hub/venv/lib/python3.7/site-packages/trimesh/remesh.py

189 lines
5.7 KiB
Python
Raw Normal View History

"""
remesh.py
-------------
Deal with re- triangulation of existing meshes.
"""
import numpy as np
from . import util
from . import grouping
from .geometry import faces_to_edges
def subdivide(vertices,
faces,
face_index=None,
vertex_attributes=None):
"""
Subdivide a mesh into smaller triangles.
Note that if `face_index` is passed, only those
faces will be subdivided and their neighbors won't
be modified making the mesh no longer "watertight."
Parameters
------------
vertices : (n, 3) float
Vertices in space
faces : (m, 3) int
Indexes of vertices which make up triangular faces
face_index : faces to subdivide.
if None: all faces of mesh will be subdivided
if (n,) int array of indices: only specified faces
vertex_attributes : dict
Contains (n, d) attribute data
Returns
----------
new_vertices : (q, 3) float
Vertices in space
new_faces : (p, 3) int
Remeshed faces
"""
if face_index is None:
face_index = np.arange(len(faces))
else:
face_index = np.asanyarray(face_index)
# the (c, 3) int array of vertex indices
faces_subset = faces[face_index]
# find the unique edges of our faces subset
edges = np.sort(faces_to_edges(faces_subset), axis=1)
unique, inverse = grouping.unique_rows(edges)
# then only produce one midpoint per unique edge
mid = vertices[edges[unique]].mean(axis=1)
mid_idx = inverse.reshape((-1, 3)) + len(vertices)
# the new faces_subset with correct winding
f = np.column_stack([faces_subset[:, 0],
mid_idx[:, 0],
mid_idx[:, 2],
mid_idx[:, 0],
faces_subset[:, 1],
mid_idx[:, 1],
mid_idx[:, 2],
mid_idx[:, 1],
faces_subset[:, 2],
mid_idx[:, 0],
mid_idx[:, 1],
mid_idx[:, 2]]).reshape((-1, 3))
# add the 3 new faces_subset per old face
new_faces = np.vstack((faces, f[len(face_index):]))
# replace the old face with a smaller face
new_faces[face_index] = f[:len(face_index)]
new_vertices = np.vstack((vertices, mid))
if vertex_attributes is not None:
new_attributes = {}
for key, values in vertex_attributes.items():
attr_tris = values[faces_subset]
attr_mid = np.vstack([
attr_tris[:, g, :].mean(axis=1)
for g in [[0, 1],
[1, 2],
[2, 0]]])
attr_mid = attr_mid[unique]
new_attributes[key] = np.vstack((
values, attr_mid))
return new_vertices, new_faces, new_attributes
return new_vertices, new_faces
def subdivide_to_size(vertices,
faces,
max_edge,
max_iter=10,
return_index=False):
"""
Subdivide a mesh until every edge is shorter than a
specified length.
Will return a triangle soup, not a nicely structured mesh.
Parameters
------------
vertices : (n, 3) float
Vertices in space
faces : (m, 3) int
Indices of vertices which make up triangles
max_edge : float
Maximum length of any edge in the result
max_iter : int
The maximum number of times to run subdivision
return_index : bool
If True, return index of original face for new faces
Returns
------------
vertices : (j, 3) float
Vertices in space
faces : (q, 3) int
Indices of vertices
index : (q, 3) int
Only returned if `return_index`, index of
original face for each new face.
"""
# store completed
done_face = []
done_vert = []
done_idx = []
# copy inputs and make sure dtype is correct
current_faces = np.array(
faces, dtype=np.int64, copy=True)
current_vertices = np.array(
vertices, dtype=np.float64, copy=True)
current_index = np.arange(len(faces))
# loop through iteration cap
for i in range(max_iter + 1):
# compute the length of every triangle edge
edge_length = (np.diff(
current_vertices[current_faces[:, [0, 1, 2, 0]]],
axis=1) ** 2).sum(axis=2) ** .5
# check edge length against maximum
too_long = (edge_length > max_edge).any(axis=1)
# faces that are OK
face_ok = ~too_long
# clean up the faces a little bit so we don't
# store a ton of unused vertices
unique, inverse = grouping.unique_bincount(
current_faces[face_ok].flatten(),
return_inverse=True)
# store vertices and faces meeting criteria
done_vert.append(current_vertices[unique])
done_face.append(inverse.reshape((-1, 3)))
done_idx.append(current_index[face_ok])
# met our goals so exit
if not too_long.any():
break
current_index = np.tile(current_index[too_long], (4, 1)).T.ravel()
# run subdivision again
(current_vertices,
current_faces) = subdivide(current_vertices,
current_faces[too_long])
if i >= max_iter:
util.log.warning(
'subdivide_to_size reached maximum iterations before exit criteria!')
# stack sequence into nice (n, 3) arrays
final_vertices, final_faces = util.append_faces(
done_vert, done_face)
if return_index:
final_index = np.concatenate(done_idx)
assert len(final_index) == len(final_faces)
return final_vertices, final_faces, final_index
return final_vertices, final_faces