1376 lines
49 KiB
Python
1376 lines
49 KiB
Python
|
from __future__ import division, print_function, absolute_import
|
||
|
|
||
|
import warnings
|
||
|
from collections import namedtuple
|
||
|
import operator
|
||
|
from . import _zeros
|
||
|
import numpy as np
|
||
|
|
||
|
|
||
|
_iter = 100
|
||
|
_xtol = 2e-12
|
||
|
_rtol = 4 * np.finfo(float).eps
|
||
|
|
||
|
__all__ = ['newton', 'bisect', 'ridder', 'brentq', 'brenth', 'toms748',
|
||
|
'RootResults']
|
||
|
|
||
|
# Must agree with CONVERGED, SIGNERR, CONVERR, ... in zeros.h
|
||
|
_ECONVERGED = 0
|
||
|
_ESIGNERR = -1
|
||
|
_ECONVERR = -2
|
||
|
_EVALUEERR = -3
|
||
|
_EINPROGRESS = 1
|
||
|
|
||
|
CONVERGED = 'converged'
|
||
|
SIGNERR = 'sign error'
|
||
|
CONVERR = 'convergence error'
|
||
|
VALUEERR = 'value error'
|
||
|
INPROGRESS = 'No error'
|
||
|
|
||
|
|
||
|
flag_map = {_ECONVERGED: CONVERGED, _ESIGNERR: SIGNERR, _ECONVERR: CONVERR,
|
||
|
_EVALUEERR: VALUEERR, _EINPROGRESS: INPROGRESS}
|
||
|
|
||
|
|
||
|
class RootResults(object):
|
||
|
"""Represents the root finding result.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
root : float
|
||
|
Estimated root location.
|
||
|
iterations : int
|
||
|
Number of iterations needed to find the root.
|
||
|
function_calls : int
|
||
|
Number of times the function was called.
|
||
|
converged : bool
|
||
|
True if the routine converged.
|
||
|
flag : str
|
||
|
Description of the cause of termination.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, root, iterations, function_calls, flag):
|
||
|
self.root = root
|
||
|
self.iterations = iterations
|
||
|
self.function_calls = function_calls
|
||
|
self.converged = flag == _ECONVERGED
|
||
|
self.flag = None
|
||
|
try:
|
||
|
self.flag = flag_map[flag]
|
||
|
except KeyError:
|
||
|
self.flag = 'unknown error %d' % (flag,)
|
||
|
|
||
|
def __repr__(self):
|
||
|
attrs = ['converged', 'flag', 'function_calls',
|
||
|
'iterations', 'root']
|
||
|
m = max(map(len, attrs)) + 1
|
||
|
return '\n'.join([a.rjust(m) + ': ' + repr(getattr(self, a))
|
||
|
for a in attrs])
|
||
|
|
||
|
|
||
|
def results_c(full_output, r):
|
||
|
if full_output:
|
||
|
x, funcalls, iterations, flag = r
|
||
|
results = RootResults(root=x,
|
||
|
iterations=iterations,
|
||
|
function_calls=funcalls,
|
||
|
flag=flag)
|
||
|
return x, results
|
||
|
else:
|
||
|
return r
|
||
|
|
||
|
|
||
|
def _results_select(full_output, r):
|
||
|
"""Select from a tuple of (root, funccalls, iterations, flag)"""
|
||
|
x, funcalls, iterations, flag = r
|
||
|
if full_output:
|
||
|
results = RootResults(root=x,
|
||
|
iterations=iterations,
|
||
|
function_calls=funcalls,
|
||
|
flag=flag)
|
||
|
return x, results
|
||
|
return x
|
||
|
|
||
|
|
||
|
def newton(func, x0, fprime=None, args=(), tol=1.48e-8, maxiter=50,
|
||
|
fprime2=None, x1=None, rtol=0.0,
|
||
|
full_output=False, disp=True):
|
||
|
"""
|
||
|
Find a zero of a real or complex function using the Newton-Raphson
|
||
|
(or secant or Halley's) method.
|
||
|
|
||
|
Find a zero of the function `func` given a nearby starting point `x0`.
|
||
|
The Newton-Raphson method is used if the derivative `fprime` of `func`
|
||
|
is provided, otherwise the secant method is used. If the second order
|
||
|
derivative `fprime2` of `func` is also provided, then Halley's method is
|
||
|
used.
|
||
|
|
||
|
If `x0` is a sequence with more than one item, then `newton` returns an
|
||
|
array, and `func` must be vectorized and return a sequence or array of the
|
||
|
same shape as its first argument. If `fprime` or `fprime2` is given then
|
||
|
its return must also have the same shape.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func : callable
|
||
|
The function whose zero is wanted. It must be a function of a
|
||
|
single variable of the form ``f(x,a,b,c...)``, where ``a,b,c...``
|
||
|
are extra arguments that can be passed in the `args` parameter.
|
||
|
x0 : float, sequence, or ndarray
|
||
|
An initial estimate of the zero that should be somewhere near the
|
||
|
actual zero. If not scalar, then `func` must be vectorized and return
|
||
|
a sequence or array of the same shape as its first argument.
|
||
|
fprime : callable, optional
|
||
|
The derivative of the function when available and convenient. If it
|
||
|
is None (default), then the secant method is used.
|
||
|
args : tuple, optional
|
||
|
Extra arguments to be used in the function call.
|
||
|
tol : float, optional
|
||
|
The allowable error of the zero value. If `func` is complex-valued,
|
||
|
a larger `tol` is recommended as both the real and imaginary parts
|
||
|
of `x` contribute to ``|x - x0|``.
|
||
|
maxiter : int, optional
|
||
|
Maximum number of iterations.
|
||
|
fprime2 : callable, optional
|
||
|
The second order derivative of the function when available and
|
||
|
convenient. If it is None (default), then the normal Newton-Raphson
|
||
|
or the secant method is used. If it is not None, then Halley's method
|
||
|
is used.
|
||
|
x1 : float, optional
|
||
|
Another estimate of the zero that should be somewhere near the
|
||
|
actual zero. Used if `fprime` is not provided.
|
||
|
rtol : float, optional
|
||
|
Tolerance (relative) for termination.
|
||
|
full_output : bool, optional
|
||
|
If `full_output` is False (default), the root is returned.
|
||
|
If True and `x0` is scalar, the return value is ``(x, r)``, where ``x``
|
||
|
is the root and ``r`` is a `RootResults` object.
|
||
|
If True and `x0` is non-scalar, the return value is ``(x, converged,
|
||
|
zero_der)`` (see Returns section for details).
|
||
|
disp : bool, optional
|
||
|
If True, raise a RuntimeError if the algorithm didn't converge, with
|
||
|
the error message containing the number of iterations and current
|
||
|
function value. Otherwise the convergence status is recorded in a
|
||
|
`RootResults` return object.
|
||
|
Ignored if `x0` is not scalar.
|
||
|
*Note: this has little to do with displaying, however
|
||
|
the `disp` keyword cannot be renamed for backwards compatibility.*
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
root : float, sequence, or ndarray
|
||
|
Estimated location where function is zero.
|
||
|
r : `RootResults`, optional
|
||
|
Present if ``full_output=True`` and `x0` is scalar.
|
||
|
Object containing information about the convergence. In particular,
|
||
|
``r.converged`` is True if the routine converged.
|
||
|
converged : ndarray of bool, optional
|
||
|
Present if ``full_output=True`` and `x0` is non-scalar.
|
||
|
For vector functions, indicates which elements converged successfully.
|
||
|
zero_der : ndarray of bool, optional
|
||
|
Present if ``full_output=True`` and `x0` is non-scalar.
|
||
|
For vector functions, indicates which elements had a zero derivative.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
brentq, brenth, ridder, bisect
|
||
|
fsolve : find zeros in n dimensions.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The convergence rate of the Newton-Raphson method is quadratic,
|
||
|
the Halley method is cubic, and the secant method is
|
||
|
sub-quadratic. This means that if the function is well behaved
|
||
|
the actual error in the estimated zero after the n-th iteration
|
||
|
is approximately the square (cube for Halley) of the error
|
||
|
after the (n-1)-th step. However, the stopping criterion used
|
||
|
here is the step size and there is no guarantee that a zero
|
||
|
has been found. Consequently the result should be verified.
|
||
|
Safer algorithms are brentq, brenth, ridder, and bisect,
|
||
|
but they all require that the root first be bracketed in an
|
||
|
interval where the function changes sign. The brentq algorithm
|
||
|
is recommended for general use in one dimensional problems
|
||
|
when such an interval has been found.
|
||
|
|
||
|
When `newton` is used with arrays, it is best suited for the following
|
||
|
types of problems:
|
||
|
|
||
|
* The initial guesses, `x0`, are all relatively the same distance from
|
||
|
the roots.
|
||
|
* Some or all of the extra arguments, `args`, are also arrays so that a
|
||
|
class of similar problems can be solved together.
|
||
|
* The size of the initial guesses, `x0`, is larger than O(100) elements.
|
||
|
Otherwise, a naive loop may perform as well or better than a vector.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy import optimize
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
>>> def f(x):
|
||
|
... return (x**3 - 1) # only one real root at x = 1
|
||
|
|
||
|
``fprime`` is not provided, use the secant method:
|
||
|
|
||
|
>>> root = optimize.newton(f, 1.5)
|
||
|
>>> root
|
||
|
1.0000000000000016
|
||
|
>>> root = optimize.newton(f, 1.5, fprime2=lambda x: 6 * x)
|
||
|
>>> root
|
||
|
1.0000000000000016
|
||
|
|
||
|
Only ``fprime`` is provided, use the Newton-Raphson method:
|
||
|
|
||
|
>>> root = optimize.newton(f, 1.5, fprime=lambda x: 3 * x**2)
|
||
|
>>> root
|
||
|
1.0
|
||
|
|
||
|
Both ``fprime2`` and ``fprime`` are provided, use Halley's method:
|
||
|
|
||
|
>>> root = optimize.newton(f, 1.5, fprime=lambda x: 3 * x**2,
|
||
|
... fprime2=lambda x: 6 * x)
|
||
|
>>> root
|
||
|
1.0
|
||
|
|
||
|
When we want to find zeros for a set of related starting values and/or
|
||
|
function parameters, we can provide both of those as an array of inputs:
|
||
|
|
||
|
>>> f = lambda x, a: x**3 - a
|
||
|
>>> fder = lambda x, a: 3 * x**2
|
||
|
>>> np.random.seed(4321)
|
||
|
>>> x = np.random.randn(100)
|
||
|
>>> a = np.arange(-50, 50)
|
||
|
>>> vec_res = optimize.newton(f, x, fprime=fder, args=(a, ))
|
||
|
|
||
|
The above is the equivalent of solving for each value in ``(x, a)``
|
||
|
separately in a for-loop, just faster:
|
||
|
|
||
|
>>> loop_res = [optimize.newton(f, x0, fprime=fder, args=(a0,))
|
||
|
... for x0, a0 in zip(x, a)]
|
||
|
>>> np.allclose(vec_res, loop_res)
|
||
|
True
|
||
|
|
||
|
Plot the results found for all values of ``a``:
|
||
|
|
||
|
>>> analytical_result = np.sign(a) * np.abs(a)**(1/3)
|
||
|
>>> fig = plt.figure()
|
||
|
>>> ax = fig.add_subplot(111)
|
||
|
>>> ax.plot(a, analytical_result, 'o')
|
||
|
>>> ax.plot(a, vec_res, '.')
|
||
|
>>> ax.set_xlabel('$a$')
|
||
|
>>> ax.set_ylabel('$x$ where $f(x, a)=0$')
|
||
|
>>> plt.show()
|
||
|
|
||
|
"""
|
||
|
if tol <= 0:
|
||
|
raise ValueError("tol too small (%g <= 0)" % tol)
|
||
|
maxiter = operator.index(maxiter)
|
||
|
if maxiter < 1:
|
||
|
raise ValueError("maxiter must be greater than 0")
|
||
|
if np.size(x0) > 1:
|
||
|
return _array_newton(func, x0, fprime, args, tol, maxiter, fprime2,
|
||
|
full_output)
|
||
|
|
||
|
# Convert to float (don't use float(x0); this works also for complex x0)
|
||
|
p0 = 1.0 * x0
|
||
|
funcalls = 0
|
||
|
if fprime is not None:
|
||
|
# Newton-Raphson method
|
||
|
for itr in range(maxiter):
|
||
|
# first evaluate fval
|
||
|
fval = func(p0, *args)
|
||
|
funcalls += 1
|
||
|
# If fval is 0, a root has been found, then terminate
|
||
|
if fval == 0:
|
||
|
return _results_select(
|
||
|
full_output, (p0, funcalls, itr, _ECONVERGED))
|
||
|
fder = fprime(p0, *args)
|
||
|
funcalls += 1
|
||
|
if fder == 0:
|
||
|
msg = "Derivative was zero."
|
||
|
if disp:
|
||
|
msg += (
|
||
|
" Failed to converge after %d iterations, value is %s."
|
||
|
% (itr + 1, p0))
|
||
|
raise RuntimeError(msg)
|
||
|
warnings.warn(msg, RuntimeWarning)
|
||
|
return _results_select(
|
||
|
full_output, (p0, funcalls, itr + 1, _ECONVERR))
|
||
|
newton_step = fval / fder
|
||
|
if fprime2:
|
||
|
fder2 = fprime2(p0, *args)
|
||
|
funcalls += 1
|
||
|
# Halley's method:
|
||
|
# newton_step /= (1.0 - 0.5 * newton_step * fder2 / fder)
|
||
|
# Only do it if denominator stays close enough to 1
|
||
|
# Rationale: If 1-adj < 0, then Halley sends x in the
|
||
|
# opposite direction to Newton. Doesn't happen if x is close
|
||
|
# enough to root.
|
||
|
adj = newton_step * fder2 / fder / 2
|
||
|
if np.abs(adj) < 1:
|
||
|
newton_step /= 1.0 - adj
|
||
|
p = p0 - newton_step
|
||
|
if np.isclose(p, p0, rtol=rtol, atol=tol):
|
||
|
return _results_select(
|
||
|
full_output, (p, funcalls, itr + 1, _ECONVERGED))
|
||
|
p0 = p
|
||
|
else:
|
||
|
# Secant method
|
||
|
if x1 is not None:
|
||
|
if x1 == x0:
|
||
|
raise ValueError("x1 and x0 must be different")
|
||
|
p1 = x1
|
||
|
else:
|
||
|
eps = 1e-4
|
||
|
p1 = x0 * (1 + eps)
|
||
|
p1 += (eps if p1 >= 0 else -eps)
|
||
|
q0 = func(p0, *args)
|
||
|
funcalls += 1
|
||
|
q1 = func(p1, *args)
|
||
|
funcalls += 1
|
||
|
if abs(q1) < abs(q0):
|
||
|
p0, p1, q0, q1 = p1, p0, q1, q0
|
||
|
for itr in range(maxiter):
|
||
|
if q1 == q0:
|
||
|
if p1 != p0:
|
||
|
msg = "Tolerance of %s reached." % (p1 - p0)
|
||
|
if disp:
|
||
|
msg += (
|
||
|
" Failed to converge after %d iterations, value is %s."
|
||
|
% (itr + 1, p1))
|
||
|
raise RuntimeError(msg)
|
||
|
warnings.warn(msg, RuntimeWarning)
|
||
|
p = (p1 + p0) / 2.0
|
||
|
return _results_select(
|
||
|
full_output, (p, funcalls, itr + 1, _ECONVERGED))
|
||
|
else:
|
||
|
if abs(q1) > abs(q0):
|
||
|
p = (-q0 / q1 * p1 + p0) / (1 - q0 / q1)
|
||
|
else:
|
||
|
p = (-q1 / q0 * p0 + p1) / (1 - q1 / q0)
|
||
|
if np.isclose(p, p1, rtol=rtol, atol=tol):
|
||
|
return _results_select(
|
||
|
full_output, (p, funcalls, itr + 1, _ECONVERGED))
|
||
|
p0, q0 = p1, q1
|
||
|
p1 = p
|
||
|
q1 = func(p1, *args)
|
||
|
funcalls += 1
|
||
|
|
||
|
if disp:
|
||
|
msg = ("Failed to converge after %d iterations, value is %s."
|
||
|
% (itr + 1, p))
|
||
|
raise RuntimeError(msg)
|
||
|
|
||
|
return _results_select(full_output, (p, funcalls, itr + 1, _ECONVERR))
|
||
|
|
||
|
|
||
|
def _array_newton(func, x0, fprime, args, tol, maxiter, fprime2, full_output):
|
||
|
"""
|
||
|
A vectorized version of Newton, Halley, and secant methods for arrays.
|
||
|
|
||
|
Do not use this method directly. This method is called from `newton`
|
||
|
when ``np.size(x0) > 1`` is ``True``. For docstring, see `newton`.
|
||
|
"""
|
||
|
# Explicitly copy `x0` as `p` will be modified inplace, but, the
|
||
|
# user's array should not be altered.
|
||
|
try:
|
||
|
p = np.array(x0, copy=True, dtype=float)
|
||
|
except TypeError:
|
||
|
# can't convert complex to float
|
||
|
p = np.array(x0, copy=True)
|
||
|
|
||
|
failures = np.ones_like(p, dtype=bool)
|
||
|
nz_der = np.ones_like(failures)
|
||
|
if fprime is not None:
|
||
|
# Newton-Raphson method
|
||
|
for iteration in range(maxiter):
|
||
|
# first evaluate fval
|
||
|
fval = np.asarray(func(p, *args))
|
||
|
# If all fval are 0, all roots have been found, then terminate
|
||
|
if not fval.any():
|
||
|
failures = fval.astype(bool)
|
||
|
break
|
||
|
fder = np.asarray(fprime(p, *args))
|
||
|
nz_der = (fder != 0)
|
||
|
# stop iterating if all derivatives are zero
|
||
|
if not nz_der.any():
|
||
|
break
|
||
|
# Newton step
|
||
|
dp = fval[nz_der] / fder[nz_der]
|
||
|
if fprime2 is not None:
|
||
|
fder2 = np.asarray(fprime2(p, *args))
|
||
|
dp = dp / (1.0 - 0.5 * dp * fder2[nz_der] / fder[nz_der])
|
||
|
# only update nonzero derivatives
|
||
|
p[nz_der] -= dp
|
||
|
failures[nz_der] = np.abs(dp) >= tol # items not yet converged
|
||
|
# stop iterating if there aren't any failures, not incl zero der
|
||
|
if not failures[nz_der].any():
|
||
|
break
|
||
|
else:
|
||
|
# Secant method
|
||
|
dx = np.finfo(float).eps**0.33
|
||
|
p1 = p * (1 + dx) + np.where(p >= 0, dx, -dx)
|
||
|
q0 = np.asarray(func(p, *args))
|
||
|
q1 = np.asarray(func(p1, *args))
|
||
|
active = np.ones_like(p, dtype=bool)
|
||
|
for iteration in range(maxiter):
|
||
|
nz_der = (q1 != q0)
|
||
|
# stop iterating if all derivatives are zero
|
||
|
if not nz_der.any():
|
||
|
p = (p1 + p) / 2.0
|
||
|
break
|
||
|
# Secant Step
|
||
|
dp = (q1 * (p1 - p))[nz_der] / (q1 - q0)[nz_der]
|
||
|
# only update nonzero derivatives
|
||
|
p[nz_der] = p1[nz_der] - dp
|
||
|
active_zero_der = ~nz_der & active
|
||
|
p[active_zero_der] = (p1 + p)[active_zero_der] / 2.0
|
||
|
active &= nz_der # don't assign zero derivatives again
|
||
|
failures[nz_der] = np.abs(dp) >= tol # not yet converged
|
||
|
# stop iterating if there aren't any failures, not incl zero der
|
||
|
if not failures[nz_der].any():
|
||
|
break
|
||
|
p1, p = p, p1
|
||
|
q0 = q1
|
||
|
q1 = np.asarray(func(p1, *args))
|
||
|
|
||
|
zero_der = ~nz_der & failures # don't include converged with zero-ders
|
||
|
if zero_der.any():
|
||
|
# Secant warnings
|
||
|
if fprime is None:
|
||
|
nonzero_dp = (p1 != p)
|
||
|
# non-zero dp, but infinite newton step
|
||
|
zero_der_nz_dp = (zero_der & nonzero_dp)
|
||
|
if zero_der_nz_dp.any():
|
||
|
rms = np.sqrt(
|
||
|
sum((p1[zero_der_nz_dp] - p[zero_der_nz_dp]) ** 2)
|
||
|
)
|
||
|
warnings.warn(
|
||
|
'RMS of {:g} reached'.format(rms), RuntimeWarning)
|
||
|
# Newton or Halley warnings
|
||
|
else:
|
||
|
all_or_some = 'all' if zero_der.all() else 'some'
|
||
|
msg = '{:s} derivatives were zero'.format(all_or_some)
|
||
|
warnings.warn(msg, RuntimeWarning)
|
||
|
elif failures.any():
|
||
|
all_or_some = 'all' if failures.all() else 'some'
|
||
|
msg = '{0:s} failed to converge after {1:d} iterations'.format(
|
||
|
all_or_some, maxiter
|
||
|
)
|
||
|
if failures.all():
|
||
|
raise RuntimeError(msg)
|
||
|
warnings.warn(msg, RuntimeWarning)
|
||
|
|
||
|
if full_output:
|
||
|
result = namedtuple('result', ('root', 'converged', 'zero_der'))
|
||
|
p = result(p, ~failures, zero_der)
|
||
|
|
||
|
return p
|
||
|
|
||
|
|
||
|
def bisect(f, a, b, args=(),
|
||
|
xtol=_xtol, rtol=_rtol, maxiter=_iter,
|
||
|
full_output=False, disp=True):
|
||
|
"""
|
||
|
Find root of a function within an interval using bisection.
|
||
|
|
||
|
Basic bisection routine to find a zero of the function `f` between the
|
||
|
arguments `a` and `b`. `f(a)` and `f(b)` cannot have the same signs.
|
||
|
Slow but sure.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
f : function
|
||
|
Python function returning a number. `f` must be continuous, and
|
||
|
f(a) and f(b) must have opposite signs.
|
||
|
a : scalar
|
||
|
One end of the bracketing interval [a,b].
|
||
|
b : scalar
|
||
|
The other end of the bracketing interval [a,b].
|
||
|
xtol : number, optional
|
||
|
The computed root ``x0`` will satisfy ``np.allclose(x, x0,
|
||
|
atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The
|
||
|
parameter must be nonnegative.
|
||
|
rtol : number, optional
|
||
|
The computed root ``x0`` will satisfy ``np.allclose(x, x0,
|
||
|
atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The
|
||
|
parameter cannot be smaller than its default value of
|
||
|
``4*np.finfo(float).eps``.
|
||
|
maxiter : int, optional
|
||
|
if convergence is not achieved in `maxiter` iterations, an error is
|
||
|
raised. Must be >= 0.
|
||
|
args : tuple, optional
|
||
|
containing extra arguments for the function `f`.
|
||
|
`f` is called by ``apply(f, (x)+args)``.
|
||
|
full_output : bool, optional
|
||
|
If `full_output` is False, the root is returned. If `full_output` is
|
||
|
True, the return value is ``(x, r)``, where x is the root, and r is
|
||
|
a `RootResults` object.
|
||
|
disp : bool, optional
|
||
|
If True, raise RuntimeError if the algorithm didn't converge.
|
||
|
Otherwise the convergence status is recorded in a `RootResults`
|
||
|
return object.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
x0 : float
|
||
|
Zero of `f` between `a` and `b`.
|
||
|
r : `RootResults` (present if ``full_output = True``)
|
||
|
Object containing information about the convergence. In particular,
|
||
|
``r.converged`` is True if the routine converged.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
>>> def f(x):
|
||
|
... return (x**2 - 1)
|
||
|
|
||
|
>>> from scipy import optimize
|
||
|
|
||
|
>>> root = optimize.bisect(f, 0, 2)
|
||
|
>>> root
|
||
|
1.0
|
||
|
|
||
|
>>> root = optimize.bisect(f, -2, 0)
|
||
|
>>> root
|
||
|
-1.0
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
brentq, brenth, bisect, newton
|
||
|
fixed_point : scalar fixed-point finder
|
||
|
fsolve : n-dimensional root-finding
|
||
|
|
||
|
"""
|
||
|
if not isinstance(args, tuple):
|
||
|
args = (args,)
|
||
|
maxiter = operator.index(maxiter)
|
||
|
if xtol <= 0:
|
||
|
raise ValueError("xtol too small (%g <= 0)" % xtol)
|
||
|
if rtol < _rtol:
|
||
|
raise ValueError("rtol too small (%g < %g)" % (rtol, _rtol))
|
||
|
r = _zeros._bisect(f, a, b, xtol, rtol, maxiter, args, full_output, disp)
|
||
|
return results_c(full_output, r)
|
||
|
|
||
|
|
||
|
def ridder(f, a, b, args=(),
|
||
|
xtol=_xtol, rtol=_rtol, maxiter=_iter,
|
||
|
full_output=False, disp=True):
|
||
|
"""
|
||
|
Find a root of a function in an interval using Ridder's method.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
f : function
|
||
|
Python function returning a number. f must be continuous, and f(a) and
|
||
|
f(b) must have opposite signs.
|
||
|
a : scalar
|
||
|
One end of the bracketing interval [a,b].
|
||
|
b : scalar
|
||
|
The other end of the bracketing interval [a,b].
|
||
|
xtol : number, optional
|
||
|
The computed root ``x0`` will satisfy ``np.allclose(x, x0,
|
||
|
atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The
|
||
|
parameter must be nonnegative.
|
||
|
rtol : number, optional
|
||
|
The computed root ``x0`` will satisfy ``np.allclose(x, x0,
|
||
|
atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The
|
||
|
parameter cannot be smaller than its default value of
|
||
|
``4*np.finfo(float).eps``.
|
||
|
maxiter : int, optional
|
||
|
if convergence is not achieved in `maxiter` iterations, an error is
|
||
|
raised. Must be >= 0.
|
||
|
args : tuple, optional
|
||
|
containing extra arguments for the function `f`.
|
||
|
`f` is called by ``apply(f, (x)+args)``.
|
||
|
full_output : bool, optional
|
||
|
If `full_output` is False, the root is returned. If `full_output` is
|
||
|
True, the return value is ``(x, r)``, where `x` is the root, and `r` is
|
||
|
a `RootResults` object.
|
||
|
disp : bool, optional
|
||
|
If True, raise RuntimeError if the algorithm didn't converge.
|
||
|
Otherwise the convergence status is recorded in any `RootResults`
|
||
|
return object.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
x0 : float
|
||
|
Zero of `f` between `a` and `b`.
|
||
|
r : `RootResults` (present if ``full_output = True``)
|
||
|
Object containing information about the convergence.
|
||
|
In particular, ``r.converged`` is True if the routine converged.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
brentq, brenth, bisect, newton : one-dimensional root-finding
|
||
|
fixed_point : scalar fixed-point finder
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Uses [Ridders1979]_ method to find a zero of the function `f` between the
|
||
|
arguments `a` and `b`. Ridders' method is faster than bisection, but not
|
||
|
generally as fast as the Brent routines. [Ridders1979]_ provides the
|
||
|
classic description and source of the algorithm. A description can also be
|
||
|
found in any recent edition of Numerical Recipes.
|
||
|
|
||
|
The routine used here diverges slightly from standard presentations in
|
||
|
order to be a bit more careful of tolerance.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [Ridders1979]
|
||
|
Ridders, C. F. J. "A New Algorithm for Computing a
|
||
|
Single Root of a Real Continuous Function."
|
||
|
IEEE Trans. Circuits Systems 26, 979-980, 1979.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
>>> def f(x):
|
||
|
... return (x**2 - 1)
|
||
|
|
||
|
>>> from scipy import optimize
|
||
|
|
||
|
>>> root = optimize.ridder(f, 0, 2)
|
||
|
>>> root
|
||
|
1.0
|
||
|
|
||
|
>>> root = optimize.ridder(f, -2, 0)
|
||
|
>>> root
|
||
|
-1.0
|
||
|
"""
|
||
|
if not isinstance(args, tuple):
|
||
|
args = (args,)
|
||
|
maxiter = operator.index(maxiter)
|
||
|
if xtol <= 0:
|
||
|
raise ValueError("xtol too small (%g <= 0)" % xtol)
|
||
|
if rtol < _rtol:
|
||
|
raise ValueError("rtol too small (%g < %g)" % (rtol, _rtol))
|
||
|
r = _zeros._ridder(f, a, b, xtol, rtol, maxiter, args, full_output, disp)
|
||
|
return results_c(full_output, r)
|
||
|
|
||
|
|
||
|
def brentq(f, a, b, args=(),
|
||
|
xtol=_xtol, rtol=_rtol, maxiter=_iter,
|
||
|
full_output=False, disp=True):
|
||
|
"""
|
||
|
Find a root of a function in a bracketing interval using Brent's method.
|
||
|
|
||
|
Uses the classic Brent's method to find a zero of the function `f` on
|
||
|
the sign changing interval [a , b]. Generally considered the best of the
|
||
|
rootfinding routines here. It is a safe version of the secant method that
|
||
|
uses inverse quadratic extrapolation. Brent's method combines root
|
||
|
bracketing, interval bisection, and inverse quadratic interpolation. It is
|
||
|
sometimes known as the van Wijngaarden-Dekker-Brent method. Brent (1973)
|
||
|
claims convergence is guaranteed for functions computable within [a,b].
|
||
|
|
||
|
[Brent1973]_ provides the classic description of the algorithm. Another
|
||
|
description can be found in a recent edition of Numerical Recipes, including
|
||
|
[PressEtal1992]_. A third description is at
|
||
|
http://mathworld.wolfram.com/BrentsMethod.html. It should be easy to
|
||
|
understand the algorithm just by reading our code. Our code diverges a bit
|
||
|
from standard presentations: we choose a different formula for the
|
||
|
extrapolation step.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
f : function
|
||
|
Python function returning a number. The function :math:`f`
|
||
|
must be continuous, and :math:`f(a)` and :math:`f(b)` must
|
||
|
have opposite signs.
|
||
|
a : scalar
|
||
|
One end of the bracketing interval :math:`[a, b]`.
|
||
|
b : scalar
|
||
|
The other end of the bracketing interval :math:`[a, b]`.
|
||
|
xtol : number, optional
|
||
|
The computed root ``x0`` will satisfy ``np.allclose(x, x0,
|
||
|
atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The
|
||
|
parameter must be nonnegative. For nice functions, Brent's
|
||
|
method will often satisfy the above condition with ``xtol/2``
|
||
|
and ``rtol/2``. [Brent1973]_
|
||
|
rtol : number, optional
|
||
|
The computed root ``x0`` will satisfy ``np.allclose(x, x0,
|
||
|
atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The
|
||
|
parameter cannot be smaller than its default value of
|
||
|
``4*np.finfo(float).eps``. For nice functions, Brent's
|
||
|
method will often satisfy the above condition with ``xtol/2``
|
||
|
and ``rtol/2``. [Brent1973]_
|
||
|
maxiter : int, optional
|
||
|
if convergence is not achieved in `maxiter` iterations, an error is
|
||
|
raised. Must be >= 0.
|
||
|
args : tuple, optional
|
||
|
containing extra arguments for the function `f`.
|
||
|
`f` is called by ``apply(f, (x)+args)``.
|
||
|
full_output : bool, optional
|
||
|
If `full_output` is False, the root is returned. If `full_output` is
|
||
|
True, the return value is ``(x, r)``, where `x` is the root, and `r` is
|
||
|
a `RootResults` object.
|
||
|
disp : bool, optional
|
||
|
If True, raise RuntimeError if the algorithm didn't converge.
|
||
|
Otherwise the convergence status is recorded in any `RootResults`
|
||
|
return object.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
x0 : float
|
||
|
Zero of `f` between `a` and `b`.
|
||
|
r : `RootResults` (present if ``full_output = True``)
|
||
|
Object containing information about the convergence. In particular,
|
||
|
``r.converged`` is True if the routine converged.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
`f` must be continuous. f(a) and f(b) must have opposite signs.
|
||
|
|
||
|
Related functions fall into several classes:
|
||
|
|
||
|
multivariate local optimizers
|
||
|
`fmin`, `fmin_powell`, `fmin_cg`, `fmin_bfgs`, `fmin_ncg`
|
||
|
nonlinear least squares minimizer
|
||
|
`leastsq`
|
||
|
constrained multivariate optimizers
|
||
|
`fmin_l_bfgs_b`, `fmin_tnc`, `fmin_cobyla`
|
||
|
global optimizers
|
||
|
`basinhopping`, `brute`, `differential_evolution`
|
||
|
local scalar minimizers
|
||
|
`fminbound`, `brent`, `golden`, `bracket`
|
||
|
n-dimensional root-finding
|
||
|
`fsolve`
|
||
|
one-dimensional root-finding
|
||
|
`brenth`, `ridder`, `bisect`, `newton`
|
||
|
scalar fixed-point finder
|
||
|
`fixed_point`
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [Brent1973]
|
||
|
Brent, R. P.,
|
||
|
*Algorithms for Minimization Without Derivatives*.
|
||
|
Englewood Cliffs, NJ: Prentice-Hall, 1973. Ch. 3-4.
|
||
|
|
||
|
.. [PressEtal1992]
|
||
|
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T.
|
||
|
*Numerical Recipes in FORTRAN: The Art of Scientific Computing*, 2nd ed.
|
||
|
Cambridge, England: Cambridge University Press, pp. 352-355, 1992.
|
||
|
Section 9.3: "Van Wijngaarden-Dekker-Brent Method."
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> def f(x):
|
||
|
... return (x**2 - 1)
|
||
|
|
||
|
>>> from scipy import optimize
|
||
|
|
||
|
>>> root = optimize.brentq(f, -2, 0)
|
||
|
>>> root
|
||
|
-1.0
|
||
|
|
||
|
>>> root = optimize.brentq(f, 0, 2)
|
||
|
>>> root
|
||
|
1.0
|
||
|
"""
|
||
|
if not isinstance(args, tuple):
|
||
|
args = (args,)
|
||
|
maxiter = operator.index(maxiter)
|
||
|
if xtol <= 0:
|
||
|
raise ValueError("xtol too small (%g <= 0)" % xtol)
|
||
|
if rtol < _rtol:
|
||
|
raise ValueError("rtol too small (%g < %g)" % (rtol, _rtol))
|
||
|
r = _zeros._brentq(f, a, b, xtol, rtol, maxiter, args, full_output, disp)
|
||
|
return results_c(full_output, r)
|
||
|
|
||
|
|
||
|
def brenth(f, a, b, args=(),
|
||
|
xtol=_xtol, rtol=_rtol, maxiter=_iter,
|
||
|
full_output=False, disp=True):
|
||
|
"""Find a root of a function in a bracketing interval using Brent's
|
||
|
method with hyperbolic extrapolation.
|
||
|
|
||
|
A variation on the classic Brent routine to find a zero of the function f
|
||
|
between the arguments a and b that uses hyperbolic extrapolation instead of
|
||
|
inverse quadratic extrapolation. There was a paper back in the 1980's ...
|
||
|
f(a) and f(b) cannot have the same signs. Generally on a par with the
|
||
|
brent routine, but not as heavily tested. It is a safe version of the
|
||
|
secant method that uses hyperbolic extrapolation. The version here is by
|
||
|
Chuck Harris.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
f : function
|
||
|
Python function returning a number. f must be continuous, and f(a) and
|
||
|
f(b) must have opposite signs.
|
||
|
a : scalar
|
||
|
One end of the bracketing interval [a,b].
|
||
|
b : scalar
|
||
|
The other end of the bracketing interval [a,b].
|
||
|
xtol : number, optional
|
||
|
The computed root ``x0`` will satisfy ``np.allclose(x, x0,
|
||
|
atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The
|
||
|
parameter must be nonnegative. As with `brentq`, for nice
|
||
|
functions the method will often satisfy the above condition
|
||
|
with ``xtol/2`` and ``rtol/2``.
|
||
|
rtol : number, optional
|
||
|
The computed root ``x0`` will satisfy ``np.allclose(x, x0,
|
||
|
atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The
|
||
|
parameter cannot be smaller than its default value of
|
||
|
``4*np.finfo(float).eps``. As with `brentq`, for nice functions
|
||
|
the method will often satisfy the above condition with
|
||
|
``xtol/2`` and ``rtol/2``.
|
||
|
maxiter : int, optional
|
||
|
if convergence is not achieved in `maxiter` iterations, an error is
|
||
|
raised. Must be >= 0.
|
||
|
args : tuple, optional
|
||
|
containing extra arguments for the function `f`.
|
||
|
`f` is called by ``apply(f, (x)+args)``.
|
||
|
full_output : bool, optional
|
||
|
If `full_output` is False, the root is returned. If `full_output` is
|
||
|
True, the return value is ``(x, r)``, where `x` is the root, and `r` is
|
||
|
a `RootResults` object.
|
||
|
disp : bool, optional
|
||
|
If True, raise RuntimeError if the algorithm didn't converge.
|
||
|
Otherwise the convergence status is recorded in any `RootResults`
|
||
|
return object.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
x0 : float
|
||
|
Zero of `f` between `a` and `b`.
|
||
|
r : `RootResults` (present if ``full_output = True``)
|
||
|
Object containing information about the convergence. In particular,
|
||
|
``r.converged`` is True if the routine converged.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> def f(x):
|
||
|
... return (x**2 - 1)
|
||
|
|
||
|
>>> from scipy import optimize
|
||
|
|
||
|
>>> root = optimize.brenth(f, -2, 0)
|
||
|
>>> root
|
||
|
-1.0
|
||
|
|
||
|
>>> root = optimize.brenth(f, 0, 2)
|
||
|
>>> root
|
||
|
1.0
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
fmin, fmin_powell, fmin_cg,
|
||
|
fmin_bfgs, fmin_ncg : multivariate local optimizers
|
||
|
|
||
|
leastsq : nonlinear least squares minimizer
|
||
|
|
||
|
fmin_l_bfgs_b, fmin_tnc, fmin_cobyla : constrained multivariate optimizers
|
||
|
|
||
|
basinhopping, differential_evolution, brute : global optimizers
|
||
|
|
||
|
fminbound, brent, golden, bracket : local scalar minimizers
|
||
|
|
||
|
fsolve : n-dimensional root-finding
|
||
|
|
||
|
brentq, brenth, ridder, bisect, newton : one-dimensional root-finding
|
||
|
|
||
|
fixed_point : scalar fixed-point finder
|
||
|
|
||
|
"""
|
||
|
if not isinstance(args, tuple):
|
||
|
args = (args,)
|
||
|
maxiter = operator.index(maxiter)
|
||
|
if xtol <= 0:
|
||
|
raise ValueError("xtol too small (%g <= 0)" % xtol)
|
||
|
if rtol < _rtol:
|
||
|
raise ValueError("rtol too small (%g < %g)" % (rtol, _rtol))
|
||
|
r = _zeros._brenth(f, a, b, xtol, rtol, maxiter, args, full_output, disp)
|
||
|
return results_c(full_output, r)
|
||
|
|
||
|
|
||
|
################################
|
||
|
# TOMS "Algorithm 748: Enclosing Zeros of Continuous Functions", by
|
||
|
# Alefeld, G. E. and Potra, F. A. and Shi, Yixun,
|
||
|
# See [1]
|
||
|
|
||
|
|
||
|
def _within_tolerance(x, y, rtol, atol):
|
||
|
diff = np.abs(x - y)
|
||
|
z = np.abs(y)
|
||
|
result = (diff <= (atol + rtol * z))
|
||
|
return result
|
||
|
|
||
|
|
||
|
def _notclose(fs, rtol=_rtol, atol=_xtol):
|
||
|
# Ensure not None, not 0, all finite, and not very close to each other
|
||
|
notclosefvals = (
|
||
|
all(fs) and all(np.isfinite(fs)) and
|
||
|
not any(any(np.isclose(_f, fs[i + 1:], rtol=rtol, atol=atol))
|
||
|
for i, _f in enumerate(fs[:-1])))
|
||
|
return notclosefvals
|
||
|
|
||
|
|
||
|
def _secant(xvals, fvals):
|
||
|
"""Perform a secant step, taking a little care"""
|
||
|
# Secant has many "mathematically" equivalent formulations
|
||
|
# x2 = x0 - (x1 - x0)/(f1 - f0) * f0
|
||
|
# = x1 - (x1 - x0)/(f1 - f0) * f1
|
||
|
# = (-x1 * f0 + x0 * f1) / (f1 - f0)
|
||
|
# = (-f0 / f1 * x1 + x0) / (1 - f0 / f1)
|
||
|
# = (-f1 / f0 * x0 + x1) / (1 - f1 / f0)
|
||
|
x0, x1 = xvals[:2]
|
||
|
f0, f1 = fvals[:2]
|
||
|
if f0 == f1:
|
||
|
return np.nan
|
||
|
if np.abs(f1) > np.abs(f0):
|
||
|
x2 = (-f0 / f1 * x1 + x0) / (1 - f0 / f1)
|
||
|
else:
|
||
|
x2 = (-f1 / f0 * x0 + x1) / (1 - f1 / f0)
|
||
|
return x2
|
||
|
|
||
|
|
||
|
def _update_bracket(ab, fab, c, fc):
|
||
|
"""Update a bracket given (c, fc), return the discarded endpoints."""
|
||
|
fa, fb = fab
|
||
|
idx = (0 if np.sign(fa) * np.sign(fc) > 0 else 1)
|
||
|
rx, rfx = ab[idx], fab[idx]
|
||
|
fab[idx] = fc
|
||
|
ab[idx] = c
|
||
|
return rx, rfx
|
||
|
|
||
|
|
||
|
def _compute_divided_differences(xvals, fvals, N=None, full=True,
|
||
|
forward=True):
|
||
|
"""Return a matrix of divided differences for the xvals, fvals pairs
|
||
|
|
||
|
DD[i, j] = f[x_{i-j}, ..., x_i] for 0 <= j <= i
|
||
|
|
||
|
If full is False, just return the main diagonal(or last row):
|
||
|
f[a], f[a, b] and f[a, b, c].
|
||
|
If forward is False, return f[c], f[b, c], f[a, b, c]."""
|
||
|
if full:
|
||
|
if forward:
|
||
|
xvals = np.asarray(xvals)
|
||
|
else:
|
||
|
xvals = np.array(xvals)[::-1]
|
||
|
M = len(xvals)
|
||
|
N = M if N is None else min(N, M)
|
||
|
DD = np.zeros([M, N])
|
||
|
DD[:, 0] = fvals[:]
|
||
|
for i in range(1, N):
|
||
|
DD[i:, i] = (np.diff(DD[i - 1:, i - 1]) /
|
||
|
(xvals[i:] - xvals[:M - i]))
|
||
|
return DD
|
||
|
|
||
|
xvals = np.asarray(xvals)
|
||
|
dd = np.array(fvals)
|
||
|
row = np.array(fvals)
|
||
|
idx2Use = (0 if forward else -1)
|
||
|
dd[0] = fvals[idx2Use]
|
||
|
for i in range(1, len(xvals)):
|
||
|
denom = xvals[i:i + len(row) - 1] - xvals[:len(row) - 1]
|
||
|
row = np.diff(row)[:] / denom
|
||
|
dd[i] = row[idx2Use]
|
||
|
return dd
|
||
|
|
||
|
|
||
|
def _interpolated_poly(xvals, fvals, x):
|
||
|
"""Compute p(x) for the polynomial passing through the specified locations.
|
||
|
|
||
|
Use Neville's algorithm to compute p(x) where p is the minimal degree
|
||
|
polynomial passing through the points xvals, fvals"""
|
||
|
xvals = np.asarray(xvals)
|
||
|
N = len(xvals)
|
||
|
Q = np.zeros([N, N])
|
||
|
D = np.zeros([N, N])
|
||
|
Q[:, 0] = fvals[:]
|
||
|
D[:, 0] = fvals[:]
|
||
|
for k in range(1, N):
|
||
|
alpha = D[k:, k - 1] - Q[k - 1:N - 1, k - 1]
|
||
|
diffik = xvals[0:N - k] - xvals[k:N]
|
||
|
Q[k:, k] = (xvals[k:] - x) / diffik * alpha
|
||
|
D[k:, k] = (xvals[:N - k] - x) / diffik * alpha
|
||
|
# Expect Q[-1, 1:] to be small relative to Q[-1, 0] as x approaches a root
|
||
|
return np.sum(Q[-1, 1:]) + Q[-1, 0]
|
||
|
|
||
|
|
||
|
def _inverse_poly_zero(a, b, c, d, fa, fb, fc, fd):
|
||
|
"""Inverse cubic interpolation f-values -> x-values
|
||
|
|
||
|
Given four points (fa, a), (fb, b), (fc, c), (fd, d) with
|
||
|
fa, fb, fc, fd all distinct, find poly IP(y) through the 4 points
|
||
|
and compute x=IP(0).
|
||
|
"""
|
||
|
return _interpolated_poly([fa, fb, fc, fd], [a, b, c, d], 0)
|
||
|
|
||
|
|
||
|
def _newton_quadratic(ab, fab, d, fd, k):
|
||
|
"""Apply Newton-Raphson like steps, using divided differences to approximate f'
|
||
|
|
||
|
ab is a real interval [a, b] containing a root,
|
||
|
fab holds the real values of f(a), f(b)
|
||
|
d is a real number outside [ab, b]
|
||
|
k is the number of steps to apply
|
||
|
"""
|
||
|
a, b = ab
|
||
|
fa, fb = fab
|
||
|
_, B, A = _compute_divided_differences([a, b, d], [fa, fb, fd],
|
||
|
forward=True, full=False)
|
||
|
|
||
|
# _P is the quadratic polynomial through the 3 points
|
||
|
def _P(x):
|
||
|
# Horner evaluation of fa + B * (x - a) + A * (x - a) * (x - b)
|
||
|
return (A * (x - b) + B) * (x - a) + fa
|
||
|
|
||
|
if A == 0:
|
||
|
r = a - fa / B
|
||
|
else:
|
||
|
r = (a if np.sign(A) * np.sign(fa) > 0 else b)
|
||
|
# Apply k Newton-Raphson steps to _P(x), starting from x=r
|
||
|
for i in range(k):
|
||
|
r1 = r - _P(r) / (B + A * (2 * r - a - b))
|
||
|
if not (ab[0] < r1 < ab[1]):
|
||
|
if (ab[0] < r < ab[1]):
|
||
|
return r
|
||
|
r = sum(ab) / 2.0
|
||
|
break
|
||
|
r = r1
|
||
|
|
||
|
return r
|
||
|
|
||
|
|
||
|
class TOMS748Solver(object):
|
||
|
"""Solve f(x, *args) == 0 using Algorithm748 of Alefeld, Potro & Shi.
|
||
|
"""
|
||
|
_MU = 0.5
|
||
|
_K_MIN = 1
|
||
|
_K_MAX = 100 # A very high value for real usage. Expect 1, 2, maybe 3.
|
||
|
|
||
|
def __init__(self):
|
||
|
self.f = None
|
||
|
self.args = None
|
||
|
self.function_calls = 0
|
||
|
self.iterations = 0
|
||
|
self.k = 2
|
||
|
# ab=[a,b] is a global interval containing a root
|
||
|
self.ab = [np.nan, np.nan]
|
||
|
# fab is function values at a, b
|
||
|
self.fab = [np.nan, np.nan]
|
||
|
self.d = None
|
||
|
self.fd = None
|
||
|
self.e = None
|
||
|
self.fe = None
|
||
|
self.disp = False
|
||
|
self.xtol = _xtol
|
||
|
self.rtol = _rtol
|
||
|
self.maxiter = _iter
|
||
|
|
||
|
def configure(self, xtol, rtol, maxiter, disp, k):
|
||
|
self.disp = disp
|
||
|
self.xtol = xtol
|
||
|
self.rtol = rtol
|
||
|
self.maxiter = maxiter
|
||
|
# Silently replace a low value of k with 1
|
||
|
self.k = max(k, self._K_MIN)
|
||
|
# Noisily replace a high value of k with self._K_MAX
|
||
|
if self.k > self._K_MAX:
|
||
|
msg = "toms748: Overriding k: ->%d" % self._K_MAX
|
||
|
warnings.warn(msg, RuntimeWarning)
|
||
|
self.k = self._K_MAX
|
||
|
|
||
|
def _callf(self, x, error=True):
|
||
|
"""Call the user-supplied function, update book-keeping"""
|
||
|
fx = self.f(x, *self.args)
|
||
|
self.function_calls += 1
|
||
|
if not np.isfinite(fx) and error:
|
||
|
raise ValueError("Invalid function value: f(%f) -> %s " % (x, fx))
|
||
|
return fx
|
||
|
|
||
|
def get_result(self, x, flag=_ECONVERGED):
|
||
|
r"""Package the result and statistics into a tuple."""
|
||
|
return (x, self.function_calls, self.iterations, flag)
|
||
|
|
||
|
def _update_bracket(self, c, fc):
|
||
|
return _update_bracket(self.ab, self.fab, c, fc)
|
||
|
|
||
|
def start(self, f, a, b, args=()):
|
||
|
r"""Prepare for the iterations."""
|
||
|
self.function_calls = 0
|
||
|
self.iterations = 0
|
||
|
|
||
|
self.f = f
|
||
|
self.args = args
|
||
|
self.ab[:] = [a, b]
|
||
|
if not np.isfinite(a) or np.imag(a) != 0:
|
||
|
raise ValueError("Invalid x value: %s " % (a))
|
||
|
if not np.isfinite(b) or np.imag(b) != 0:
|
||
|
raise ValueError("Invalid x value: %s " % (b))
|
||
|
|
||
|
fa = self._callf(a)
|
||
|
if not np.isfinite(fa) or np.imag(fa) != 0:
|
||
|
raise ValueError("Invalid function value: f(%f) -> %s " % (a, fa))
|
||
|
if fa == 0:
|
||
|
return _ECONVERGED, a
|
||
|
fb = self._callf(b)
|
||
|
if not np.isfinite(fb) or np.imag(fb) != 0:
|
||
|
raise ValueError("Invalid function value: f(%f) -> %s " % (b, fb))
|
||
|
if fb == 0:
|
||
|
return _ECONVERGED, b
|
||
|
|
||
|
if np.sign(fb) * np.sign(fa) > 0:
|
||
|
raise ValueError("a, b must bracket a root f(%e)=%e, f(%e)=%e " %
|
||
|
(a, fa, b, fb))
|
||
|
self.fab[:] = [fa, fb]
|
||
|
|
||
|
return _EINPROGRESS, sum(self.ab) / 2.0
|
||
|
|
||
|
def get_status(self):
|
||
|
"""Determine the current status."""
|
||
|
a, b = self.ab[:2]
|
||
|
if _within_tolerance(a, b, self.rtol, self.xtol):
|
||
|
return _ECONVERGED, sum(self.ab) / 2.0
|
||
|
if self.iterations >= self.maxiter:
|
||
|
return _ECONVERR, sum(self.ab) / 2.0
|
||
|
return _EINPROGRESS, sum(self.ab) / 2.0
|
||
|
|
||
|
def iterate(self):
|
||
|
"""Perform one step in the algorithm.
|
||
|
|
||
|
Implements Algorithm 4.1(k=1) or 4.2(k=2) in [APS1995]
|
||
|
"""
|
||
|
self.iterations += 1
|
||
|
eps = np.finfo(float).eps
|
||
|
d, fd, e, fe = self.d, self.fd, self.e, self.fe
|
||
|
ab_width = self.ab[1] - self.ab[0] # Need the start width below
|
||
|
c = None
|
||
|
|
||
|
for nsteps in range(2, self.k+2):
|
||
|
# If the f-values are sufficiently separated, perform an inverse
|
||
|
# polynomial interpolation step. Otherwise nsteps repeats of
|
||
|
# an approximate Newton-Raphson step.
|
||
|
if _notclose(self.fab + [fd, fe], rtol=0, atol=32*eps):
|
||
|
c0 = _inverse_poly_zero(self.ab[0], self.ab[1], d, e,
|
||
|
self.fab[0], self.fab[1], fd, fe)
|
||
|
if self.ab[0] < c0 < self.ab[1]:
|
||
|
c = c0
|
||
|
if c is None:
|
||
|
c = _newton_quadratic(self.ab, self.fab, d, fd, nsteps)
|
||
|
|
||
|
fc = self._callf(c)
|
||
|
if fc == 0:
|
||
|
return _ECONVERGED, c
|
||
|
|
||
|
# re-bracket
|
||
|
e, fe = d, fd
|
||
|
d, fd = self._update_bracket(c, fc)
|
||
|
|
||
|
# u is the endpoint with the smallest f-value
|
||
|
uix = (0 if np.abs(self.fab[0]) < np.abs(self.fab[1]) else 1)
|
||
|
u, fu = self.ab[uix], self.fab[uix]
|
||
|
|
||
|
_, A = _compute_divided_differences(self.ab, self.fab,
|
||
|
forward=(uix == 0), full=False)
|
||
|
c = u - 2 * fu / A
|
||
|
if np.abs(c - u) > 0.5 * (self.ab[1] - self.ab[0]):
|
||
|
c = sum(self.ab) / 2.0
|
||
|
else:
|
||
|
if np.isclose(c, u, rtol=eps, atol=0):
|
||
|
# c didn't change (much).
|
||
|
# Either because the f-values at the endpoints have vastly
|
||
|
# differing magnitudes, or because the root is very close to
|
||
|
# that endpoint
|
||
|
frs = np.frexp(self.fab)[1]
|
||
|
if frs[uix] < frs[1 - uix] - 50: # Differ by more than 2**50
|
||
|
c = (31 * self.ab[uix] + self.ab[1 - uix]) / 32
|
||
|
else:
|
||
|
# Make a bigger adjustment, about the
|
||
|
# size of the requested tolerance.
|
||
|
mm = (1 if uix == 0 else -1)
|
||
|
adj = mm * np.abs(c) * self.rtol + mm * self.xtol
|
||
|
c = u + adj
|
||
|
if not self.ab[0] < c < self.ab[1]:
|
||
|
c = sum(self.ab) / 2.0
|
||
|
|
||
|
fc = self._callf(c)
|
||
|
if fc == 0:
|
||
|
return _ECONVERGED, c
|
||
|
|
||
|
e, fe = d, fd
|
||
|
d, fd = self._update_bracket(c, fc)
|
||
|
|
||
|
# If the width of the new interval did not decrease enough, bisect
|
||
|
if self.ab[1] - self.ab[0] > self._MU * ab_width:
|
||
|
e, fe = d, fd
|
||
|
z = sum(self.ab) / 2.0
|
||
|
fz = self._callf(z)
|
||
|
if fz == 0:
|
||
|
return _ECONVERGED, z
|
||
|
d, fd = self._update_bracket(z, fz)
|
||
|
|
||
|
# Record d and e for next iteration
|
||
|
self.d, self.fd = d, fd
|
||
|
self.e, self.fe = e, fe
|
||
|
|
||
|
status, xn = self.get_status()
|
||
|
return status, xn
|
||
|
|
||
|
def solve(self, f, a, b, args=(),
|
||
|
xtol=_xtol, rtol=_rtol, k=2, maxiter=_iter, disp=True):
|
||
|
r"""Solve f(x) = 0 given an interval containing a zero."""
|
||
|
self.configure(xtol=xtol, rtol=rtol, maxiter=maxiter, disp=disp, k=k)
|
||
|
status, xn = self.start(f, a, b, args)
|
||
|
if status == _ECONVERGED:
|
||
|
return self.get_result(xn)
|
||
|
|
||
|
# The first step only has two x-values.
|
||
|
c = _secant(self.ab, self.fab)
|
||
|
if not self.ab[0] < c < self.ab[1]:
|
||
|
c = sum(self.ab) / 2.0
|
||
|
fc = self._callf(c)
|
||
|
if fc == 0:
|
||
|
return self.get_result(c)
|
||
|
|
||
|
self.d, self.fd = self._update_bracket(c, fc)
|
||
|
self.e, self.fe = None, None
|
||
|
self.iterations += 1
|
||
|
|
||
|
while True:
|
||
|
status, xn = self.iterate()
|
||
|
if status == _ECONVERGED:
|
||
|
return self.get_result(xn)
|
||
|
if status == _ECONVERR:
|
||
|
fmt = "Failed to converge after %d iterations, bracket is %s"
|
||
|
if disp:
|
||
|
msg = fmt % (self.iterations + 1, self.ab)
|
||
|
raise RuntimeError(msg)
|
||
|
return self.get_result(xn, _ECONVERR)
|
||
|
|
||
|
|
||
|
def toms748(f, a, b, args=(), k=1,
|
||
|
xtol=_xtol, rtol=_rtol, maxiter=_iter,
|
||
|
full_output=False, disp=True):
|
||
|
"""
|
||
|
Find a zero using TOMS Algorithm 748 method.
|
||
|
|
||
|
Implements the Algorithm 748 method of Alefeld, Potro and Shi to find a
|
||
|
zero of the function `f` on the interval `[a , b]`, where `f(a)` and
|
||
|
`f(b)` must have opposite signs.
|
||
|
|
||
|
It uses a mixture of inverse cubic interpolation and
|
||
|
"Newton-quadratic" steps. [APS1995].
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
f : function
|
||
|
Python function returning a scalar. The function :math:`f`
|
||
|
must be continuous, and :math:`f(a)` and :math:`f(b)`
|
||
|
have opposite signs.
|
||
|
a : scalar,
|
||
|
lower boundary of the search interval
|
||
|
b : scalar,
|
||
|
upper boundary of the search interval
|
||
|
args : tuple, optional
|
||
|
containing extra arguments for the function `f`.
|
||
|
`f` is called by ``f(x, *args)``.
|
||
|
k : int, optional
|
||
|
The number of Newton quadratic steps to perform each
|
||
|
iteration. ``k>=1``.
|
||
|
xtol : scalar, optional
|
||
|
The computed root ``x0`` will satisfy ``np.allclose(x, x0,
|
||
|
atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The
|
||
|
parameter must be nonnegative.
|
||
|
rtol : scalar, optional
|
||
|
The computed root ``x0`` will satisfy ``np.allclose(x, x0,
|
||
|
atol=xtol, rtol=rtol)``, where ``x`` is the exact root.
|
||
|
maxiter : int, optional
|
||
|
if convergence is not achieved in `maxiter` iterations, an error is
|
||
|
raised. Must be >= 0.
|
||
|
full_output : bool, optional
|
||
|
If `full_output` is False, the root is returned. If `full_output` is
|
||
|
True, the return value is ``(x, r)``, where `x` is the root, and `r` is
|
||
|
a `RootResults` object.
|
||
|
disp : bool, optional
|
||
|
If True, raise RuntimeError if the algorithm didn't converge.
|
||
|
Otherwise the convergence status is recorded in the `RootResults`
|
||
|
return object.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
x0 : float
|
||
|
Approximate Zero of `f`
|
||
|
r : `RootResults` (present if ``full_output = True``)
|
||
|
Object containing information about the convergence. In particular,
|
||
|
``r.converged`` is True if the routine converged.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
brentq, brenth, ridder, bisect, newton
|
||
|
fsolve : find zeroes in n dimensions.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
`f` must be continuous.
|
||
|
Algorithm 748 with ``k=2`` is asymptotically the most efficient
|
||
|
algorithm known for finding roots of a four times continuously
|
||
|
differentiable function.
|
||
|
In contrast with Brent's algorithm, which may only decrease the length of
|
||
|
the enclosing bracket on the last step, Algorithm 748 decreases it each
|
||
|
iteration with the same asymptotic efficiency as it finds the root.
|
||
|
|
||
|
For easy statement of efficiency indices, assume that `f` has 4
|
||
|
continuouous deriviatives.
|
||
|
For ``k=1``, the convergence order is at least 2.7, and with about
|
||
|
asymptotically 2 function evaluations per iteration, the efficiency
|
||
|
index is approximately 1.65.
|
||
|
For ``k=2``, the order is about 4.6 with asymptotically 3 function
|
||
|
evaluations per iteration, and the efficiency index 1.66.
|
||
|
For higher values of `k`, the efficiency index approaches
|
||
|
the `k`-th root of ``(3k-2)``, hence ``k=1`` or ``k=2`` are
|
||
|
usually appropriate.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [APS1995]
|
||
|
Alefeld, G. E. and Potra, F. A. and Shi, Yixun,
|
||
|
*Algorithm 748: Enclosing Zeros of Continuous Functions*,
|
||
|
ACM Trans. Math. Softw. Volume 221(1995)
|
||
|
doi = {10.1145/210089.210111}
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> def f(x):
|
||
|
... return (x**3 - 1) # only one real root at x = 1
|
||
|
|
||
|
>>> from scipy import optimize
|
||
|
>>> root, results = optimize.toms748(f, 0, 2, full_output=True)
|
||
|
>>> root
|
||
|
1.0
|
||
|
>>> results
|
||
|
converged: True
|
||
|
flag: 'converged'
|
||
|
function_calls: 11
|
||
|
iterations: 5
|
||
|
root: 1.0
|
||
|
"""
|
||
|
if xtol <= 0:
|
||
|
raise ValueError("xtol too small (%g <= 0)" % xtol)
|
||
|
if rtol < _rtol / 4:
|
||
|
raise ValueError("rtol too small (%g < %g)" % (rtol, _rtol))
|
||
|
maxiter = operator.index(maxiter)
|
||
|
if maxiter < 1:
|
||
|
raise ValueError("maxiter must be greater than 0")
|
||
|
if not np.isfinite(a):
|
||
|
raise ValueError("a is not finite %s" % a)
|
||
|
if not np.isfinite(b):
|
||
|
raise ValueError("b is not finite %s" % b)
|
||
|
if a >= b:
|
||
|
raise ValueError("a and b are not an interval [%d, %d]" % (a, b))
|
||
|
if not k >= 1:
|
||
|
raise ValueError("k too small (%s < 1)" % k)
|
||
|
|
||
|
if not isinstance(args, tuple):
|
||
|
args = (args,)
|
||
|
solver = TOMS748Solver()
|
||
|
result = solver.solve(f, a, b, args=args, k=k, xtol=xtol, rtol=rtol,
|
||
|
maxiter=maxiter, disp=disp)
|
||
|
x, function_calls, iterations, flag = result
|
||
|
return _results_select(full_output, (x, function_calls, iterations, flag))
|