.nan)) for t in [xs, ys, zs]])
|
||
|
s = np.ma.ravel(s) # This doesn't have to match x, y in size.
|
||
|
|
||
|
xs, ys, zs, s, c = cbook.delete_masked_points(xs, ys, zs, s, c)
|
||
|
|
||
|
patches = super().scatter(xs, ys, s=s, c=c, *args, **kwargs)
|
||
|
art3d.patch_collection_2d_to_3d(patches, zs=zs, zdir=zdir,
|
||
|
depthshade=depthshade)
|
||
|
|
||
|
if self._zmargin < 0.05 and xs.size > 0:
|
||
|
self.set_zmargin(0.05)
|
||
|
|
||
|
self.auto_scale_xyz(xs, ys, zs, had_data)
|
||
|
|
||
|
return patches
|
||
|
|
||
|
scatter3D = scatter
|
||
|
|
||
|
def bar(self, left, height, zs=0, zdir='z', *args, **kwargs):
|
||
|
"""
|
||
|
Add 2D bar(s).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
left : 1D array-like
|
||
|
The x coordinates of the left sides of the bars.
|
||
|
height : 1D array-like
|
||
|
The height of the bars.
|
||
|
zs : scalar or 1D array-like
|
||
|
Z coordinate of bars; if a single value is specified, it will be
|
||
|
used for all bars.
|
||
|
zdir : {'x', 'y', 'z'}
|
||
|
When plotting 2D data, the direction to use as z ('x', 'y' or 'z');
|
||
|
defaults to 'z'.
|
||
|
**kwargs
|
||
|
Other arguments are forwarded to `matplotlib.axes.Axes.bar`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
mpl_toolkits.mplot3d.art3d.Patch3DCollection
|
||
|
"""
|
||
|
had_data = self.has_data()
|
||
|
|
||
|
patches = super().bar(left, height, *args, **kwargs)
|
||
|
|
||
|
zs = np.broadcast_to(zs, len(left))
|
||
|
|
||
|
verts = []
|
||
|
verts_zs = []
|
||
|
for p, z in zip(patches, zs):
|
||
|
vs = art3d._get_patch_verts(p)
|
||
|
verts += vs.tolist()
|
||
|
verts_zs += [z] * len(vs)
|
||
|
art3d.patch_2d_to_3d(p, z, zdir)
|
||
|
if 'alpha' in kwargs:
|
||
|
p.set_alpha(kwargs['alpha'])
|
||
|
|
||
|
if len(verts) > 0:
|
||
|
# the following has to be skipped if verts is empty
|
||
|
# NOTE: Bugs could still occur if len(verts) > 0,
|
||
|
# but the "2nd dimension" is empty.
|
||
|
xs, ys = zip(*verts)
|
||
|
else:
|
||
|
xs, ys = [], []
|
||
|
|
||
|
xs, ys, verts_zs = art3d.juggle_axes(xs, ys, verts_zs, zdir)
|
||
|
self.auto_scale_xyz(xs, ys, verts_zs, had_data)
|
||
|
|
||
|
return patches
|
||
|
|
||
|
def bar3d(self, x, y, z, dx, dy, dz, color=None,
|
||
|
zsort='average', shade=True, lightsource=None, *args, **kwargs):
|
||
|
"""Generate a 3D barplot.
|
||
|
|
||
|
This method creates three dimensional barplot where the width,
|
||
|
depth, height, and color of the bars can all be uniquely set.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, y, z : array-like
|
||
|
The coordinates of the anchor point of the bars.
|
||
|
|
||
|
dx, dy, dz : scalar or array-like
|
||
|
The width, depth, and height of the bars, respectively.
|
||
|
|
||
|
color : sequence of colors, optional
|
||
|
The color of the bars can be specified globally or
|
||
|
individually. This parameter can be:
|
||
|
|
||
|
- A single color, to color all bars the same color.
|
||
|
- An array of colors of length N bars, to color each bar
|
||
|
independently.
|
||
|
- An array of colors of length 6, to color the faces of the
|
||
|
bars similarly.
|
||
|
- An array of colors of length 6 * N bars, to color each face
|
||
|
independently.
|
||
|
|
||
|
When coloring the faces of the boxes specifically, this is
|
||
|
the order of the coloring:
|
||
|
|
||
|
1. -Z (bottom of box)
|
||
|
2. +Z (top of box)
|
||
|
3. -Y
|
||
|
4. +Y
|
||
|
5. -X
|
||
|
6. +X
|
||
|
|
||
|
zsort : str, optional
|
||
|
The z-axis sorting scheme passed onto `~.art3d.Poly3DCollection`
|
||
|
|
||
|
shade : bool, optional (default = True)
|
||
|
When true, this shades the dark sides of the bars (relative
|
||
|
to the plot's source of light).
|
||
|
|
||
|
lightsource : `~matplotlib.colors.LightSource`
|
||
|
The lightsource to use when *shade* is True.
|
||
|
|
||
|
**kwargs
|
||
|
Any additional keyword arguments are passed onto
|
||
|
`~.art3d.Poly3DCollection`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
collection : `~.art3d.Poly3DCollection`
|
||
|
A collection of three dimensional polygons representing
|
||
|
the bars.
|
||
|
"""
|
||
|
|
||
|
had_data = self.has_data()
|
||
|
|
||
|
x, y, z, dx, dy, dz = np.broadcast_arrays(
|
||
|
np.atleast_1d(x), y, z, dx, dy, dz)
|
||
|
minx = np.min(x)
|
||
|
maxx = np.max(x + dx)
|
||
|
miny = np.min(y)
|
||
|
maxy = np.max(y + dy)
|
||
|
minz = np.min(z)
|
||
|
maxz = np.max(z + dz)
|
||
|
|
||
|
# shape (6, 4, 3)
|
||
|
# All faces are oriented facing outwards - when viewed from the
|
||
|
# outside, their vertices are in a counterclockwise ordering.
|
||
|
cuboid = np.array([
|
||
|
# -z
|
||
|
(
|
||
|
(0, 0, 0),
|
||
|
(0, 1, 0),
|
||
|
(1, 1, 0),
|
||
|
(1, 0, 0),
|
||
|
),
|
||
|
# +z
|
||
|
(
|
||
|
(0, 0, 1),
|
||
|
(1, 0, 1),
|
||
|
(1, 1, 1),
|
||
|
(0, 1, 1),
|
||
|
),
|
||
|
# -y
|
||
|
(
|
||
|
(0, 0, 0),
|
||
|
(1, 0, 0),
|
||
|
(1, 0, 1),
|
||
|
(0, 0, 1),
|
||
|
),
|
||
|
# +y
|
||
|
(
|
||
|
(0, 1, 0),
|
||
|
(0, 1, 1),
|
||
|
(1, 1, 1),
|
||
|
(1, 1, 0),
|
||
|
),
|
||
|
# -x
|
||
|
(
|
||
|
(0, 0, 0),
|
||
|
(0, 0, 1),
|
||
|
(0, 1, 1),
|
||
|
(0, 1, 0),
|
||
|
),
|
||
|
# +x
|
||
|
(
|
||
|
(1, 0, 0),
|
||
|
(1, 1, 0),
|
||
|
(1, 1, 1),
|
||
|
(1, 0, 1),
|
||
|
),
|
||
|
])
|
||
|
|
||
|
# indexed by [bar, face, vertex, coord]
|
||
|
polys = np.empty(x.shape + cuboid.shape)
|
||
|
|
||
|
# handle each coordinate separately
|
||
|
for i, p, dp in [(0, x, dx), (1, y, dy), (2, z, dz)]:
|
||
|
p = p[..., np.newaxis, np.newaxis]
|
||
|
dp = dp[..., np.newaxis, np.newaxis]
|
||
|
polys[..., i] = p + dp * cuboid[..., i]
|
||
|
|
||
|
# collapse the first two axes
|
||
|
polys = polys.reshape((-1,) + polys.shape[2:])
|
||
|
|
||
|
facecolors = []
|
||
|
if color is None:
|
||
|
color = [self._get_patches_for_fill.get_next_color()]
|
||
|
|
||
|
if len(color) == len(x):
|
||
|
# bar colors specified, need to expand to number of faces
|
||
|
for c in color:
|
||
|
facecolors.extend([c] * 6)
|
||
|
else:
|
||
|
# a single color specified, or face colors specified explicitly
|
||
|
facecolors = list(mcolors.to_rgba_array(color))
|
||
|
if len(facecolors) < len(x):
|
||
|
facecolors *= (6 * len(x))
|
||
|
|
||
|
if shade:
|
||
|
normals = self._generate_normals(polys)
|
||
|
sfacecolors = self._shade_colors(facecolors, normals, lightsource)
|
||
|
else:
|
||
|
sfacecolors = facecolors
|
||
|
|
||
|
col = art3d.Poly3DCollection(polys,
|
||
|
zsort=zsort,
|
||
|
facecolor=sfacecolors,
|
||
|
*args, **kwargs)
|
||
|
self.add_collection(col)
|
||
|
|
||
|
self.auto_scale_xyz((minx, maxx), (miny, maxy), (minz, maxz), had_data)
|
||
|
|
||
|
return col
|
||
|
|
||
|
def set_title(self, label, fontdict=None, loc='center', **kwargs):
|
||
|
# docstring inherited
|
||
|
ret = super().set_title(label, fontdict=fontdict, loc=loc, **kwargs)
|
||
|
(x, y) = self.title.get_position()
|
||
|
self.title.set_y(0.92 * y)
|
||
|
return ret
|
||
|
|
||
|
def quiver(self, *args,
|
||
|
length=1, arrow_length_ratio=.3, pivot='tail', normalize=False,
|
||
|
**kwargs):
|
||
|
"""
|
||
|
ax.quiver(X, Y, Z, U, V, W, /, length=1, arrow_length_ratio=.3, \
|
||
|
pivot='tail', normalize=False, **kwargs)
|
||
|
|
||
|
Plot a 3D field of arrows.
|
||
|
|
||
|
The arguments could be array-like or scalars, so long as they
|
||
|
they can be broadcast together. The arguments can also be
|
||
|
masked arrays. If an element in any of argument is masked, then
|
||
|
that corresponding quiver element will not be plotted.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X, Y, Z : array-like
|
||
|
The x, y and z coordinates of the arrow locations (default is
|
||
|
tail of arrow; see *pivot* kwarg)
|
||
|
|
||
|
U, V, W : array-like
|
||
|
The x, y and z components of the arrow vectors
|
||
|
|
||
|
length : float
|
||
|
The length of each quiver, default to 1.0, the unit is
|
||
|
the same with the axes
|
||
|
|
||
|
arrow_length_ratio : float
|
||
|
The ratio of the arrow head with respect to the quiver,
|
||
|
default to 0.3
|
||
|
|
||
|
pivot : {'tail', 'middle', 'tip'}
|
||
|
The part of the arrow that is at the grid point; the arrow
|
||
|
rotates about this point, hence the name *pivot*.
|
||
|
Default is 'tail'
|
||
|
|
||
|
normalize : bool
|
||
|
When True, all of the arrows will be the same length. This
|
||
|
defaults to False, where the arrows will be different lengths
|
||
|
depending on the values of u, v, w.
|
||
|
|
||
|
**kwargs
|
||
|
Any additional keyword arguments are delegated to
|
||
|
:class:`~matplotlib.collections.LineCollection`
|
||
|
"""
|
||
|
def calc_arrow(uvw, angle=15):
|
||
|
"""
|
||
|
To calculate the arrow head. uvw should be a unit vector.
|
||
|
We normalize it here:
|
||
|
"""
|
||
|
# get unit direction vector perpendicular to (u, v, w)
|
||
|
norm = np.linalg.norm(uvw[:2])
|
||
|
if norm > 0:
|
||
|
x = uvw[1] / norm
|
||
|
y = -uvw[0] / norm
|
||
|
else:
|
||
|
x, y = 0, 1
|
||
|
|
||
|
# compute the two arrowhead direction unit vectors
|
||
|
ra = math.radians(angle)
|
||
|
c = math.cos(ra)
|
||
|
s = math.sin(ra)
|
||
|
|
||
|
# construct the rotation matrices
|
||
|
Rpos = np.array([[c+(x**2)*(1-c), x*y*(1-c), y*s],
|
||
|
[y*x*(1-c), c+(y**2)*(1-c), -x*s],
|
||
|
[-y*s, x*s, c]])
|
||
|
# opposite rotation negates all the sin terms
|
||
|
Rneg = Rpos.copy()
|
||
|
Rneg[[0, 1, 2, 2], [2, 2, 0, 1]] = \
|
||
|
-Rneg[[0, 1, 2, 2], [2, 2, 0, 1]]
|
||
|
|
||
|
# multiply them to get the rotated vector
|
||
|
return Rpos.dot(uvw), Rneg.dot(uvw)
|
||
|
|
||
|
had_data = self.has_data()
|
||
|
|
||
|
# handle args
|
||
|
argi = 6
|
||
|
if len(args) < argi:
|
||
|
raise ValueError('Wrong number of arguments. Expected %d got %d' %
|
||
|
(argi, len(args)))
|
||
|
|
||
|
# first 6 arguments are X, Y, Z, U, V, W
|
||
|
input_args = args[:argi]
|
||
|
|
||
|
# extract the masks, if any
|
||
|
masks = [k.mask for k in input_args
|
||
|
if isinstance(k, np.ma.MaskedArray)]
|
||
|
# broadcast to match the shape
|
||
|
bcast = np.broadcast_arrays(*input_args, *masks)
|
||
|
input_args = bcast[:argi]
|
||
|
masks = bcast[argi:]
|
||
|
if masks:
|
||
|
# combine the masks into one
|
||
|
mask = reduce(np.logical_or, masks)
|
||
|
# put mask on and compress
|
||
|
input_args = [np.ma.array(k, mask=mask).compressed()
|
||
|
for k in input_args]
|
||
|
else:
|
||
|
input_args = [np.ravel(k) for k in input_args]
|
||
|
|
||
|
if any(len(v) == 0 for v in input_args):
|
||
|
# No quivers, so just make an empty collection and return early
|
||
|
linec = art3d.Line3DCollection([], *args[argi:], **kwargs)
|
||
|
self.add_collection(linec)
|
||
|
return linec
|
||
|
|
||
|
shaft_dt = np.array([0., length], dtype=float)
|
||
|
arrow_dt = shaft_dt * arrow_length_ratio
|
||
|
|
||
|
cbook._check_in_list(['tail', 'middle', 'tip'], pivot=pivot)
|
||
|
if pivot == 'tail':
|
||
|
shaft_dt -= length
|
||
|
elif pivot == 'middle':
|
||
|
shaft_dt -= length / 2
|
||
|
|
||
|
XYZ = np.column_stack(input_args[:3])
|
||
|
UVW = np.column_stack(input_args[3:argi]).astype(float)
|
||
|
|
||
|
# Normalize rows of UVW
|
||
|
norm = np.linalg.norm(UVW, axis=1)
|
||
|
|
||
|
# If any row of UVW is all zeros, don't make a quiver for it
|
||
|
mask = norm > 0
|
||
|
XYZ = XYZ[mask]
|
||
|
if normalize:
|
||
|
UVW = UVW[mask] / norm[mask].reshape((-1, 1))
|
||
|
else:
|
||
|
UVW = UVW[mask]
|
||
|
|
||
|
if len(XYZ) > 0:
|
||
|
# compute the shaft lines all at once with an outer product
|
||
|
shafts = (XYZ - np.multiply.outer(shaft_dt, UVW)).swapaxes(0, 1)
|
||
|
# compute head direction vectors, n heads x 2 sides x 3 dimensions
|
||
|
head_dirs = np.array([calc_arrow(d) for d in UVW])
|
||
|
# compute all head lines at once, starting from the shaft ends
|
||
|
heads = shafts[:, :1] - np.multiply.outer(arrow_dt, head_dirs)
|
||
|
# stack left and right head lines together
|
||
|
heads.shape = (len(arrow_dt), -1, 3)
|
||
|
# transpose to get a list of lines
|
||
|
heads = heads.swapaxes(0, 1)
|
||
|
|
||
|
lines = [*shafts, *heads]
|
||
|
else:
|
||
|
lines = []
|
||
|
|
||
|
linec = art3d.Line3DCollection(lines, *args[argi:], **kwargs)
|
||
|
self.add_collection(linec)
|
||
|
|
||
|
self.auto_scale_xyz(XYZ[:, 0], XYZ[:, 1], XYZ[:, 2], had_data)
|
||
|
|
||
|
return linec
|
||
|
|
||
|
quiver3D = quiver
|
||
|
|
||
|
def voxels(self, *args, facecolors=None, edgecolors=None, shade=True,
|
||
|
lightsource=None, **kwargs):
|
||
|
"""
|
||
|
ax.voxels([x, y, z,] /, filled, facecolors=None, edgecolors=None, \
|
||
|
**kwargs)
|
||
|
|
||
|
Plot a set of filled voxels
|
||
|
|
||
|
All voxels are plotted as 1x1x1 cubes on the axis, with
|
||
|
``filled[0, 0, 0]`` placed with its lower corner at the origin.
|
||
|
Occluded faces are not plotted.
|
||
|
|
||
|
.. versionadded:: 2.1
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
filled : 3D np.array of bool
|
||
|
A 3d array of values, with truthy values indicating which voxels
|
||
|
to fill
|
||
|
|
||
|
x, y, z : 3D np.array, optional
|
||
|
The coordinates of the corners of the voxels. This should broadcast
|
||
|
to a shape one larger in every dimension than the shape of
|
||
|
`filled`. These can be used to plot non-cubic voxels.
|
||
|
|
||
|
If not specified, defaults to increasing integers along each axis,
|
||
|
like those returned by :func:`~numpy.indices`.
|
||
|
As indicated by the ``/`` in the function signature, these
|
||
|
arguments can only be passed positionally.
|
||
|
|
||
|
facecolors, edgecolors : array-like, optional
|
||
|
The color to draw the faces and edges of the voxels. Can only be
|
||
|
passed as keyword arguments.
|
||
|
This parameter can be:
|
||
|
|
||
|
- A single color value, to color all voxels the same color. This
|
||
|
can be either a string, or a 1D rgb/rgba array
|
||
|
- ``None``, the default, to use a single color for the faces, and
|
||
|
the style default for the edges.
|
||
|
- A 3D ndarray of color names, with each item the color for the
|
||
|
corresponding voxel. The size must match the voxels.
|
||
|
- A 4D ndarray of rgb/rgba data, with the components along the
|
||
|
last axis.
|
||
|
|
||
|
shade : bool
|
||
|
Whether to shade the facecolors. Defaults to True. Shading is
|
||
|
always disabled when *cmap* is specified.
|
||
|
|
||
|
.. versionadded:: 3.1
|
||
|
|
||
|
lightsource : `~matplotlib.colors.LightSource`
|
||
|
The lightsource to use when *shade* is True.
|
||
|
|
||
|
.. versionadded:: 3.1
|
||
|
|
||
|
**kwargs
|
||
|
Additional keyword arguments to pass onto
|
||
|
:func:`~mpl_toolkits.mplot3d.art3d.Poly3DCollection`
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
faces : dict
|
||
|
A dictionary indexed by coordinate, where ``faces[i, j, k]`` is a
|
||
|
`Poly3DCollection` of the faces drawn for the voxel
|
||
|
``filled[i, j, k]``. If no faces were drawn for a given voxel,
|
||
|
either because it was not asked to be drawn, or it is fully
|
||
|
occluded, then ``(i, j, k) not in faces``.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
.. plot:: gallery/mplot3d/voxels.py
|
||
|
.. plot:: gallery/mplot3d/voxels_rgb.py
|
||
|
.. plot:: gallery/mplot3d/voxels_torus.py
|
||
|
.. plot:: gallery/mplot3d/voxels_numpy_logo.py
|
||
|
"""
|
||
|
|
||
|
# work out which signature we should be using, and use it to parse
|
||
|
# the arguments. Name must be voxels for the correct error message
|
||
|
if len(args) >= 3:
|
||
|
# underscores indicate position only
|
||
|
def voxels(__x, __y, __z, filled, **kwargs):
|
||
|
return (__x, __y, __z), filled, kwargs
|
||
|
else:
|
||
|
def voxels(filled, **kwargs):
|
||
|
return None, filled, kwargs
|
||
|
|
||
|
xyz, filled, kwargs = voxels(*args, **kwargs)
|
||
|
|
||
|
# check dimensions
|
||
|
if filled.ndim != 3:
|
||
|
raise ValueError("Argument filled must be 3-dimensional")
|
||
|
size = np.array(filled.shape, dtype=np.intp)
|
||
|
|
||
|
# check xyz coordinates, which are one larger than the filled shape
|
||
|
coord_shape = tuple(size + 1)
|
||
|
if xyz is None:
|
||
|
x, y, z = np.indices(coord_shape)
|
||
|
else:
|
||
|
x, y, z = (np.broadcast_to(c, coord_shape) for c in xyz)
|
||
|
|
||
|
def _broadcast_color_arg(color, name):
|
||
|
if np.ndim(color) in (0, 1):
|
||
|
# single color, like "red" or [1, 0, 0]
|
||
|
return np.broadcast_to(color, filled.shape + np.shape(color))
|
||
|
elif np.ndim(color) in (3, 4):
|
||
|
# 3D array of strings, or 4D array with last axis rgb
|
||
|
if np.shape(color)[:3] != filled.shape:
|
||
|
raise ValueError(
|
||
|
"When multidimensional, {} must match the shape of "
|
||
|
"filled".format(name))
|
||
|
return color
|
||
|
else:
|
||
|
raise ValueError("Invalid {} argument".format(name))
|
||
|
|
||
|
# broadcast and default on facecolors
|
||
|
if facecolors is None:
|
||
|
facecolors = self._get_patches_for_fill.get_next_color()
|
||
|
facecolors = _broadcast_color_arg(facecolors, 'facecolors')
|
||
|
|
||
|
# broadcast but no default on edgecolors
|
||
|
edgecolors = _broadcast_color_arg(edgecolors, 'edgecolors')
|
||
|
|
||
|
# scale to the full array, even if the data is only in the center
|
||
|
self.auto_scale_xyz(x, y, z)
|
||
|
|
||
|
# points lying on corners of a square
|
||
|
square = np.array([
|
||
|
[0, 0, 0],
|
||
|
[1, 0, 0],
|
||
|
[1, 1, 0],
|
||
|
[0, 1, 0],
|
||
|
], dtype=np.intp)
|
||
|
|
||
|
voxel_faces = defaultdict(list)
|
||
|
|
||
|
def permutation_matrices(n):
|
||
|
"""Generator of cyclic permutation matrices."""
|
||
|
mat = np.eye(n, dtype=np.intp)
|
||
|
for i in range(n):
|
||
|
yield mat
|
||
|
mat = np.roll(mat, 1, axis=0)
|
||
|
|
||
|
# iterate over each of the YZ, ZX, and XY orientations, finding faces
|
||
|
# to render
|
||
|
for permute in permutation_matrices(3):
|
||
|
# find the set of ranges to iterate over
|
||
|
pc, qc, rc = permute.T.dot(size)
|
||
|
pinds = np.arange(pc)
|
||
|
qinds = np.arange(qc)
|
||
|
rinds = np.arange(rc)
|
||
|
|
||
|
square_rot_pos = square.dot(permute.T)
|
||
|
square_rot_neg = square_rot_pos[::-1]
|
||
|
|
||
|
# iterate within the current plane
|
||
|
for p in pinds:
|
||
|
for q in qinds:
|
||
|
# iterate perpendicularly to the current plane, handling
|
||
|
# boundaries. We only draw faces between a voxel and an
|
||
|
# empty space, to avoid drawing internal faces.
|
||
|
|
||
|
# draw lower faces
|
||
|
p0 = permute.dot([p, q, 0])
|
||
|
i0 = tuple(p0)
|
||
|
if filled[i0]:
|
||
|
voxel_faces[i0].append(p0 + square_rot_neg)
|
||
|
|
||
|
# draw middle faces
|
||
|
for r1, r2 in zip(rinds[:-1], rinds[1:]):
|
||
|
p1 = permute.dot([p, q, r1])
|
||
|
p2 = permute.dot([p, q, r2])
|
||
|
|
||
|
i1 = tuple(p1)
|
||
|
i2 = tuple(p2)
|
||
|
|
||
|
if filled[i1] and not filled[i2]:
|
||
|
voxel_faces[i1].append(p2 + square_rot_pos)
|
||
|
elif not filled[i1] and filled[i2]:
|
||
|
voxel_faces[i2].append(p2 + square_rot_neg)
|
||
|
|
||
|
# draw upper faces
|
||
|
pk = permute.dot([p, q, rc-1])
|
||
|
pk2 = permute.dot([p, q, rc])
|
||
|
ik = tuple(pk)
|
||
|
if filled[ik]:
|
||
|
voxel_faces[ik].append(pk2 + square_rot_pos)
|
||
|
|
||
|
# iterate over the faces, and generate a Poly3DCollection for each
|
||
|
# voxel
|
||
|
polygons = {}
|
||
|
for coord, faces_inds in voxel_faces.items():
|
||
|
# convert indices into 3D positions
|
||
|
if xyz is None:
|
||
|
faces = faces_inds
|
||
|
else:
|
||
|
faces = []
|
||
|
for face_inds in faces_inds:
|
||
|
ind = face_inds[:, 0], face_inds[:, 1], face_inds[:, 2]
|
||
|
face = np.empty(face_inds.shape)
|
||
|
face[:, 0] = x[ind]
|
||
|
face[:, 1] = y[ind]
|
||
|
face[:, 2] = z[ind]
|
||
|
faces.append(face)
|
||
|
|
||
|
# shade the faces
|
||
|
facecolor = facecolors[coord]
|
||
|
edgecolor = edgecolors[coord]
|
||
|
if shade:
|
||
|
normals = self._generate_normals(faces)
|
||
|
facecolor = self._shade_colors(facecolor, normals, lightsource)
|
||
|
if edgecolor is not None:
|
||
|
edgecolor = self._shade_colors(
|
||
|
edgecolor, normals, lightsource
|
||
|
)
|
||
|
|
||
|
poly = art3d.Poly3DCollection(
|
||
|
faces, facecolors=facecolor, edgecolors=edgecolor, **kwargs)
|
||
|
self.add_collection3d(poly)
|
||
|
polygons[coord] = poly
|
||
|
|
||
|
return polygons
|
||
|
|
||
|
|
||
|
def get_test_data(delta=0.05):
|
||
|
'''
|
||
|
Return a tuple X, Y, Z with a test data set.
|
||
|
'''
|
||
|
x = y = np.arange(-3.0, 3.0, delta)
|
||
|
X, Y = np.meshgrid(x, y)
|
||
|
|
||
|
Z1 = np.exp(-(X**2 + Y**2) / 2) / (2 * np.pi)
|
||
|
Z2 = (np.exp(-(((X - 1) / 1.5)**2 + ((Y - 1) / 0.5)**2) / 2) /
|
||
|
(2 * np.pi * 0.5 * 1.5))
|
||
|
Z = Z2 - Z1
|
||
|
|
||
|
X = X * 10
|
||
|
Y = Y * 10
|
||
|
Z = Z * 500
|
||
|
return X, Y, Z
|