241 lines
6.5 KiB
FortranFixed
241 lines
6.5 KiB
FortranFixed
|
c banded5x5.f
|
||
|
c
|
||
|
c This Fortran library contains implementations of the
|
||
|
c differential equation
|
||
|
c dy/dt = A*y
|
||
|
c where A is a 5x5 banded matrix (see below for the actual
|
||
|
c values). These functions will be used to test
|
||
|
c scipy.integrate.odeint.
|
||
|
c
|
||
|
c The idea is to solve the system two ways: pure Fortran, and
|
||
|
c using odeint. The "pure Fortran" solver is implemented in
|
||
|
c the subroutine banded5x5_solve below. It calls LSODA to
|
||
|
c solve the system.
|
||
|
c
|
||
|
c To solve the same system using odeint, the functions in this
|
||
|
c file are given a python wrapper using f2py. Then the code
|
||
|
c in test_odeint_jac.py uses the wrapper to implement the
|
||
|
c equation and Jacobian functions required by odeint. Because
|
||
|
c those functions ultimately call the Fortran routines defined
|
||
|
c in this file, the two method (pure Fortran and odeint) should
|
||
|
c produce exactly the same results. (That's assuming floating
|
||
|
c point calculations are deterministic, which can be an
|
||
|
c incorrect assumption.) If we simply re-implemented the
|
||
|
c equation and Jacobian functions using just python and numpy,
|
||
|
c the floating point calculations would not be performed in
|
||
|
c the same sequence as in the Fortran code, and we would obtain
|
||
|
c different answers. The answer for either method would be
|
||
|
c numerically "correct", but the errors would be different,
|
||
|
c and the counts of function and Jacobian evaluations would
|
||
|
c likely be different.
|
||
|
c
|
||
|
block data jacobian
|
||
|
implicit none
|
||
|
|
||
|
double precision bands
|
||
|
dimension bands(4,5)
|
||
|
common /jac/ bands
|
||
|
|
||
|
c The data for a banded Jacobian stored in packed banded
|
||
|
c format. The full Jacobian is
|
||
|
c
|
||
|
c -1, 0.25, 0, 0, 0
|
||
|
c 0.25, -5, 0.25, 0, 0
|
||
|
c 0.10, 0.25, -25, 0.25, 0
|
||
|
c 0, 0.10, 0.25, -125, 0.25
|
||
|
c 0, 0, 0.10, 0.25, -625
|
||
|
c
|
||
|
c The columns in the following layout of numbers are
|
||
|
c the upper diagonal, main diagonal and two lower diagonals
|
||
|
c (i.e. each row in the layout is a column of the packed
|
||
|
c banded Jacobian). The values 0.00D0 are in the "don't
|
||
|
c care" positions.
|
||
|
|
||
|
data bands/
|
||
|
+ 0.00D0, -1.0D0, 0.25D0, 0.10D0,
|
||
|
+ 0.25D0, -5.0D0, 0.25D0, 0.10D0,
|
||
|
+ 0.25D0, -25.0D0, 0.25D0, 0.10D0,
|
||
|
+ 0.25D0, -125.0D0, 0.25D0, 0.00D0,
|
||
|
+ 0.25D0, -625.0D0, 0.00D0, 0.00D0
|
||
|
+ /
|
||
|
|
||
|
end
|
||
|
|
||
|
subroutine getbands(jac)
|
||
|
double precision jac
|
||
|
dimension jac(4, 5)
|
||
|
cf2py intent(out) jac
|
||
|
|
||
|
double precision bands
|
||
|
dimension bands(4,5)
|
||
|
common /jac/ bands
|
||
|
|
||
|
integer i, j
|
||
|
do 5 i = 1, 4
|
||
|
do 5 j = 1, 5
|
||
|
jac(i, j) = bands(i, j)
|
||
|
5 continue
|
||
|
|
||
|
return
|
||
|
end
|
||
|
|
||
|
c
|
||
|
c Differential equations, right-hand-side
|
||
|
c
|
||
|
subroutine banded5x5(n, t, y, f)
|
||
|
implicit none
|
||
|
integer n
|
||
|
double precision t, y, f
|
||
|
dimension y(n), f(n)
|
||
|
|
||
|
double precision bands
|
||
|
dimension bands(4,5)
|
||
|
common /jac/ bands
|
||
|
|
||
|
f(1) = bands(2,1)*y(1) + bands(1,2)*y(2)
|
||
|
f(2) = bands(3,1)*y(1) + bands(2,2)*y(2) + bands(1,3)*y(3)
|
||
|
f(3) = bands(4,1)*y(1) + bands(3,2)*y(2) + bands(2,3)*y(3)
|
||
|
+ + bands(1,4)*y(4)
|
||
|
f(4) = bands(4,2)*y(2) + bands(3,3)*y(3) + bands(2,4)*y(4)
|
||
|
+ + bands(1,5)*y(5)
|
||
|
f(5) = bands(4,3)*y(3) + bands(3,4)*y(4) + bands(2,5)*y(5)
|
||
|
|
||
|
return
|
||
|
end
|
||
|
|
||
|
c
|
||
|
c Jacobian
|
||
|
c
|
||
|
c The subroutine assumes that the full Jacobian is to be computed.
|
||
|
c ml and mu are ignored, and nrowpd is assumed to be n.
|
||
|
c
|
||
|
subroutine banded5x5_jac(n, t, y, ml, mu, jac, nrowpd)
|
||
|
implicit none
|
||
|
integer n, ml, mu, nrowpd
|
||
|
double precision t, y, jac
|
||
|
dimension y(n), jac(nrowpd, n)
|
||
|
|
||
|
integer i, j
|
||
|
|
||
|
double precision bands
|
||
|
dimension bands(4,5)
|
||
|
common /jac/ bands
|
||
|
|
||
|
do 15 i = 1, 4
|
||
|
do 15 j = 1, 5
|
||
|
if ((i - j) .gt. 0) then
|
||
|
jac(i - j, j) = bands(i, j)
|
||
|
end if
|
||
|
15 continue
|
||
|
|
||
|
return
|
||
|
end
|
||
|
|
||
|
c
|
||
|
c Banded Jacobian
|
||
|
c
|
||
|
c ml = 2, mu = 1
|
||
|
c
|
||
|
subroutine banded5x5_bjac(n, t, y, ml, mu, bjac, nrowpd)
|
||
|
implicit none
|
||
|
integer n, ml, mu, nrowpd
|
||
|
double precision t, y, bjac
|
||
|
dimension y(5), bjac(nrowpd, n)
|
||
|
|
||
|
integer i, j
|
||
|
|
||
|
double precision bands
|
||
|
dimension bands(4,5)
|
||
|
common /jac/ bands
|
||
|
|
||
|
do 20 i = 1, 4
|
||
|
do 20 j = 1, 5
|
||
|
bjac(i, j) = bands(i, j)
|
||
|
20 continue
|
||
|
|
||
|
return
|
||
|
end
|
||
|
|
||
|
|
||
|
subroutine banded5x5_solve(y, nsteps, dt, jt, nst, nfe, nje)
|
||
|
|
||
|
c jt is the Jacobian type:
|
||
|
c jt = 1 Use the full Jacobian.
|
||
|
c jt = 4 Use the banded Jacobian.
|
||
|
c nst, nfe and nje are outputs:
|
||
|
c nst: Total number of internal steps
|
||
|
c nfe: Total number of function (i.e. right-hand-side)
|
||
|
c evaluations
|
||
|
c nje: Total number of Jacobian evaluations
|
||
|
|
||
|
implicit none
|
||
|
|
||
|
external banded5x5
|
||
|
external banded5x5_jac
|
||
|
external banded5x5_bjac
|
||
|
external LSODA
|
||
|
|
||
|
c Arguments...
|
||
|
double precision y, dt
|
||
|
integer nsteps, jt, nst, nfe, nje
|
||
|
cf2py intent(inout) y
|
||
|
cf2py intent(in) nsteps, dt, jt
|
||
|
cf2py intent(out) nst, nfe, nje
|
||
|
|
||
|
c Local variables...
|
||
|
double precision atol, rtol, t, tout, rwork
|
||
|
integer iwork
|
||
|
dimension y(5), rwork(500), iwork(500)
|
||
|
integer neq, i
|
||
|
integer itol, iopt, itask, istate, lrw, liw
|
||
|
|
||
|
c Common block...
|
||
|
double precision jacband
|
||
|
dimension jacband(4,5)
|
||
|
common /jac/ jacband
|
||
|
|
||
|
c --- t range ---
|
||
|
t = 0.0D0
|
||
|
|
||
|
c --- Solver tolerances ---
|
||
|
rtol = 1.0D-11
|
||
|
atol = 1.0D-13
|
||
|
itol = 1
|
||
|
|
||
|
c --- Other LSODA parameters ---
|
||
|
neq = 5
|
||
|
itask = 1
|
||
|
istate = 1
|
||
|
iopt = 0
|
||
|
iwork(1) = 2
|
||
|
iwork(2) = 1
|
||
|
lrw = 500
|
||
|
liw = 500
|
||
|
|
||
|
c --- Call LSODA in a loop to compute the solution ---
|
||
|
do 40 i = 1, nsteps
|
||
|
tout = i*dt
|
||
|
if (jt .eq. 1) then
|
||
|
call LSODA(banded5x5, neq, y, t, tout,
|
||
|
& itol, rtol, atol, itask, istate, iopt,
|
||
|
& rwork, lrw, iwork, liw,
|
||
|
& banded5x5_jac, jt)
|
||
|
else
|
||
|
call LSODA(banded5x5, neq, y, t, tout,
|
||
|
& itol, rtol, atol, itask, istate, iopt,
|
||
|
& rwork, lrw, iwork, liw,
|
||
|
& banded5x5_bjac, jt)
|
||
|
end if
|
||
|
40 if (istate .lt. 0) goto 80
|
||
|
|
||
|
nst = iwork(11)
|
||
|
nfe = iwork(12)
|
||
|
nje = iwork(13)
|
||
|
|
||
|
return
|
||
|
|
||
|
80 write (6,89) istate
|
||
|
89 format(1X,"Error: istate=",I3)
|
||
|
return
|
||
|
end
|