hub/venv/lib/python3.7/site-packages/trimesh/creation.py

1182 lines
37 KiB
Python
Raw Normal View History

"""
creation.py
--------------
Create meshes from primitives, or with operations.
"""
from .base import Trimesh
from .constants import log, tol
from .geometry import faces_to_edges, align_vectors, plane_transform
from . import util
from . import grouping
from . import triangles
from . import transformations as tf
import numpy as np
import collections
try:
# shapely is a soft dependency
from shapely.geometry import Polygon
from shapely.wkb import loads as load_wkb
except BaseException as E:
# shapely will sometimes raise OSErrors
# on import rather than just ImportError
from . import exceptions
# re-raise the exception when someone tries
# to use the module that they don't have
Polygon = exceptions.closure(E)
load_wkb = exceptions.closure(E)
def revolve(linestring,
angle=None,
sections=None,
transform=None,
**kwargs):
"""
Revolve a 2D line string around the 2D Y axis, with a result with
the 2D Y axis pointing along the 3D Z axis.
This function is intended to handle the complexity of indexing
and is intended to be used to create all radially symmetric primitives,
eventually including cylinders, annular cylinders, capsules, cones,
and UV spheres.
Note that if your linestring is closed, it needs to be counterclockwise
if you would like face winding and normals facing outwards.
Parameters
-------------
linestring : (n, 2) float
Lines in 2D which will be revolved
angle : None or float
Angle in radians to revolve curve by
sections : None or int
Number of sections result should have
If not specified default is 32 per revolution
transform : None or (4, 4) float
Transform to apply to mesh after construction
**kwargs : dict
Passed to Trimesh constructor
Returns
--------------
revolved : Trimesh
Mesh representing revolved result
"""
linestring = np.asanyarray(linestring, dtype=np.float64)
# linestring must be ordered 2D points
if len(linestring.shape) != 2 or linestring.shape[1] != 2:
raise ValueError('linestring must be 2D!')
if angle is None:
# default to closing the revolution
angle = np.pi * 2
closed = True
else:
# check passed angle value
closed = angle >= ((np.pi * 2) - 1e-8)
if sections is None:
# default to 32 sections for a full revolution
sections = int(angle / (np.pi * 2) * 32)
# change to face count
sections += 1
# create equally spaced angles
theta = np.linspace(0, angle, sections)
# 2D points around the revolution
points = np.column_stack((np.cos(theta), np.sin(theta)))
# how many points per slice
per = len(linestring)
# use the 2D X component as radius
radius = linestring[:, 0]
# use the 2D Y component as the height along revolution
height = linestring[:, 1]
# a lot of tiling to get our 3D vertices
vertices = np.column_stack((
np.tile(points, (1, per)).reshape((-1, 2)) *
np.tile(radius, len(points)).reshape((-1, 1)),
np.tile(height, len(points))))
if closed:
# should be a duplicate set of vertices
assert np.allclose(vertices[:per],
vertices[-per:])
# chop off duplicate vertices
vertices = vertices[:-per]
if transform is not None:
# apply transform to vertices
vertices = tf.transform_points(vertices, transform)
# how many slices of the pie
slices = len(theta) - 1
# start with a quad for every segment
# this is a superset which will then be reduced
quad = np.array([0, per, 1,
1, per, per + 1])
# stack the faces for a single slice of the revolution
single = np.tile(quad, per).reshape((-1, 3))
# `per` is basically the stride of the vertices
single += np.tile(np.arange(per), (2, 1)).T.reshape((-1, 1))
# remove any zero-area triangle
# this covers many cases without having to think too much
single = single[triangles.area(vertices[single]) > tol.merge]
# how much to offset each slice
# note arange multiplied by vertex stride
# but tiled by the number of faces we actually have
offset = np.tile(np.arange(slices) * per,
(len(single), 1)).T.reshape((-1, 1))
# stack a single slice into N slices
stacked = np.tile(single.ravel(), slices).reshape((-1, 3))
if tol.strict:
# make sure we didn't screw up stacking operation
assert np.allclose(stacked.reshape((-1, single.shape[0], 3)) - single, 0)
# offset stacked and wrap vertices
faces = (stacked + offset) % len(vertices)
# create the mesh from our vertices and faces
mesh = Trimesh(vertices=vertices, faces=faces)
# strict checks run only in unit tests
if (tol.strict and
np.allclose(radius[[0, -1]], 0.0) or
np.allclose(linestring[0], linestring[-1])):
# if revolved curve starts and ends with zero radius
# it should really be a valid volume, unless the sign
# reversed on the input linestring
assert mesh.is_volume
return mesh
def extrude_polygon(polygon,
height,
transform=None,
triangle_args=None,
**kwargs):
"""
Extrude a 2D shapely polygon into a 3D mesh
Parameters
----------
polygon : shapely.geometry.Polygon
2D geometry to extrude
height : float
Distance to extrude polygon along Z
triangle_args : str or None
Passed to triangle
**kwargs:
passed to Trimesh
Returns
----------
mesh : trimesh.Trimesh
Resulting extrusion as watertight body
"""
# create a triangulation from the polygon
vertices, faces = triangulate_polygon(
polygon, triangle_args=triangle_args, **kwargs)
# extrude that triangulation along Z
mesh = extrude_triangulation(vertices=vertices,
faces=faces,
height=height,
transform=transform,
**kwargs)
return mesh
def sweep_polygon(polygon,
path,
angles=None,
**kwargs):
"""
Extrude a 2D shapely polygon into a 3D mesh along an
arbitrary 3D path. Doesn't handle sharp curvature well.
Parameters
----------
polygon : shapely.geometry.Polygon
Profile to sweep along path
path : (n, 3) float
A path in 3D
angles : (n,) float
Optional rotation angle relative to prior vertex
at each vertex
Returns
-------
mesh : trimesh.Trimesh
Geometry of result
"""
path = np.asanyarray(path, dtype=np.float64)
if not util.is_shape(path, (-1, 3)):
raise ValueError('Path must be (n, 3)!')
# Extract 2D vertices and triangulation
verts_2d = np.array(polygon.exterior)[:-1]
base_verts_2d, faces_2d = triangulate_polygon(polygon, **kwargs)
n = len(verts_2d)
# Create basis for first planar polygon cap
x, y, z = util.generate_basis(path[0] - path[1])
tf_mat = np.ones((4, 4))
tf_mat[:3, :3] = np.c_[x, y, z]
tf_mat[:3, 3] = path[0]
# Compute 3D locations of those vertices
verts_3d = np.c_[verts_2d, np.zeros(n)]
verts_3d = tf.transform_points(verts_3d, tf_mat)
base_verts_3d = np.c_[base_verts_2d,
np.zeros(len(base_verts_2d))]
base_verts_3d = tf.transform_points(base_verts_3d,
tf_mat)
# keep matching sequence of vertices and 0- indexed faces
vertices = [base_verts_3d]
faces = [faces_2d]
# Compute plane normals for each turn --
# each turn induces a plane halfway between the two vectors
v1s = util.unitize(path[1:-1] - path[:-2])
v2s = util.unitize(path[1:-1] - path[2:])
norms = np.cross(np.cross(v1s, v2s), v1s + v2s)
norms[(norms == 0.0).all(1)] = v1s[(norms == 0.0).all(1)]
norms = util.unitize(norms)
final_v1 = util.unitize(path[-1] - path[-2])
norms = np.vstack((norms, final_v1))
v1s = np.vstack((v1s, final_v1))
# Create all side walls by projecting the 3d vertices into each plane
# in succession
for i in range(len(norms)):
verts_3d_prev = verts_3d
# Rotate if needed
if angles is not None:
tf_mat = tf.rotation_matrix(angles[i],
norms[i],
path[i])
verts_3d_prev = tf.transform_points(verts_3d_prev,
tf_mat)
# Project vertices onto plane in 3D
ds = np.einsum('ij,j->i', (path[i + 1] - verts_3d_prev), norms[i])
ds = ds / np.dot(v1s[i], norms[i])
verts_3d_new = np.einsum('i,j->ij', ds, v1s[i]) + verts_3d_prev
# Add to face and vertex lists
new_faces = [[i + n, (i + 1) % n, i] for i in range(n)]
new_faces.extend([[(i - 1) % n + n, i + n, i] for i in range(n)])
# save faces and vertices into a sequence
faces.append(np.array(new_faces))
vertices.append(np.vstack((verts_3d, verts_3d_new)))
verts_3d = verts_3d_new
# do the main stack operation from a sequence to (n,3) arrays
# doing one vstack provides a substantial speedup by
# avoiding a bunch of temporary allocations
vertices, faces = util.append_faces(vertices, faces)
# Create final cap
x, y, z = util.generate_basis(path[-1] - path[-2])
vecs = verts_3d - path[-1]
coords = np.c_[np.einsum('ij,j->i', vecs, x),
np.einsum('ij,j->i', vecs, y)]
base_verts_2d, faces_2d = triangulate_polygon(Polygon(coords))
base_verts_3d = (np.einsum('i,j->ij', base_verts_2d[:, 0], x) +
np.einsum('i,j->ij', base_verts_2d[:, 1], y)) + path[-1]
faces = np.vstack((faces, faces_2d + len(vertices)))
vertices = np.vstack((vertices, base_verts_3d))
return Trimesh(vertices, faces)
def extrude_triangulation(vertices,
faces,
height,
transform=None,
**kwargs):
"""
Extrude a 2D triangulation into a watertight mesh.
Parameters
----------
vertices : (n, 2) float
2D vertices
faces : (m, 3) int
Triangle indexes of vertices
height : float
Distance to extrude triangulation
**kwargs : dict
Passed to Trimesh constructor
Returns
---------
mesh : trimesh.Trimesh
Mesh created from extrusion
"""
vertices = np.asanyarray(vertices, dtype=np.float64)
height = float(height)
faces = np.asanyarray(faces, dtype=np.int64)
if not util.is_shape(vertices, (-1, 2)):
raise ValueError('Vertices must be (n,2)')
if not util.is_shape(faces, (-1, 3)):
raise ValueError('Faces must be (n,3)')
if np.abs(height) < tol.merge:
raise ValueError('Height must be nonzero!')
# make sure triangulation winding is pointing up
normal_test = triangles.normals(
[util.stack_3D(vertices[faces[0]])])[0]
normal_dot = np.dot(normal_test,
[0.0, 0.0, np.sign(height)])[0]
# make sure the triangulation is aligned with the sign of
# the height we've been passed
if normal_dot < 0.0:
faces = np.fliplr(faces)
# stack the (n,3) faces into (3*n, 2) edges
edges = faces_to_edges(faces)
edges_sorted = np.sort(edges, axis=1)
# edges which only occur once are on the boundary of the polygon
# since the triangulation may have subdivided the boundary of the
# shapely polygon, we need to find it again
edges_unique = grouping.group_rows(
edges_sorted, require_count=1)
# (n, 2, 2) set of line segments (positions, not references)
boundary = vertices[edges[edges_unique]]
# we are creating two vertical triangles for every 2D line segment
# on the boundary of the 2D triangulation
vertical = np.tile(boundary.reshape((-1, 2)), 2).reshape((-1, 2))
vertical = np.column_stack((vertical,
np.tile([0, height, 0, height],
len(boundary))))
vertical_faces = np.tile([3, 1, 2, 2, 1, 0],
(len(boundary), 1))
vertical_faces += np.arange(len(boundary)).reshape((-1, 1)) * 4
vertical_faces = vertical_faces.reshape((-1, 3))
# stack the (n,2) vertices with zeros to make them (n, 3)
vertices_3D = util.stack_3D(vertices)
# a sequence of zero- indexed faces, which will then be appended
# with offsets to create the final mesh
faces_seq = [faces[:, ::-1],
faces.copy(),
vertical_faces]
vertices_seq = [vertices_3D,
vertices_3D.copy() + [0.0, 0, height],
vertical]
# append sequences into flat nicely indexed arrays
vertices, faces = util.append_faces(vertices_seq, faces_seq)
if transform is not None:
# apply transform here to avoid later bookkeeping
vertices = tf.transform_points(
vertices, transform)
# if the transform flips the winding flip faces back
# so that the normals will be facing outwards
if tf.flips_winding(transform):
# fliplr makes arrays non-contiguous
faces = np.ascontiguousarray(np.fliplr(faces))
# create mesh object with passed keywords
mesh = Trimesh(vertices=vertices,
faces=faces,
**kwargs)
# only check in strict mode (unit tests)
if tol.strict:
assert mesh.volume > 0.0
return mesh
def triangulate_polygon(polygon,
triangle_args=None,
**kwargs):
"""
Given a shapely polygon create a triangulation using a
python interface to `triangle.c`:
> `pip install triangle`
Parameters
---------
polygon : Shapely.geometry.Polygon
Polygon object to be triangulated
triangle_args : str or None
Passed to triangle.triangulate i.e: 'p', 'pq30'
Returns
--------------
vertices : (n, 2) float
Points in space
faces : (n, 3) int
Index of vertices that make up triangles
"""
# do the import here for soft requirement
from triangle import triangulate
# set default triangulation arguments if not specified
if triangle_args is None:
triangle_args = 'p'
# turn the polygon in to vertices, segments, and hole points
arg = _polygon_to_kwargs(polygon)
# run the triangulation
result = triangulate(arg, triangle_args)
return result['vertices'], result['triangles']
def _polygon_to_kwargs(polygon):
"""
Given a shapely polygon generate the data to pass to
the triangle mesh generator
Parameters
---------
polygon : Shapely.geometry.Polygon
Input geometry
Returns
--------
result : dict
Has keys: vertices, segments, holes
"""
if not polygon.is_valid:
raise ValueError('invalid shapely polygon passed!')
def round_trip(start, length):
"""
Given a start index and length, create a series of (n, 2) edges which
create a closed traversal.
Examples
---------
start, length = 0, 3
returns: [(0,1), (1,2), (2,0)]
"""
tiled = np.tile(np.arange(start, start + length).reshape((-1, 1)), 2)
tiled = tiled.reshape(-1)[1:-1].reshape((-1, 2))
tiled = np.vstack((tiled, [tiled[-1][-1], tiled[0][0]]))
return tiled
def add_boundary(boundary, start):
# coords is an (n, 2) ordered list of points on the polygon boundary
# the first and last points are the same, and there are no
# guarantees on points not being duplicated (which will
# later cause meshpy/triangle to shit a brick)
coords = np.array(boundary.coords)
# find indices points which occur only once, and sort them
# to maintain order
unique = np.sort(grouping.unique_rows(coords)[0])
cleaned = coords[unique]
vertices.append(cleaned)
facets.append(round_trip(start, len(cleaned)))
# holes require points inside the region of the hole, which we find
# by creating a polygon from the cleaned boundary region, and then
# using a representative point. You could do things like take the mean of
# the points, but this is more robust (to things like concavity), if
# slower.
test = Polygon(cleaned)
holes.append(np.array(test.representative_point().coords)[0])
return len(cleaned)
# sequence of (n,2) points in space
vertices = collections.deque()
# sequence of (n,2) indices of vertices
facets = collections.deque()
# list of (2) vertices in interior of hole regions
holes = collections.deque()
start = add_boundary(polygon.exterior, 0)
for interior in polygon.interiors:
try:
start += add_boundary(interior, start)
except BaseException:
log.warning('invalid interior, continuing')
continue
# create clean (n,2) float array of vertices
# and (m, 2) int array of facets
# by stacking the sequence of (p,2) arrays
vertices = np.vstack(vertices)
facets = np.vstack(facets).tolist()
# shapely polygons can include a Z component
# strip it out for the triangulation
if vertices.shape[1] == 3:
vertices = vertices[:, :2]
result = {'vertices': vertices,
'segments': facets}
# holes in meshpy lingo are a (h, 2) list of (x,y) points
# which are inside the region of the hole
# we added a hole for the exterior, which we slice away here
holes = np.array(holes)[1:]
if len(holes) > 0:
result['holes'] = holes
return result
def box(extents=None, transform=None, **kwargs):
"""
Return a cuboid.
Parameters
------------
extents : float, or (3,) float
Edge lengths
transform: (4, 4) float
Transformation matrix
**kwargs:
passed to Trimesh to create box
Returns
------------
geometry : trimesh.Trimesh
Mesh of a cuboid
"""
# vertices of the cube
vertices = [0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1,
1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1]
vertices = np.array(vertices,
order='C',
dtype=np.float64).reshape((-1, 3))
vertices -= 0.5
# resize cube based on passed extents
if extents is not None:
extents = np.asanyarray(extents, dtype=np.float64)
if extents.shape != (3,):
raise ValueError('Extents must be (3,)!')
vertices *= extents
# hardcoded face indices
faces = [1, 3, 0, 4, 1, 0, 0, 3, 2, 2, 4, 0, 1, 7, 3, 5, 1, 4,
5, 7, 1, 3, 7, 2, 6, 4, 2, 2, 7, 6, 6, 5, 4, 7, 5, 6]
faces = np.array(faces, order='C', dtype=np.int64).reshape((-1, 3))
face_normals = [-1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, -1, 0, 0, 1, 0, -1,
0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 1, 0, 0, 1, 0, 0]
face_normals = np.asanyarray(face_normals,
order='C',
dtype=np.float64).reshape(-1, 3)
box = Trimesh(vertices=vertices,
faces=faces,
face_normals=face_normals,
process=False,
**kwargs)
# do the transform here to preserve face normals
if transform is not None:
box.apply_transform(transform)
return box
def icosahedron():
"""
Create an icosahedron, a 20 faced polyhedron.
Returns
-------------
ico : trimesh.Trimesh
Icosahederon centered at the origin.
"""
t = (1.0 + 5.0**.5) / 2.0
vertices = [-1, t, 0, 1, t, 0, -1, -t, 0, 1, -t, 0, 0, -1, t, 0, 1, t,
0, -1, -t, 0, 1, -t, t, 0, -1, t, 0, 1, -t, 0, -1, -t, 0, 1]
faces = [0, 11, 5, 0, 5, 1, 0, 1, 7, 0, 7, 10, 0, 10, 11,
1, 5, 9, 5, 11, 4, 11, 10, 2, 10, 7, 6, 7, 1, 8,
3, 9, 4, 3, 4, 2, 3, 2, 6, 3, 6, 8, 3, 8, 9,
4, 9, 5, 2, 4, 11, 6, 2, 10, 8, 6, 7, 9, 8, 1]
# scale vertices so each vertex radius is 1.0
vertices = np.reshape(vertices, (-1, 3)) / np.sqrt(2.0 + t)
faces = np.reshape(faces, (-1, 3))
mesh = Trimesh(vertices=vertices,
faces=faces,
process=False)
return mesh
def icosphere(subdivisions=3, radius=1.0, color=None):
"""
Create an isophere centered at the origin.
Parameters
----------
subdivisions : int
How many times to subdivide the mesh.
Note that the number of faces will grow as function of
4 ** subdivisions, so you probably want to keep this under ~5
radius : float
Desired radius of sphere
color: (3,) float or uint8
Desired color of sphere
Returns
---------
ico : trimesh.Trimesh
Meshed sphere
"""
def refine_spherical():
vectors = ico.vertices
scalar = (vectors ** 2).sum(axis=1)**.5
unit = vectors / scalar.reshape((-1, 1))
offset = radius - scalar
ico.vertices += unit * offset.reshape((-1, 1))
ico = icosahedron()
ico._validate = False
for j in range(subdivisions):
ico = ico.subdivide()
refine_spherical()
ico._validate = True
if color is not None:
ico.visual.face_colors = color
return ico
def uv_sphere(radius=1.0,
count=[32, 32],
theta=None,
phi=None):
"""
Create a UV sphere (latitude + longitude) centered at the
origin. Roughly one order of magnitude faster than an
icosphere but slightly uglier.
Parameters
----------
radius : float
Radius of sphere
count : (2,) int
Number of latitude and longitude lines
theta : (n,) float
Optional theta angles in radians
phi : (n,) float
Optional phi angles in radians
Returns
----------
mesh : trimesh.Trimesh
Mesh of UV sphere with specified parameters
"""
count = np.array(count, dtype=np.int)
count += np.mod(count, 2)
count[1] *= 2
# generate vertices on a sphere using spherical coordinates
if theta is None:
theta = np.linspace(0, np.pi, count[0])
if phi is None:
phi = np.linspace(0, np.pi * 2, count[1])[:-1]
spherical = np.dstack((np.tile(phi, (len(theta), 1)).T,
np.tile(theta, (len(phi), 1)))).reshape((-1, 2))
vertices = util.spherical_to_vector(spherical) * radius
# generate faces by creating a bunch of pie wedges
c = len(theta)
# a quad face as two triangles
pairs = np.array([[c, 0, 1],
[c + 1, c, 1]])
# increment both triangles in each quad face by the same offset
incrementor = np.tile(np.arange(c - 1), (2, 1)).T.reshape((-1, 1))
# create the faces for a single pie wedge of the sphere
strip = np.tile(pairs, (c - 1, 1))
strip += incrementor
# the first and last faces will be degenerate since the first
# and last vertex are identical in the two rows
strip = strip[1:-1]
# tile pie wedges into a sphere
faces = np.vstack([strip + (i * c) for i in range(len(phi))])
# poles are repeated in every strip, so a mask to merge them
mask = np.arange(len(vertices))
# the top pole are all the same vertex
mask[0::c] = 0
# the bottom pole are all the same vertex
mask[c - 1::c] = c - 1
# faces masked to remove the duplicated pole vertices
# and mod to wrap to fill in the last pie wedge
faces = mask[np.mod(faces, len(vertices))]
# we save a lot of time by not processing again
# since we did some bookkeeping mesh is watertight
mesh = Trimesh(vertices=vertices, faces=faces, process=False)
return mesh
def capsule(height=1.0,
radius=1.0,
count=[32, 32]):
"""
Create a mesh of a capsule, or a cylinder with hemispheric ends.
Parameters
----------
height : float
Center to center distance of two spheres
radius : float
Radius of the cylinder and hemispheres
count : (2,) int
Number of sections on latitude and longitude
Returns
----------
capsule : trimesh.Trimesh
Capsule geometry with:
- cylinder axis is along Z
- one hemisphere is centered at the origin
- other hemisphere is centered along the Z axis at height
"""
height = float(height)
radius = float(radius)
count = np.array(count, dtype=np.int)
count += np.mod(count, 2)
# create a theta where there is a double band around the equator
# so that we can offset the top and bottom of a sphere to
# get a nicely meshed capsule
theta = np.linspace(0, np.pi, count[0])
center = np.clip(np.arctan(tol.merge / radius),
tol.merge, np.inf)
offset = np.array([-center, center]) + (np.pi / 2)
theta = np.insert(theta,
int(len(theta) / 2),
offset)
capsule = uv_sphere(radius=radius,
count=count,
theta=theta)
top = capsule.vertices[:, 2] > tol.zero
capsule.vertices[top] += [0, 0, height]
return capsule
def cone(radius,
height,
sections=None,
transform=None,
**kwargs):
"""
Create a mesh of a cone along Z centered at the origin.
Parameters
----------
radius : float
The radius of the cylinder
height : float
The height of the cylinder
sections : int or None
How many pie wedges per revolution
transform : (4, 4) float or None
Transform to apply after creation
**kwargs : dict
Passed to Trimesh constructor
Returns
----------
cone: trimesh.Trimesh
Resulting mesh of a cone
"""
# create the 2D outline of a cone
linestring = [[0, 0],
[radius, 0],
[0, height]]
# revolve the profile to create a cone
cone = revolve(linestring=linestring,
sections=sections,
transform=transform,
**kwargs)
return cone
def cylinder(radius,
height,
sections=None,
segment=None,
transform=None,
**kwargs):
"""
Create a mesh of a cylinder along Z centered at the origin.
Parameters
----------
radius : float
The radius of the cylinder
height : float
The height of the cylinder
sections : int
How many pie wedges should the cylinder have
segment : (2, 3) float
Endpoints of axis, overrides transform and height
transform : (4, 4) float
Transform to apply
**kwargs:
passed to Trimesh to create cylinder
Returns
----------
cylinder: trimesh.Trimesh
Resulting mesh of a cylinder
"""
if segment is not None:
segment = np.asanyarray(segment, dtype=np.float64)
if segment.shape != (2, 3):
raise ValueError('segment must be 2 3D points!')
vector = segment[1] - segment[0]
# override height with segment length
height = np.linalg.norm(vector)
# point in middle of line
midpoint = segment[0] + (vector * 0.5)
# align Z with our desired direction
rotation = align_vectors([0, 0, 1], vector)
# translate to midpoint of segment
translation = tf.translation_matrix(midpoint)
# compound the rotation and translation
transform = np.dot(translation, rotation)
half = abs(float(height)) / 2.0
# create a profile to revolve
linestring = [[0, -half],
[radius, -half],
[radius, half],
[0, half]]
# generate cylinder through simple revolution
return revolve(linestring=linestring,
sections=sections,
transform=transform)
return cylinder
def annulus(r_min,
r_max,
height,
sections=None,
transform=None,
**kwargs):
"""
Create a mesh of an annular cylinder along Z centered at the origin.
Parameters
----------
r_min : float
The inner radius of the annular cylinder
r_max : float
The outer radius of the annular cylinder
height : float
The height of the annular cylinder
sections : int or None
How many pie wedges should the annular cylinder have
transform : (4, 4) float or None
Transform to apply to move result from the origin
**kwargs:
passed to Trimesh to create annulus
Returns
----------
annulus : trimesh.Trimesh
Mesh of annular cylinder
"""
r_min = abs(float(r_min))
# if center radius is zero this is a cylinder
if r_min < tol.merge:
return cylinder(radius=r_max,
height=height,
sections=sections,
transform=transform)
r_max = abs(float(r_max))
# we're going to center at XY plane so take half the height
half = abs(float(height)) / 2.0
# create counter-clockwise rectangle
linestring = [[r_min, -half],
[r_max, -half],
[r_max, half],
[r_min, half],
[r_min, -half]]
# revolve the curve
annulus = revolve(linestring=linestring,
sections=sections,
transform=transform,
**kwargs)
return annulus
def random_soup(face_count=100):
"""
Return random triangles as a Trimesh
Parameters
-----------
face_count : int
Number of faces desired in mesh
Returns
-----------
soup : trimesh.Trimesh
Geometry with face_count random faces
"""
vertices = np.random.random((face_count * 3, 3)) - 0.5
faces = np.arange(face_count * 3).reshape((-1, 3))
soup = Trimesh(vertices=vertices, faces=faces)
return soup
def axis(origin_size=0.04,
transform=None,
origin_color=None,
axis_radius=None,
axis_length=None):
"""
Return an XYZ axis marker as a Trimesh, which represents position
and orientation. If you set the origin size the other parameters
will be set relative to it.
Parameters
----------
transform : (4, 4) float
Transformation matrix
origin_size : float
Radius of sphere that represents the origin
origin_color : (3,) float or int, uint8 or float
Color of the origin
axis_radius : float
Radius of cylinder that represents x, y, z axis
axis_length: float
Length of cylinder that represents x, y, z axis
Returns
-------
marker : trimesh.Trimesh
Mesh geometry of axis indicators
"""
# the size of the ball representing the origin
origin_size = float(origin_size)
# set the transform and use origin-relative
# sized for other parameters if not specified
if transform is None:
transform = np.eye(4)
if origin_color is None:
origin_color = [255, 255, 255, 255]
if axis_radius is None:
axis_radius = origin_size / 5.0
if axis_length is None:
axis_length = origin_size * 10.0
# generate a ball for the origin
axis_origin = uv_sphere(radius=origin_size,
count=[10, 10])
axis_origin.apply_transform(transform)
# apply color to the origin ball
axis_origin.visual.face_colors = origin_color
# create the cylinder for the z-axis
translation = tf.translation_matrix(
[0, 0, axis_length / 2])
z_axis = cylinder(
radius=axis_radius,
height=axis_length,
transform=transform.dot(translation))
# XYZ->RGB, Z is blue
z_axis.visual.face_colors = [0, 0, 255]
# create the cylinder for the y-axis
translation = tf.translation_matrix(
[0, 0, axis_length / 2])
rotation = tf.rotation_matrix(np.radians(-90),
[1, 0, 0])
y_axis = cylinder(
radius=axis_radius,
height=axis_length,
transform=transform.dot(rotation).dot(translation))
# XYZ->RGB, Y is green
y_axis.visual.face_colors = [0, 255, 0]
# create the cylinder for the x-axis
translation = tf.translation_matrix(
[0, 0, axis_length / 2])
rotation = tf.rotation_matrix(np.radians(90),
[0, 1, 0])
x_axis = cylinder(
radius=axis_radius,
height=axis_length,
transform=transform.dot(rotation).dot(translation))
# XYZ->RGB, X is red
x_axis.visual.face_colors = [255, 0, 0]
# append the sphere and three cylinders
marker = util.concatenate([axis_origin,
x_axis,
y_axis,
z_axis])
return marker
def camera_marker(camera,
marker_height=0.4,
origin_size=None):
"""
Create a visual marker for a camera object, including an axis and FOV.
Parameters
---------------
camera : trimesh.scene.Camera
Camera object with FOV and transform defined
marker_height : float
How far along the camera Z should FOV indicators be
origin_size : float
Sphere radius of the origin (default: marker_height / 10.0)
Returns
------------
meshes : list
Contains Trimesh and Path3D objects which can be visualized
"""
# append the visualizations to an array
meshes = [axis(origin_size=marker_height / 10.0)]
try:
# path is a soft dependency
from .path.exchange.load import load_path
except ImportError:
# they probably don't have shapely installed
log.warning('unable to create FOV visualization!',
exc_info=True)
return meshes
# create sane origin size from marker height
if origin_size is None:
origin_size = marker_height / 10.0
# calculate vertices from camera FOV angles
x = marker_height * np.tan(np.deg2rad(camera.fov[0]) / 2.0)
y = marker_height * np.tan(np.deg2rad(camera.fov[1]) / 2.0)
z = marker_height
# combine the points into the vertices of an FOV visualization
points = np.array(
[(0, 0, 0),
(-x, -y, z),
(x, -y, z),
(x, y, z),
(-x, y, z)],
dtype=float)
# create line segments for the FOV visualization
# a segment from the origin to each bound of the FOV
segments = np.column_stack(
(np.zeros_like(points), points)).reshape(
(-1, 3))
# add a loop for the outside of the FOV then reshape
# the whole thing into multiple line segments
segments = np.vstack((segments,
points[[1, 2,
2, 3,
3, 4,
4, 1]])).reshape((-1, 2, 3))
# add a single Path3D object for all line segments
meshes.append(load_path(segments))
return meshes
def truncated_prisms(tris, origin=None, normal=None):
"""
Return a mesh consisting of multiple watertight prisms below
a list of triangles, truncated by a specified plane.
Parameters
-------------
triangles : (n, 3, 3) float
Triangles in space
origin : None or (3,) float
Origin of truncation plane
normal : None or (3,) float
Unit normal vector of truncation plane
Returns
-----------
mesh : trimesh.Trimesh
Triangular mesh
"""
if origin is None:
transform = np.eye(4)
else:
transform = plane_transform(origin=origin, normal=normal)
# transform the triangles to the specified plane
transformed = tf.transform_points(
tris.reshape((-1, 3)), transform).reshape((-1, 9))
# stack triangles such that every other one is repeated
vs = np.column_stack((transformed, transformed)).reshape((-1, 3, 3))
# set the Z value of the second triangle to zero
vs[1::2, :, 2] = 0
# reshape triangles to a flat array of points and transform back to original frame
vertices = tf.transform_points(
vs.reshape((-1, 3)), matrix=np.linalg.inv(transform))
# face indexes for a *single* truncated triangular prism
f = np.array([[2, 1, 0],
[3, 4, 5],
[0, 1, 4],
[1, 2, 5],
[2, 0, 3],
[4, 3, 0],
[5, 4, 1],
[3, 5, 2]])
# find the projection of each triangle with the normal vector
cross = np.dot([0, 0, 1], triangles.cross(transformed.reshape((-1, 3, 3))).T)
# stack faces into one prism per triangle
f_seq = np.tile(f, (len(transformed), 1)).reshape((-1, len(f), 3))
# if the normal of the triangle was positive flip the winding
f_seq[cross > 0] = np.fliplr(f)
# offset stacked faces to create correct indices
faces = (f_seq + (np.arange(len(f_seq)) * 6).reshape((-1, 1, 1))).reshape((-1, 3))
# create a mesh from the data
mesh = Trimesh(vertices=vertices, faces=faces, process=False)
return mesh