hub/venv/lib/python3.7/site-packages/scipy/linalg/_sketches.py

169 lines
5.8 KiB
Python
Raw Normal View History

""" Sketching-based Matrix Computations """
# Author: Jordi Montes <jomsdev@gmail.com>
# August 28, 2017
from __future__ import division, print_function, absolute_import
import numpy as np
from scipy._lib._util import check_random_state
from scipy.sparse import csc_matrix
__all__ = ['clarkson_woodruff_transform']
def cwt_matrix(n_rows, n_columns, seed=None):
r""""
Generate a matrix S which represents a Clarkson-Woodruff transform.
Given the desired size of matrix, the method returns a matrix S of size
(n_rows, n_columns) where each column has all the entries set to 0
except for one position which has been randomly set to +1 or -1 with
equal probability.
Parameters
----------
n_rows: int
Number of rows of S
n_columns: int
Number of columns of S
seed : None or int or `numpy.random.mtrand.RandomState` instance, optional
This parameter defines the ``RandomState`` object to use for drawing
random variates.
If None (or ``np.random``), the global ``np.random`` state is used.
If integer, it is used to seed the local ``RandomState`` instance.
Default is None.
Returns
-------
S : (n_rows, n_columns) csc_matrix
The returned matrix has ``n_columns`` nonzero entries.
Notes
-----
Given a matrix A, with probability at least 9/10,
.. math:: \|SA\| = (1 \pm \epsilon)\|A\|
Where the error epsilon is related to the size of S.
"""
rng = check_random_state(seed)
rows = rng.randint(0, n_rows, n_columns)
cols = np.arange(n_columns+1)
signs = rng.choice([1, -1], n_columns)
S = csc_matrix((signs, rows, cols),shape=(n_rows, n_columns))
return S
def clarkson_woodruff_transform(input_matrix, sketch_size, seed=None):
r""""
Applies a Clarkson-Woodruff Transform/sketch to the input matrix.
Given an input_matrix ``A`` of size ``(n, d)``, compute a matrix ``A'`` of
size (sketch_size, d) so that
.. math:: \|Ax\| \approx \|A'x\|
with high probability via the Clarkson-Woodruff Transform, otherwise
known as the CountSketch matrix.
Parameters
----------
input_matrix: array_like
Input matrix, of shape ``(n, d)``.
sketch_size: int
Number of rows for the sketch.
seed : None or int or `numpy.random.mtrand.RandomState` instance, optional
This parameter defines the ``RandomState`` object to use for drawing
random variates.
If None (or ``np.random``), the global ``np.random`` state is used.
If integer, it is used to seed the local ``RandomState`` instance.
Default is None.
Returns
-------
A' : array_like
Sketch of the input matrix ``A``, of size ``(sketch_size, d)``.
Notes
-----
To make the statement
.. math:: \|Ax\| \approx \|A'x\|
precise, observe the following result which is adapted from the
proof of Theorem 14 of [2]_ via Markov's Inequality. If we have
a sketch size ``sketch_size=k`` which is at least
.. math:: k \geq \frac{2}{\epsilon^2\delta}
Then for any fixed vector ``x``,
.. math:: \|Ax\| = (1\pm\epsilon)\|A'x\|
with probability at least one minus delta.
This implementation takes advantage of sparsity: computing
a sketch takes time proportional to ``A.nnz``. Data ``A`` which
is in ``scipy.sparse.csc_matrix`` format gives the quickest
computation time for sparse input.
>>> from scipy import linalg
>>> from scipy import sparse
>>> n_rows, n_columns, density, sketch_n_rows = 15000, 100, 0.01, 200
>>> A = sparse.rand(n_rows, n_columns, density=density, format='csc')
>>> B = sparse.rand(n_rows, n_columns, density=density, format='csr')
>>> C = sparse.rand(n_rows, n_columns, density=density, format='coo')
>>> D = np.random.randn(n_rows, n_columns)
>>> SA = linalg.clarkson_woodruff_transform(A, sketch_n_rows) # fastest
>>> SB = linalg.clarkson_woodruff_transform(B, sketch_n_rows) # fast
>>> SC = linalg.clarkson_woodruff_transform(C, sketch_n_rows) # slower
>>> SD = linalg.clarkson_woodruff_transform(D, sketch_n_rows) # slowest
That said, this method does perform well on dense inputs, just slower
on a relative scale.
Examples
--------
Given a big dense matrix ``A``:
>>> from scipy import linalg
>>> n_rows, n_columns, sketch_n_rows = 15000, 100, 200
>>> A = np.random.randn(n_rows, n_columns)
>>> sketch = linalg.clarkson_woodruff_transform(A, sketch_n_rows)
>>> sketch.shape
(200, 100)
>>> norm_A = np.linalg.norm(A)
>>> norm_sketch = np.linalg.norm(sketch)
Now with high probability, the true norm ``norm_A`` is close to
the sketched norm ``norm_sketch`` in absolute value.
Similarly, applying our sketch preserves the solution to a linear
regression of :math:`\min \|Ax - b\|`.
>>> from scipy import linalg
>>> n_rows, n_columns, sketch_n_rows = 15000, 100, 200
>>> A = np.random.randn(n_rows, n_columns)
>>> b = np.random.randn(n_rows)
>>> x = np.linalg.lstsq(A, b, rcond=None)
>>> Ab = np.hstack((A, b.reshape(-1,1)))
>>> SAb = linalg.clarkson_woodruff_transform(Ab, sketch_n_rows)
>>> SA, Sb = SAb[:,:-1], SAb[:,-1]
>>> x_sketched = np.linalg.lstsq(SA, Sb, rcond=None)
As with the matrix norm example, ``np.linalg.norm(A @ x - b)``
is close to ``np.linalg.norm(A @ x_sketched - b)`` with high
probability.
References
----------
.. [1] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and
regression in input sparsity time. In STOC, 2013.
.. [2] David P. Woodruff. Sketching as a tool for numerical linear algebra.
In Foundations and Trends in Theoretical Computer Science, 2014.
"""
S = cwt_matrix(sketch_size, input_matrix.shape[0], seed)
return S.dot(input_matrix)