hub/venv/lib/python3.7/site-packages/trimesh/path/entities.py

736 lines
19 KiB
Python
Raw Normal View History

"""
entities.py
--------------
Basic geometric primitives which only store references to
vertex indices rather than vertices themselves.
"""
import numpy as np
import copy
from .arc import discretize_arc, arc_center
from .curve import discretize_bezier, discretize_bspline
from .. import util
class Entity(object):
def __init__(self,
points,
closed=None,
layer=None,
color=None,
**kwargs):
# points always reference vertex indices and are int
self.points = np.asanyarray(points, dtype=np.int64)
# save explicit closed
if closed is not None:
self.closed = closed
# save the passed layer
self.layer = layer
# save the passed color
self.color = color
# save any other kwargs for general use
self.kwargs = kwargs
def to_dict(self):
"""
Returns a dictionary with all of the information
about the entity.
Returns
-----------
as_dict : dict
Has keys 'type', 'points', 'closed'
"""
return {'type': self.__class__.__name__,
'points': self.points.tolist(),
'closed': self.closed}
@property
def closed(self):
"""
If the first point is the same as the end point
the entity is closed
Returns
-----------
closed : bool
Is the entity closed or not?
"""
closed = (len(self.points) > 2 and
self.points[0] == self.points[-1])
return closed
@property
def nodes(self):
"""
Returns an (n,2) list of nodes, or vertices on the path.
Note that this generic class function assumes that all of the
reference points are on the path which is true for lines and
three point arcs.
If you were to define another class where that wasn't the case
(for example, the control points of a bezier curve),
you would need to implement an entity- specific version of this
function.
The purpose of having a list of nodes is so that they can then be
added as edges to a graph so we can use functions to check
connectivity, extract paths, etc.
The slicing on this function is essentially just tiling points
so the first and last vertices aren't repeated. Example:
self.points = [0,1,2]
returns: [[0,1], [1,2]]
"""
return np.column_stack((self.points,
self.points)).reshape(
-1)[1:-1].reshape((-1, 2))
@property
def end_points(self):
"""
Returns the first and last points. Also note that if you
define a new entity class where the first and last vertices
in self.points aren't the endpoints of the curve you need to
implement this function for your class.
Returns
-------------
ends : (2,) int
Indices of the two end points of the entity
"""
return self.points[[0, -1]]
@property
def is_valid(self):
"""
Is the current entity valid.
Returns
-----------
valid : bool
Is the current entity well formed
"""
return True
def reverse(self, direction=-1):
"""
Reverse the current entity in place.
Parameters
----------------
direction : int
If positive will not touch direction
If negative will reverse self.points
"""
if direction < 0:
self._direction = -1
else:
self._direction = 1
def _orient(self, curve):
"""
Reverse a curve if a flag is set.
Parameters
--------------
curve : (n, dimension) float
Curve made up of line segments in space
Returns
------------
orient : (n, dimension) float
Original curve, but possibly reversed
"""
if hasattr(self, '_direction') and self._direction < 0:
return curve[::-1]
return curve
def bounds(self, vertices):
"""
Return the AABB of the current entity.
Parameters
-----------
vertices : (n, dimension) float
Vertices in space
Returns
-----------
bounds : (2, dimension) float
Coordinates of AABB, in (min, max) form
"""
bounds = np.array([vertices[self.points].min(axis=0),
vertices[self.points].max(axis=0)])
return bounds
def length(self, vertices):
"""
Return the total length of the entity.
Parameters
--------------
vertices : (n, dimension) float
Vertices in space
Returns
---------
length : float
Total length of entity
"""
diff = np.diff(self.discrete(vertices), axis=0) ** 2
length = (np.dot(diff, [1] * vertices.shape[1]) ** 0.5).sum()
return length
def explode(self):
"""
Split the entity into multiple entities.
Returns
------------
explode : list of Entity
Current entity split into multiple entities if necessary
"""
return [self.copy()]
def copy(self):
"""
Return a copy of the current entity.
Returns
------------
copied : Entity
Copy of current entity
"""
return copy.deepcopy(self)
def __hash__(self):
"""
Return a hash that represents the current entity.
Returns
----------
hashed : int
Hash of current class name, points, and closed
"""
hashed = hash(self._bytes())
return hashed
def _bytes(self):
"""
Get hashable bytes that define the current entity.
Returns
------------
data : bytes
Hashable data defining the current entity
"""
# give consistent ordering of points for hash
if self.points[0] > self.points[-1]:
return (self.__class__.__name__.encode('utf-8') +
self.points.tobytes())
else:
return (self.__class__.__name__.encode('utf-8') +
self.points[::-1].tobytes())
class Text(Entity):
"""
Text to annotate a 2D or 3D path.
"""
def __init__(self,
origin,
text,
height=None,
vector=None,
normal=None,
align=None,
layer=None):
"""
An entity for text labels.
Parameters
--------------
origin : int
Index of a single vertex for text origin
text : str
The text to label
height : float or None
The height of text
vector : int or None
An vertex index for which direction text
is written along unitized: vector - origin
normal : int or None
A vertex index for the plane normal:
vector is along unitized: normal - origin
align : (2,) str or None
Where to draw from for [horizontal, vertical]:
'center', 'left', 'right'
"""
# where is text placed
self.origin = origin
# what direction is the text pointing
self.vector = vector
# what is the normal of the text plane
self.normal = normal
# how high is the text entity
self.height = height
# what layer is the entity on
self.layer = layer
# None or (2,) str
if align is None:
# if not set make everything centered
align = ['center', 'center']
elif util.is_string(align):
# if only one is passed set for both
# horizontal and vertical
align = [align, align]
elif len(align) != 2:
# otherwise raise rror
raise ValueError('align must be (2,) str')
if any(i not in ['left', 'right', 'center']
for i in align):
print('nah')
self.align = align
# make sure text is a string
if hasattr(text, 'decode'):
self.text = text.decode('utf-8')
else:
self.text = str(text)
@property
def origin(self):
"""
The origin point of the text.
Returns
-----------
origin : int
Index of vertices
"""
return self.points[0]
@origin.setter
def origin(self, value):
value = int(value)
if not hasattr(self, 'points') or self.points.ptp() == 0:
self.points = np.ones(3, dtype=np.int64) * value
else:
self.points[0] = value
@property
def vector(self):
"""
A point representing the text direction
along the vector: vertices[vector] - vertices[origin]
Returns
----------
vector : int
Index of vertex
"""
return self.points[1]
@vector.setter
def vector(self, value):
if value is None:
return
self.points[1] = int(value)
@property
def normal(self):
"""
A point representing the plane normal along the
vector: vertices[normal] - vertices[origin]
Returns
------------
normal : int
Index of vertex
"""
return self.points[2]
@normal.setter
def normal(self, value):
if value is None:
return
self.points[2] = int(value)
def plot(self, vertices, show=False):
"""
Plot the text using matplotlib.
Parameters
--------------
vertices : (n, 2) float
Vertices in space
show : bool
If True, call plt.show()
"""
if vertices.shape[1] != 2:
raise ValueError('only for 2D points!')
import matplotlib.pyplot as plt
# get rotation angle in degrees
angle = np.degrees(self.angle(vertices))
# TODO: handle text size better
plt.text(*vertices[self.origin],
s=self.text,
rotation=angle,
ha=self.align[0],
va=self.align[1],
size=18)
if show:
plt.show()
def angle(self, vertices):
"""
If Text is 2D, get the rotation angle in radians.
Parameters
-----------
vertices : (n, 2) float
Vertices in space referenced by self.points
Returns
---------
angle : float
Rotation angle in radians
"""
if vertices.shape[1] != 2:
raise ValueError('angle only valid for 2D points!')
# get the vector from origin
direction = vertices[self.vector] - vertices[self.origin]
# get the rotation angle in radians
angle = np.arctan2(*direction[::-1])
return angle
def length(self, vertices):
return 0.0
def discrete(self, *args, **kwargs):
return np.array([])
@property
def closed(self):
return False
@property
def is_valid(self):
return True
@property
def nodes(self):
return np.array([])
@property
def end_points(self):
return np.array([])
def _bytes(self):
data = b''.join([b'Text',
self.points.tobytes(),
self.text.encode('utf-8')])
return data
class Line(Entity):
"""
A line or poly-line entity
"""
def discrete(self, vertices, scale=1.0):
"""
Discretize into a world- space path.
Parameters
------------
vertices: (n, dimension) float
Points in space
scale : float
Size of overall scene for numerical comparisons
Returns
-------------
discrete: (m, dimension) float
Path in space composed of line segments
"""
discrete = self._orient(vertices[self.points])
return discrete
@property
def is_valid(self):
"""
Is the current entity valid.
Returns
-----------
valid : bool
Is the current entity well formed
"""
valid = np.any((self.points - self.points[0]) != 0)
return valid
def explode(self):
"""
If the current Line entity consists of multiple line
break it up into n Line entities.
Returns
----------
exploded: (n,) Line entities
"""
# copy over the current layer
layer = self.layer
points = np.column_stack((
self.points,
self.points)).ravel()[1:-1].reshape((-1, 2))
exploded = [Line(i, layer=layer) for i in points]
return exploded
def _bytes(self):
# give consistent ordering of points for hash
if self.points[0] > self.points[-1]:
return b'Line' + self.points.tobytes()
else:
return b'Line' + self.points[::-1].tobytes()
class Arc(Entity):
@property
def closed(self):
"""
A boolean flag for whether the arc is closed (a circle) or not.
Returns
----------
closed : bool
If set True, Arc will be a closed circle
"""
if hasattr(self, '_closed'):
return self._closed
return False
@closed.setter
def closed(self, value):
"""
Set the Arc to be closed or not, without
changing the control points
Parameters
------------
value : bool
Should this Arc be a closed circle or not
"""
self._closed = bool(value)
@property
def is_valid(self):
"""
Is the current Arc entity valid.
Returns
-----------
valid : bool
Does the current Arc have exactly 3 control points
"""
return len(np.unique(self.points)) == 3
def _bytes(self):
# give consistent ordering of points for hash
if self.points[0] > self.points[-1]:
return b'Arc' + bytes(self.closed) + self.points.tobytes()
else:
return b'Arc' + bytes(self.closed) + self.points[::-1].tobytes()
def discrete(self, vertices, scale=1.0):
"""
Discretize the arc entity into line sections.
Parameters
------------
vertices : (n, dimension) float
Points in space
scale : float
Size of overall scene for numerical comparisons
Returns
-------------
discrete : (m, dimension) float
Path in space made up of line segments
"""
discrete = discretize_arc(vertices[self.points],
close=self.closed,
scale=scale)
return self._orient(discrete)
def center(self, vertices):
"""
Return the center information about the arc entity.
Parameters
-------------
vertices : (n, dimension) float
Vertices in space
Returns
-------------
info : dict
With keys: 'radius', 'center'
"""
info = arc_center(vertices[self.points])
return info
def bounds(self, vertices):
"""
Return the AABB of the arc entity.
Parameters
-----------
vertices: (n, dimension) float
Vertices in space
Returns
-----------
bounds : (2, dimension) float
Coordinates of AABB in (min, max) form
"""
if util.is_shape(vertices, (-1, 2)) and self.closed:
# if we have a closed arc (a circle), we can return the actual bounds
# this only works in two dimensions, otherwise this would return the
# AABB of an sphere
info = self.center(vertices)
bounds = np.array([info['center'] - info['radius'],
info['center'] + info['radius']],
dtype=np.float64)
else:
# since the AABB of a partial arc is hard, approximate
# the bounds by just looking at the discrete values
discrete = self.discrete(vertices)
bounds = np.array([discrete.min(axis=0),
discrete.max(axis=0)],
dtype=np.float64)
return bounds
class Curve(Entity):
"""
The parent class for all wild curves in space.
"""
@property
def nodes(self):
# a point midway through the curve
mid = self.points[len(self.points) // 2]
return [[self.points[0], mid],
[mid, self.points[-1]]]
class Bezier(Curve):
"""
An open or closed Bezier curve
"""
def discrete(self, vertices, scale=1.0, count=None):
"""
Discretize the Bezier curve.
Parameters
-------------
vertices : (n, 2) or (n, 3) float
Points in space
scale : float
Scale of overall drawings (for precision)
count : int
Number of segments to return
Returns
-------------
discrete : (m, 2) or (m, 3) float
Curve as line segments
"""
discrete = discretize_bezier(
vertices[self.points],
count=count,
scale=scale)
return self._orient(discrete)
class BSpline(Curve):
"""
An open or closed B- Spline.
"""
def __init__(self, points,
knots,
closed=None,
layer=None,
**kwargs):
self.points = np.asanyarray(points, dtype=np.int64)
self.knots = np.asanyarray(knots, dtype=np.float64)
self.layer = layer
self.kwargs = kwargs
def discrete(self, vertices, count=None, scale=1.0):
"""
Discretize the B-Spline curve.
Parameters
-------------
vertices : (n, 2) or (n, 3) float
Points in space
scale : float
Scale of overall drawings (for precision)
count : int
Number of segments to return
Returns
-------------
discrete : (m, 2) or (m, 3) float
Curve as line segments
"""
discrete = discretize_bspline(
control=vertices[self.points],
knots=self.knots,
count=count,
scale=scale)
return self._orient(discrete)
def _bytes(self):
# give consistent ordering of points for hash
if self.points[0] > self.points[-1]:
return (b'BSpline' +
self.knots.tobytes() +
self.points.tobytes())
else:
return (b'BSpline' +
self.knots[::-1].tobytes() +
self.points[::-1].tobytes())
def to_dict(self):
"""
Returns a dictionary with all of the information
about the entity.
"""
return {'type': self.__class__.__name__,
'points': self.points.tolist(),
'knots': self.knots.tolist(),
'closed': self.closed}