2236 lines
71 KiB
Python
2236 lines
71 KiB
Python
|
# -*- coding: utf-8 -*-
|
||
|
# transformations.py
|
||
|
|
||
|
# Modified for inclusion in the `trimesh` library
|
||
|
# https://github.com/mikedh/trimesh
|
||
|
# -----------------------------------------------------------------------
|
||
|
#
|
||
|
# Copyright (c) 2006-2017, Christoph Gohlke
|
||
|
# Copyright (c) 2006-2017, The Regents of the University of California
|
||
|
# Produced at the Laboratory for Fluorescence Dynamics
|
||
|
# All rights reserved.
|
||
|
#
|
||
|
# Redistribution and use in source and binary forms, with or without
|
||
|
# modification, are permitted provided that the following conditions are met:
|
||
|
#
|
||
|
# * Redistributions of source code must retain the above copyright
|
||
|
# notice, this list of conditions and the following disclaimer.
|
||
|
# * Redistributions in binary form must reproduce the above copyright
|
||
|
# notice, this list of conditions and the following disclaimer in the
|
||
|
# documentation and/or other materials provided with the distribution.
|
||
|
# * Neither the name of the copyright holders nor the names of any
|
||
|
# contributors may be used to endorse or promote products derived
|
||
|
# from this software without specific prior written permission.
|
||
|
#
|
||
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
|
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
# POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
||
|
"""Homogeneous Transformation Matrices and Quaternions.
|
||
|
|
||
|
A library for calculating 4x4 matrices for translating, rotating, reflecting,
|
||
|
scaling, shearing, projecting, orthogonalizing, and superimposing arrays of
|
||
|
3D homogeneous coordinates as well as for converting between rotation matrices,
|
||
|
Euler angles, and quaternions. Also includes an Arcball control object and
|
||
|
functions to decompose transformation matrices.
|
||
|
|
||
|
:Author:
|
||
|
`Christoph Gohlke <http://www.lfd.uci.edu/~gohlke/>`_
|
||
|
|
||
|
:Organization:
|
||
|
Laboratory for Fluorescence Dynamics, University of California, Irvine
|
||
|
|
||
|
:Version: 2017.02.17
|
||
|
|
||
|
Requirements
|
||
|
------------
|
||
|
* `CPython 2.7 or 3.4 <http://www.python.org>`_
|
||
|
* `numpy 1.9 <http://www.np.org>`_
|
||
|
* `Transformations.c 2015.03.19 <http://www.lfd.uci.edu/~gohlke/>`_
|
||
|
(recommended for speedup of some functions)
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The API is not stable yet and is expected to change between revisions.
|
||
|
|
||
|
This Python code is not optimized for speed. Refer to the transformations.c
|
||
|
module for a faster implementation of some functions.
|
||
|
|
||
|
Documentation in HTML format can be generated with epydoc.
|
||
|
|
||
|
Matrices (M) can be inverted using np.linalg.inv(M), be concatenated using
|
||
|
np.dot(M0, M1), or transform homogeneous coordinate arrays (v) using
|
||
|
np.dot(M, v) for shape (4, *) column vectors, respectively
|
||
|
np.dot(v, M.T) for shape (*, 4) row vectors ("array of points").
|
||
|
|
||
|
This module follows the "column vectors on the right" and "row major storage"
|
||
|
(C contiguous) conventions. The translation components are in the right column
|
||
|
of the transformation matrix, i.e. M[:3, 3].
|
||
|
The transpose of the transformation matrices may have to be used to interface
|
||
|
with other graphics systems, e.g. with OpenGL's glMultMatrixd(). See also [16].
|
||
|
|
||
|
Calculations are carried out with np.float64 precision.
|
||
|
|
||
|
Vector, point, quaternion, and matrix function arguments are expected to be
|
||
|
"array like", i.e. tuple, list, or numpy arrays.
|
||
|
|
||
|
Return types are numpy arrays unless specified otherwise.
|
||
|
|
||
|
Angles are in radians unless specified otherwise.
|
||
|
|
||
|
Quaternions w+ix+jy+kz are represented as [w, x, y, z].
|
||
|
|
||
|
A triple of Euler angles can be applied/interpreted in 24 ways, which can
|
||
|
be specified using a 4 character string or encoded 4-tuple:
|
||
|
|
||
|
*Axes 4-string*: e.g. 'sxyz' or 'ryxy'
|
||
|
|
||
|
- first character : rotations are applied to 's'tatic or 'r'otating frame
|
||
|
- remaining characters : successive rotation axis 'x', 'y', or 'z'
|
||
|
|
||
|
*Axes 4-tuple*: e.g. (0, 0, 0, 0) or (1, 1, 1, 1)
|
||
|
|
||
|
- inner axis: code of axis ('x':0, 'y':1, 'z':2) of rightmost matrix.
|
||
|
- parity : even (0) if inner axis 'x' is followed by 'y', 'y' is followed
|
||
|
by 'z', or 'z' is followed by 'x'. Otherwise odd (1).
|
||
|
- repetition : first and last axis are same (1) or different (0).
|
||
|
- frame : rotations are applied to static (0) or rotating (1) frame.
|
||
|
|
||
|
Other Python packages and modules for 3D transformations and quaternions:
|
||
|
|
||
|
* `Transforms3d <https://pypi.python.org/pypi/transforms3d>`_
|
||
|
includes most code of this module.
|
||
|
* `Blender.mathutils <http://www.blender.org/api/blender_python_api>`_
|
||
|
* `numpy-dtypes <https://github.com/numpy/numpy-dtypes>`_
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
(1) Matrices and transformations. Ronald Goldman.
|
||
|
In "Graphics Gems I", pp 472-475. Morgan Kaufmann, 1990.
|
||
|
(2) More matrices and transformations: shear and pseudo-perspective.
|
||
|
Ronald Goldman. In "Graphics Gems II", pp 320-323. Morgan Kaufmann, 1991.
|
||
|
(3) Decomposing a matrix into simple transformations. Spencer Thomas.
|
||
|
In "Graphics Gems II", pp 320-323. Morgan Kaufmann, 1991.
|
||
|
(4) Recovering the data from the transformation matrix. Ronald Goldman.
|
||
|
In "Graphics Gems II", pp 324-331. Morgan Kaufmann, 1991.
|
||
|
(5) Euler angle conversion. Ken Shoemake.
|
||
|
In "Graphics Gems IV", pp 222-229. Morgan Kaufmann, 1994.
|
||
|
(6) Arcball rotation control. Ken Shoemake.
|
||
|
In "Graphics Gems IV", pp 175-192. Morgan Kaufmann, 1994.
|
||
|
(7) Representing attitude: Euler angles, unit quaternions, and rotation
|
||
|
vectors. James Diebel. 2006.
|
||
|
(8) A discussion of the solution for the best rotation to relate two sets
|
||
|
of vectors. W Kabsch. Acta Cryst. 1978. A34, 827-828.
|
||
|
(9) Closed-form solution of absolute orientation using unit quaternions.
|
||
|
BKP Horn. J Opt Soc Am A. 1987. 4(4):629-642.
|
||
|
(10) Quaternions. Ken Shoemake.
|
||
|
http://www.sfu.ca/~jwa3/cmpt461/files/quatut.pdf
|
||
|
(11) From quaternion to matrix and back. JMP van Waveren. 2005.
|
||
|
http://www.intel.com/cd/ids/developer/asmo-na/eng/293748.htm
|
||
|
(12) Uniform random rotations. Ken Shoemake.
|
||
|
In "Graphics Gems III", pp 124-132. Morgan Kaufmann, 1992.
|
||
|
(13) Quaternion in molecular modeling. CFF Karney.
|
||
|
J Mol Graph Mod, 25(5):595-604
|
||
|
(14) New method for extracting the quaternion from a rotation matrix.
|
||
|
Itzhack Y Bar-Itzhack, J Guid Contr Dynam. 2000. 23(6): 1085-1087.
|
||
|
(15) Multiple View Geometry in Computer Vision. Hartley and Zissermann.
|
||
|
Cambridge University Press; 2nd Ed. 2004. Chapter 4, Algorithm 4.7, p 130.
|
||
|
(16) Column Vectors vs. Row Vectors.
|
||
|
http://steve.hollasch.net/cgindex/math/matrix/column-vec.html
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> alpha, beta, gamma = 0.123, -1.234, 2.345
|
||
|
>>> origin, xaxis, yaxis, zaxis = [0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1]
|
||
|
>>> I = identity_matrix()
|
||
|
>>> Rx = rotation_matrix(alpha, xaxis)
|
||
|
>>> Ry = rotation_matrix(beta, yaxis)
|
||
|
>>> Rz = rotation_matrix(gamma, zaxis)
|
||
|
>>> R = concatenate_matrices(Rx, Ry, Rz)
|
||
|
>>> euler = euler_from_matrix(R, 'rxyz')
|
||
|
>>> np.allclose([alpha, beta, gamma], euler)
|
||
|
True
|
||
|
>>> Re = euler_matrix(alpha, beta, gamma, 'rxyz')
|
||
|
>>> is_same_transform(R, Re)
|
||
|
True
|
||
|
>>> al, be, ga = euler_from_matrix(Re, 'rxyz')
|
||
|
>>> is_same_transform(Re, euler_matrix(al, be, ga, 'rxyz'))
|
||
|
True
|
||
|
>>> qx = quaternion_about_axis(alpha, xaxis)
|
||
|
>>> qy = quaternion_about_axis(beta, yaxis)
|
||
|
>>> qz = quaternion_about_axis(gamma, zaxis)
|
||
|
>>> q = quaternion_multiply(qx, qy)
|
||
|
>>> q = quaternion_multiply(q, qz)
|
||
|
>>> Rq = quaternion_matrix(q)
|
||
|
>>> is_same_transform(R, Rq)
|
||
|
True
|
||
|
>>> S = scale_matrix(1.23, origin)
|
||
|
>>> T = translation_matrix([1, 2, 3])
|
||
|
>>> Z = shear_matrix(beta, xaxis, origin, zaxis)
|
||
|
>>> R = random_rotation_matrix(np.random.rand(3))
|
||
|
>>> M = concatenate_matrices(T, R, Z, S)
|
||
|
>>> scale, shear, angles, trans, persp = decompose_matrix(M)
|
||
|
>>> np.allclose(scale, 1.23)
|
||
|
True
|
||
|
>>> np.allclose(trans, [1, 2, 3])
|
||
|
True
|
||
|
>>> np.allclose(shear, [0, math.tan(beta), 0])
|
||
|
True
|
||
|
>>> is_same_transform(R, euler_matrix(axes='sxyz', *angles))
|
||
|
True
|
||
|
>>> M1 = compose_matrix(scale, shear, angles, trans, persp)
|
||
|
>>> is_same_transform(M, M1)
|
||
|
True
|
||
|
>>> v0, v1 = random_vector(3), random_vector(3)
|
||
|
>>> M = rotation_matrix(angle_between_vectors(v0, v1), vector_product(v0, v1))
|
||
|
>>> v2 = np.dot(v0, M[:3,:3].T)
|
||
|
>>> np.allclose(unit_vector(v1), unit_vector(v2))
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
|
||
|
from __future__ import division, print_function
|
||
|
|
||
|
import math
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
__version__ = '2017.02.17'
|
||
|
__docformat__ = 'restructuredtext en'
|
||
|
__all__ = ()
|
||
|
|
||
|
|
||
|
def identity_matrix():
|
||
|
"""Return 4x4 identity/unit matrix.
|
||
|
|
||
|
>>> I = identity_matrix()
|
||
|
>>> np.allclose(I, np.dot(I, I))
|
||
|
True
|
||
|
>>> np.sum(I), np.trace(I)
|
||
|
(4.0, 4.0)
|
||
|
>>> np.allclose(I, np.identity(4))
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
return np.identity(4)
|
||
|
|
||
|
|
||
|
def translation_matrix(direction):
|
||
|
"""
|
||
|
Return matrix to translate by direction vector.
|
||
|
|
||
|
>>> v = np.random.random(3) - 0.5
|
||
|
>>> np.allclose(v, translation_matrix(v)[:3, 3])
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
# are we 2D or 3D
|
||
|
dim = len(direction)
|
||
|
# start with identity matrix
|
||
|
M = np.identity(dim + 1)
|
||
|
# apply the offset
|
||
|
M[:dim, dim] = direction[:dim]
|
||
|
return M
|
||
|
|
||
|
|
||
|
def translation_from_matrix(matrix):
|
||
|
"""Return translation vector from translation matrix.
|
||
|
|
||
|
>>> v0 = np.random.random(3) - 0.5
|
||
|
>>> v1 = translation_from_matrix(translation_matrix(v0))
|
||
|
>>> np.allclose(v0, v1)
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
return np.array(matrix, copy=False)[:3, 3].copy()
|
||
|
|
||
|
|
||
|
def reflection_matrix(point, normal):
|
||
|
"""Return matrix to mirror at plane defined by point and normal vector.
|
||
|
|
||
|
>>> v0 = np.random.random(4) - 0.5
|
||
|
>>> v0[3] = 1.
|
||
|
>>> v1 = np.random.random(3) - 0.5
|
||
|
>>> R = reflection_matrix(v0, v1)
|
||
|
>>> np.allclose(2, np.trace(R))
|
||
|
True
|
||
|
>>> np.allclose(v0, np.dot(R, v0))
|
||
|
True
|
||
|
>>> v2 = v0.copy()
|
||
|
>>> v2[:3] += v1
|
||
|
>>> v3 = v0.copy()
|
||
|
>>> v2[:3] -= v1
|
||
|
>>> np.allclose(v2, np.dot(R, v3))
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
normal = unit_vector(normal[:3])
|
||
|
M = np.identity(4)
|
||
|
M[:3, :3] -= 2.0 * np.outer(normal, normal)
|
||
|
M[:3, 3] = (2.0 * np.dot(point[:3], normal)) * normal
|
||
|
return M
|
||
|
|
||
|
|
||
|
def reflection_from_matrix(matrix):
|
||
|
"""Return mirror plane point and normal vector from reflection matrix.
|
||
|
|
||
|
>>> v0 = np.random.random(3) - 0.5
|
||
|
>>> v1 = np.random.random(3) - 0.5
|
||
|
>>> M0 = reflection_matrix(v0, v1)
|
||
|
>>> point, normal = reflection_from_matrix(M0)
|
||
|
>>> M1 = reflection_matrix(point, normal)
|
||
|
>>> is_same_transform(M0, M1)
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
M = np.array(matrix, dtype=np.float64, copy=False)
|
||
|
# normal: unit eigenvector corresponding to eigenvalue -1
|
||
|
w, V = np.linalg.eig(M[:3, :3])
|
||
|
i = np.where(abs(np.real(w) + 1.0) < 1e-8)[0]
|
||
|
if not len(i):
|
||
|
raise ValueError("no unit eigenvector corresponding to eigenvalue -1")
|
||
|
normal = np.real(V[:, i[0]]).squeeze()
|
||
|
# point: any unit eigenvector corresponding to eigenvalue 1
|
||
|
w, V = np.linalg.eig(M)
|
||
|
i = np.where(abs(np.real(w) - 1.0) < 1e-8)[0]
|
||
|
if not len(i):
|
||
|
raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
|
||
|
point = np.real(V[:, i[-1]]).squeeze()
|
||
|
point /= point[3]
|
||
|
return point, normal
|
||
|
|
||
|
|
||
|
def rotation_matrix(angle, direction, point=None):
|
||
|
"""
|
||
|
Return matrix to rotate about axis defined by point and
|
||
|
direction.
|
||
|
|
||
|
Parameters
|
||
|
-------------
|
||
|
angle : float, or sympy.Symbol
|
||
|
Angle, in radians or symbolic angle
|
||
|
direction : (3,) float
|
||
|
Unit vector along rotation axis
|
||
|
point : (3, ) float, or None
|
||
|
Origin point of rotation axis
|
||
|
|
||
|
Returns
|
||
|
-------------
|
||
|
matrix : (4, 4) float, or (4, 4) sympy.Matrix
|
||
|
Homogeneous transformation matrix
|
||
|
|
||
|
Examples
|
||
|
-------------
|
||
|
>>> R = rotation_matrix(math.pi/2, [0, 0, 1], [1, 0, 0])
|
||
|
>>> np.allclose(np.dot(R, [0, 0, 0, 1]), [1, -1, 0, 1])
|
||
|
True
|
||
|
>>> angle = (random.random() - 0.5) * (2*math.pi)
|
||
|
>>> direc = np.random.random(3) - 0.5
|
||
|
>>> point = np.random.random(3) - 0.5
|
||
|
>>> R0 = rotation_matrix(angle, direc, point)
|
||
|
>>> R1 = rotation_matrix(angle-2*math.pi, direc, point)
|
||
|
>>> is_same_transform(R0, R1)
|
||
|
True
|
||
|
>>> R0 = rotation_matrix(angle, direc, point)
|
||
|
>>> R1 = rotation_matrix(-angle, -direc, point)
|
||
|
>>> is_same_transform(R0, R1)
|
||
|
True
|
||
|
>>> I = np.identity(4, np.float64)
|
||
|
>>> np.allclose(I, rotation_matrix(math.pi*2, direc))
|
||
|
True
|
||
|
>>> np.allclose(2, np.trace(rotation_matrix(math.pi/2,direc,point)))
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
if type(angle).__name__ == 'Symbol':
|
||
|
# special case sympy symbolic angles
|
||
|
import sympy as sp
|
||
|
symbolic = True
|
||
|
sina = sp.sin(angle)
|
||
|
cosa = sp.cos(angle)
|
||
|
else:
|
||
|
symbolic = False
|
||
|
sina = math.sin(angle)
|
||
|
cosa = math.cos(angle)
|
||
|
|
||
|
direction = unit_vector(direction[:3])
|
||
|
# rotation matrix around unit vector
|
||
|
M = np.diag([cosa, cosa, cosa, 1.0])
|
||
|
M[:3, :3] += np.outer(direction, direction) * (1.0 - cosa)
|
||
|
|
||
|
direction = direction * sina
|
||
|
M[:3, :3] += np.array([[0.0, -direction[2], direction[1]],
|
||
|
[direction[2], 0.0, -direction[0]],
|
||
|
[-direction[1], direction[0], 0.0]])
|
||
|
|
||
|
# if point is specified, rotation is not around origin
|
||
|
if point is not None:
|
||
|
point = np.array(point[:3], dtype=np.float64, copy=False)
|
||
|
M[:3, 3] = point - np.dot(M[:3, :3], point)
|
||
|
|
||
|
# return symbolic angles as sympy Matrix objects
|
||
|
if symbolic:
|
||
|
return sp.Matrix(M)
|
||
|
|
||
|
return M
|
||
|
|
||
|
|
||
|
def rotation_from_matrix(matrix):
|
||
|
"""Return rotation angle and axis from rotation matrix.
|
||
|
|
||
|
>>> angle = (random.random() - 0.5) * (2*math.pi)
|
||
|
>>> direc = np.random.random(3) - 0.5
|
||
|
>>> point = np.random.random(3) - 0.5
|
||
|
>>> R0 = rotation_matrix(angle, direc, point)
|
||
|
>>> angle, direc, point = rotation_from_matrix(R0)
|
||
|
>>> R1 = rotation_matrix(angle, direc, point)
|
||
|
>>> is_same_transform(R0, R1)
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
R = np.array(matrix, dtype=np.float64, copy=False)
|
||
|
R33 = R[:3, :3]
|
||
|
# direction: unit eigenvector of R33 corresponding to eigenvalue of 1
|
||
|
w, W = np.linalg.eig(R33.T)
|
||
|
i = np.where(abs(np.real(w) - 1.0) < 1e-8)[0]
|
||
|
if not len(i):
|
||
|
raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
|
||
|
direction = np.real(W[:, i[-1]]).squeeze()
|
||
|
# point: unit eigenvector of R33 corresponding to eigenvalue of 1
|
||
|
w, Q = np.linalg.eig(R)
|
||
|
i = np.where(abs(np.real(w) - 1.0) < 1e-8)[0]
|
||
|
if not len(i):
|
||
|
raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
|
||
|
point = np.real(Q[:, i[-1]]).squeeze()
|
||
|
point /= point[3]
|
||
|
# rotation angle depending on direction
|
||
|
cosa = (np.trace(R33) - 1.0) / 2.0
|
||
|
if abs(direction[2]) > 1e-8:
|
||
|
sina = (R[1, 0] + (cosa - 1.0) * direction[0]
|
||
|
* direction[1]) / direction[2]
|
||
|
elif abs(direction[1]) > 1e-8:
|
||
|
sina = (R[0, 2] + (cosa - 1.0) * direction[0]
|
||
|
* direction[2]) / direction[1]
|
||
|
else:
|
||
|
sina = (R[2, 1] + (cosa - 1.0) * direction[1]
|
||
|
* direction[2]) / direction[0]
|
||
|
angle = math.atan2(sina, cosa)
|
||
|
return angle, direction, point
|
||
|
|
||
|
|
||
|
def scale_matrix(factor, origin=None, direction=None):
|
||
|
"""Return matrix to scale by factor around origin in direction.
|
||
|
|
||
|
Use factor -1 for point symmetry.
|
||
|
|
||
|
>>> v = (np.random.rand(4, 5) - 0.5) * 20
|
||
|
>>> v[3] = 1
|
||
|
>>> S = scale_matrix(-1.234)
|
||
|
>>> np.allclose(np.dot(S, v)[:3], -1.234*v[:3])
|
||
|
True
|
||
|
>>> factor = random.random() * 10 - 5
|
||
|
>>> origin = np.random.random(3) - 0.5
|
||
|
>>> direct = np.random.random(3) - 0.5
|
||
|
>>> S = scale_matrix(factor, origin)
|
||
|
>>> S = scale_matrix(factor, origin, direct)
|
||
|
|
||
|
"""
|
||
|
if direction is None:
|
||
|
# uniform scaling
|
||
|
M = np.diag([factor, factor, factor, 1.0])
|
||
|
if origin is not None:
|
||
|
M[:3, 3] = origin[:3]
|
||
|
M[:3, 3] *= 1.0 - factor
|
||
|
else:
|
||
|
# nonuniform scaling
|
||
|
direction = unit_vector(direction[:3])
|
||
|
factor = 1.0 - factor
|
||
|
M = np.identity(4)
|
||
|
M[:3, :3] -= factor * np.outer(direction, direction)
|
||
|
if origin is not None:
|
||
|
M[:3, 3] = (factor * np.dot(origin[:3], direction)) * direction
|
||
|
return M
|
||
|
|
||
|
|
||
|
def scale_from_matrix(matrix):
|
||
|
"""Return scaling factor, origin and direction from scaling matrix.
|
||
|
|
||
|
>>> factor = random.random() * 10 - 5
|
||
|
>>> origin = np.random.random(3) - 0.5
|
||
|
>>> direct = np.random.random(3) - 0.5
|
||
|
>>> S0 = scale_matrix(factor, origin)
|
||
|
>>> factor, origin, direction = scale_from_matrix(S0)
|
||
|
>>> S1 = scale_matrix(factor, origin, direction)
|
||
|
>>> is_same_transform(S0, S1)
|
||
|
True
|
||
|
>>> S0 = scale_matrix(factor, origin, direct)
|
||
|
>>> factor, origin, direction = scale_from_matrix(S0)
|
||
|
>>> S1 = scale_matrix(factor, origin, direction)
|
||
|
>>> is_same_transform(S0, S1)
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
M = np.array(matrix, dtype=np.float64, copy=False)
|
||
|
M33 = M[:3, :3]
|
||
|
factor = np.trace(M33) - 2.0
|
||
|
try:
|
||
|
# direction: unit eigenvector corresponding to eigenvalue factor
|
||
|
w, V = np.linalg.eig(M33)
|
||
|
i = np.where(abs(np.real(w) - factor) < 1e-8)[0][0]
|
||
|
direction = np.real(V[:, i]).squeeze()
|
||
|
direction /= vector_norm(direction)
|
||
|
except IndexError:
|
||
|
# uniform scaling
|
||
|
factor = (factor + 2.0) / 3.0
|
||
|
direction = None
|
||
|
# origin: any eigenvector corresponding to eigenvalue 1
|
||
|
w, V = np.linalg.eig(M)
|
||
|
i = np.where(abs(np.real(w) - 1.0) < 1e-8)[0]
|
||
|
if not len(i):
|
||
|
raise ValueError("no eigenvector corresponding to eigenvalue 1")
|
||
|
origin = np.real(V[:, i[-1]]).squeeze()
|
||
|
origin /= origin[3]
|
||
|
return factor, origin, direction
|
||
|
|
||
|
|
||
|
def projection_matrix(point, normal, direction=None,
|
||
|
perspective=None, pseudo=False):
|
||
|
"""Return matrix to project onto plane defined by point and normal.
|
||
|
|
||
|
Using either perspective point, projection direction, or none of both.
|
||
|
|
||
|
If pseudo is True, perspective projections will preserve relative depth
|
||
|
such that Perspective = dot(Orthogonal, PseudoPerspective).
|
||
|
|
||
|
>>> P = projection_matrix([0, 0, 0], [1, 0, 0])
|
||
|
>>> np.allclose(P[1:, 1:], np.identity(4)[1:, 1:])
|
||
|
True
|
||
|
>>> point = np.random.random(3) - 0.5
|
||
|
>>> normal = np.random.random(3) - 0.5
|
||
|
>>> direct = np.random.random(3) - 0.5
|
||
|
>>> persp = np.random.random(3) - 0.5
|
||
|
>>> P0 = projection_matrix(point, normal)
|
||
|
>>> P1 = projection_matrix(point, normal, direction=direct)
|
||
|
>>> P2 = projection_matrix(point, normal, perspective=persp)
|
||
|
>>> P3 = projection_matrix(point, normal, perspective=persp, pseudo=True)
|
||
|
>>> is_same_transform(P2, np.dot(P0, P3))
|
||
|
True
|
||
|
>>> P = projection_matrix([3, 0, 0], [1, 1, 0], [1, 0, 0])
|
||
|
>>> v0 = (np.random.rand(4, 5) - 0.5) * 20
|
||
|
>>> v0[3] = 1
|
||
|
>>> v1 = np.dot(P, v0)
|
||
|
>>> np.allclose(v1[1], v0[1])
|
||
|
True
|
||
|
>>> np.allclose(v1[0], 3-v1[1])
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
M = np.identity(4)
|
||
|
point = np.array(point[:3], dtype=np.float64, copy=False)
|
||
|
normal = unit_vector(normal[:3])
|
||
|
if perspective is not None:
|
||
|
# perspective projection
|
||
|
perspective = np.array(perspective[:3], dtype=np.float64,
|
||
|
copy=False)
|
||
|
M[0, 0] = M[1, 1] = M[2, 2] = np.dot(perspective - point, normal)
|
||
|
M[:3, :3] -= np.outer(perspective, normal)
|
||
|
if pseudo:
|
||
|
# preserve relative depth
|
||
|
M[:3, :3] -= np.outer(normal, normal)
|
||
|
M[:3, 3] = np.dot(point, normal) * (perspective + normal)
|
||
|
else:
|
||
|
M[:3, 3] = np.dot(point, normal) * perspective
|
||
|
M[3, :3] = -normal
|
||
|
M[3, 3] = np.dot(perspective, normal)
|
||
|
elif direction is not None:
|
||
|
# parallel projection
|
||
|
direction = np.array(direction[:3], dtype=np.float64, copy=False)
|
||
|
scale = np.dot(direction, normal)
|
||
|
M[:3, :3] -= np.outer(direction, normal) / scale
|
||
|
M[:3, 3] = direction * (np.dot(point, normal) / scale)
|
||
|
else:
|
||
|
# orthogonal projection
|
||
|
M[:3, :3] -= np.outer(normal, normal)
|
||
|
M[:3, 3] = np.dot(point, normal) * normal
|
||
|
return M
|
||
|
|
||
|
|
||
|
def projection_from_matrix(matrix, pseudo=False):
|
||
|
"""Return projection plane and perspective point from projection matrix.
|
||
|
|
||
|
Return values are same as arguments for projection_matrix function:
|
||
|
point, normal, direction, perspective, and pseudo.
|
||
|
|
||
|
>>> point = np.random.random(3) - 0.5
|
||
|
>>> normal = np.random.random(3) - 0.5
|
||
|
>>> direct = np.random.random(3) - 0.5
|
||
|
>>> persp = np.random.random(3) - 0.5
|
||
|
>>> P0 = projection_matrix(point, normal)
|
||
|
>>> result = projection_from_matrix(P0)
|
||
|
>>> P1 = projection_matrix(*result)
|
||
|
>>> is_same_transform(P0, P1)
|
||
|
True
|
||
|
>>> P0 = projection_matrix(point, normal, direct)
|
||
|
>>> result = projection_from_matrix(P0)
|
||
|
>>> P1 = projection_matrix(*result)
|
||
|
>>> is_same_transform(P0, P1)
|
||
|
True
|
||
|
>>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=False)
|
||
|
>>> result = projection_from_matrix(P0, pseudo=False)
|
||
|
>>> P1 = projection_matrix(*result)
|
||
|
>>> is_same_transform(P0, P1)
|
||
|
True
|
||
|
>>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=True)
|
||
|
>>> result = projection_from_matrix(P0, pseudo=True)
|
||
|
>>> P1 = projection_matrix(*result)
|
||
|
>>> is_same_transform(P0, P1)
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
M = np.array(matrix, dtype=np.float64, copy=False)
|
||
|
M33 = M[:3, :3]
|
||
|
w, V = np.linalg.eig(M)
|
||
|
i = np.where(abs(np.real(w) - 1.0) < 1e-8)[0]
|
||
|
if not pseudo and len(i):
|
||
|
# point: any eigenvector corresponding to eigenvalue 1
|
||
|
point = np.real(V[:, i[-1]]).squeeze()
|
||
|
point /= point[3]
|
||
|
# direction: unit eigenvector corresponding to eigenvalue 0
|
||
|
w, V = np.linalg.eig(M33)
|
||
|
i = np.where(abs(np.real(w)) < 1e-8)[0]
|
||
|
if not len(i):
|
||
|
raise ValueError("no eigenvector corresponding to eigenvalue 0")
|
||
|
direction = np.real(V[:, i[0]]).squeeze()
|
||
|
direction /= vector_norm(direction)
|
||
|
# normal: unit eigenvector of M33.T corresponding to eigenvalue 0
|
||
|
w, V = np.linalg.eig(M33.T)
|
||
|
i = np.where(abs(np.real(w)) < 1e-8)[0]
|
||
|
if len(i):
|
||
|
# parallel projection
|
||
|
normal = np.real(V[:, i[0]]).squeeze()
|
||
|
normal /= vector_norm(normal)
|
||
|
return point, normal, direction, None, False
|
||
|
else:
|
||
|
# orthogonal projection, where normal equals direction vector
|
||
|
return point, direction, None, None, False
|
||
|
else:
|
||
|
# perspective projection
|
||
|
i = np.where(abs(np.real(w)) > 1e-8)[0]
|
||
|
if not len(i):
|
||
|
raise ValueError(
|
||
|
"no eigenvector not corresponding to eigenvalue 0")
|
||
|
point = np.real(V[:, i[-1]]).squeeze()
|
||
|
point /= point[3]
|
||
|
normal = - M[3, :3]
|
||
|
perspective = M[:3, 3] / np.dot(point[:3], normal)
|
||
|
if pseudo:
|
||
|
perspective -= normal
|
||
|
return point, normal, None, perspective, pseudo
|
||
|
|
||
|
|
||
|
def clip_matrix(left, right, bottom, top, near, far, perspective=False):
|
||
|
"""Return matrix to obtain normalized device coordinates from frustum.
|
||
|
|
||
|
The frustum bounds are axis-aligned along x (left, right),
|
||
|
y (bottom, top) and z (near, far).
|
||
|
|
||
|
Normalized device coordinates are in range [-1, 1] if coordinates are
|
||
|
inside the frustum.
|
||
|
|
||
|
If perspective is True the frustum is a truncated pyramid with the
|
||
|
perspective point at origin and direction along z axis, otherwise an
|
||
|
orthographic canonical view volume (a box).
|
||
|
|
||
|
Homogeneous coordinates transformed by the perspective clip matrix
|
||
|
need to be dehomogenized (divided by w coordinate).
|
||
|
|
||
|
>>> frustum = np.random.rand(6)
|
||
|
>>> frustum[1] += frustum[0]
|
||
|
>>> frustum[3] += frustum[2]
|
||
|
>>> frustum[5] += frustum[4]
|
||
|
>>> M = clip_matrix(perspective=False, *frustum)
|
||
|
>>> a = np.dot(M, [frustum[0], frustum[2], frustum[4], 1])
|
||
|
>>> np.allclose(a, [-1., -1., -1., 1.])
|
||
|
True
|
||
|
>>> b = np.dot(M, [frustum[1], frustum[3], frustum[5], 1])
|
||
|
>>> np.allclose(b, [ 1., 1., 1., 1.])
|
||
|
True
|
||
|
>>> M = clip_matrix(perspective=True, *frustum)
|
||
|
>>> v = np.dot(M, [frustum[0], frustum[2], frustum[4], 1])
|
||
|
>>> c = v / v[3]
|
||
|
>>> np.allclose(c, [-1., -1., -1., 1.])
|
||
|
True
|
||
|
>>> v = np.dot(M, [frustum[1], frustum[3], frustum[4], 1])
|
||
|
>>> d = v / v[3]
|
||
|
>>> np.allclose(d, [ 1., 1., -1., 1.])
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
if left >= right or bottom >= top or near >= far:
|
||
|
raise ValueError("invalid frustum")
|
||
|
if perspective:
|
||
|
if near <= _EPS:
|
||
|
raise ValueError("invalid frustum: near <= 0")
|
||
|
t = 2.0 * near
|
||
|
M = [[t / (left - right), 0.0, (right + left) / (right - left), 0.0],
|
||
|
[0.0, t / (bottom - top), (top + bottom) / (top - bottom), 0.0],
|
||
|
[0.0, 0.0, (far + near) / (near - far), t * far / (far - near)],
|
||
|
[0.0, 0.0, -1.0, 0.0]]
|
||
|
else:
|
||
|
M = [[2.0 / (right - left), 0.0, 0.0, (right + left) / (left - right)],
|
||
|
[0.0, 2.0 / (top - bottom), 0.0, (top + bottom) / (bottom - top)],
|
||
|
[0.0, 0.0, 2.0 / (far - near), (far + near) / (near - far)],
|
||
|
[0.0, 0.0, 0.0, 1.0]]
|
||
|
return np.array(M)
|
||
|
|
||
|
|
||
|
def shear_matrix(angle, direction, point, normal):
|
||
|
"""Return matrix to shear by angle along direction vector on shear plane.
|
||
|
|
||
|
The shear plane is defined by a point and normal vector. The direction
|
||
|
vector must be orthogonal to the plane's normal vector.
|
||
|
|
||
|
A point P is transformed by the shear matrix into P" such that
|
||
|
the vector P-P" is parallel to the direction vector and its extent is
|
||
|
given by the angle of P-P'-P", where P' is the orthogonal projection
|
||
|
of P onto the shear plane.
|
||
|
|
||
|
>>> angle = (random.random() - 0.5) * 4*math.pi
|
||
|
>>> direct = np.random.random(3) - 0.5
|
||
|
>>> point = np.random.random(3) - 0.5
|
||
|
>>> normal = np.cross(direct, np.random.random(3))
|
||
|
>>> S = shear_matrix(angle, direct, point, normal)
|
||
|
>>> np.allclose(1, np.linalg.det(S))
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
normal = unit_vector(normal[:3])
|
||
|
direction = unit_vector(direction[:3])
|
||
|
if abs(np.dot(normal, direction)) > 1e-6:
|
||
|
raise ValueError("direction and normal vectors are not orthogonal")
|
||
|
angle = math.tan(angle)
|
||
|
M = np.identity(4)
|
||
|
M[:3, :3] += angle * np.outer(direction, normal)
|
||
|
M[:3, 3] = -angle * np.dot(point[:3], normal) * direction
|
||
|
return M
|
||
|
|
||
|
|
||
|
def shear_from_matrix(matrix):
|
||
|
"""Return shear angle, direction and plane from shear matrix.
|
||
|
|
||
|
>>> angle = np.pi / 2.0
|
||
|
>>> direct = [0.0, 1.0, 0.0]
|
||
|
>>> point = [0.0, 0.0, 0.0]
|
||
|
>>> normal = np.cross(direct, np.roll(direct,1))
|
||
|
>>> S0 = shear_matrix(angle, direct, point, normal)
|
||
|
>>> angle, direct, point, normal = shear_from_matrix(S0)
|
||
|
>>> S1 = shear_matrix(angle, direct, point, normal)
|
||
|
>>> is_same_transform(S0, S1)
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
M = np.array(matrix, dtype=np.float64, copy=False)
|
||
|
M33 = M[:3, :3]
|
||
|
# normal: cross independent eigenvectors corresponding to the eigenvalue 1
|
||
|
w, V = np.linalg.eig(M33)
|
||
|
|
||
|
i = np.where(abs(np.real(w) - 1.0) < 1e-4)[0]
|
||
|
if len(i) < 2:
|
||
|
raise ValueError("no two linear independent eigenvectors found %s" % w)
|
||
|
V = np.real(V[:, i]).squeeze().T
|
||
|
lenorm = -1.0
|
||
|
for i0, i1 in ((0, 1), (0, 2), (1, 2)):
|
||
|
n = np.cross(V[i0], V[i1])
|
||
|
w = vector_norm(n)
|
||
|
if w > lenorm:
|
||
|
lenorm = w
|
||
|
normal = n
|
||
|
normal /= lenorm
|
||
|
# direction and angle
|
||
|
direction = np.dot(M33 - np.identity(3), normal)
|
||
|
angle = vector_norm(direction)
|
||
|
direction /= angle
|
||
|
angle = math.atan(angle)
|
||
|
# point: eigenvector corresponding to eigenvalue 1
|
||
|
w, V = np.linalg.eig(M)
|
||
|
|
||
|
i = np.where(abs(np.real(w) - 1.0) < 1e-8)[0]
|
||
|
if not len(i):
|
||
|
raise ValueError("no eigenvector corresponding to eigenvalue 1")
|
||
|
point = np.real(V[:, i[-1]]).squeeze()
|
||
|
point /= point[3]
|
||
|
return angle, direction, point, normal
|
||
|
|
||
|
|
||
|
def decompose_matrix(matrix):
|
||
|
"""Return sequence of transformations from transformation matrix.
|
||
|
|
||
|
matrix : array_like
|
||
|
Non-degenerative homogeneous transformation matrix
|
||
|
|
||
|
Return tuple of:
|
||
|
scale : vector of 3 scaling factors
|
||
|
shear : list of shear factors for x-y, x-z, y-z axes
|
||
|
angles : list of Euler angles about static x, y, z axes
|
||
|
translate : translation vector along x, y, z axes
|
||
|
perspective : perspective partition of matrix
|
||
|
|
||
|
Raise ValueError if matrix is of wrong type or degenerative.
|
||
|
|
||
|
>>> T0 = translation_matrix([1, 2, 3])
|
||
|
>>> scale, shear, angles, trans, persp = decompose_matrix(T0)
|
||
|
>>> T1 = translation_matrix(trans)
|
||
|
>>> np.allclose(T0, T1)
|
||
|
True
|
||
|
>>> S = scale_matrix(0.123)
|
||
|
>>> scale, shear, angles, trans, persp = decompose_matrix(S)
|
||
|
>>> scale[0]
|
||
|
0.123
|
||
|
>>> R0 = euler_matrix(1, 2, 3)
|
||
|
>>> scale, shear, angles, trans, persp = decompose_matrix(R0)
|
||
|
>>> R1 = euler_matrix(*angles)
|
||
|
>>> np.allclose(R0, R1)
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
M = np.array(matrix, dtype=np.float64, copy=True).T
|
||
|
if abs(M[3, 3]) < _EPS:
|
||
|
raise ValueError("M[3, 3] is zero")
|
||
|
M /= M[3, 3]
|
||
|
P = M.copy()
|
||
|
P[:, 3] = 0.0, 0.0, 0.0, 1.0
|
||
|
if not np.linalg.det(P):
|
||
|
raise ValueError("matrix is singular")
|
||
|
|
||
|
scale = np.zeros((3, ))
|
||
|
shear = [0.0, 0.0, 0.0]
|
||
|
angles = [0.0, 0.0, 0.0]
|
||
|
|
||
|
if any(abs(M[:3, 3]) > _EPS):
|
||
|
perspective = np.dot(M[:, 3], np.linalg.inv(P.T))
|
||
|
M[:, 3] = 0.0, 0.0, 0.0, 1.0
|
||
|
else:
|
||
|
perspective = np.array([0.0, 0.0, 0.0, 1.0])
|
||
|
|
||
|
translate = M[3, :3].copy()
|
||
|
M[3, :3] = 0.0
|
||
|
|
||
|
row = M[:3, :3].copy()
|
||
|
scale[0] = vector_norm(row[0])
|
||
|
row[0] /= scale[0]
|
||
|
shear[0] = np.dot(row[0], row[1])
|
||
|
row[1] -= row[0] * shear[0]
|
||
|
scale[1] = vector_norm(row[1])
|
||
|
row[1] /= scale[1]
|
||
|
shear[0] /= scale[1]
|
||
|
shear[1] = np.dot(row[0], row[2])
|
||
|
row[2] -= row[0] * shear[1]
|
||
|
shear[2] = np.dot(row[1], row[2])
|
||
|
row[2] -= row[1] * shear[2]
|
||
|
scale[2] = vector_norm(row[2])
|
||
|
row[2] /= scale[2]
|
||
|
shear[1:] /= scale[2]
|
||
|
|
||
|
if np.dot(row[0], np.cross(row[1], row[2])) < 0:
|
||
|
np.negative(scale, scale)
|
||
|
np.negative(row, row)
|
||
|
|
||
|
angles[1] = math.asin(-row[0, 2])
|
||
|
if math.cos(angles[1]):
|
||
|
angles[0] = math.atan2(row[1, 2], row[2, 2])
|
||
|
angles[2] = math.atan2(row[0, 1], row[0, 0])
|
||
|
else:
|
||
|
angles[0] = math.atan2(-row[2, 1], row[1, 1])
|
||
|
angles[2] = 0.0
|
||
|
|
||
|
return scale, shear, angles, translate, perspective
|
||
|
|
||
|
|
||
|
def compose_matrix(scale=None, shear=None, angles=None, translate=None,
|
||
|
perspective=None):
|
||
|
"""Return transformation matrix from sequence of transformations.
|
||
|
|
||
|
This is the inverse of the decompose_matrix function.
|
||
|
|
||
|
Sequence of transformations:
|
||
|
scale : vector of 3 scaling factors
|
||
|
shear : list of shear factors for x-y, x-z, y-z axes
|
||
|
angles : list of Euler angles about static x, y, z axes
|
||
|
translate : translation vector along x, y, z axes
|
||
|
perspective : perspective partition of matrix
|
||
|
|
||
|
>>> scale = np.random.random(3) - 0.5
|
||
|
>>> shear = np.random.random(3) - 0.5
|
||
|
>>> angles = (np.random.random(3) - 0.5) * (2*math.pi)
|
||
|
>>> trans = np.random.random(3) - 0.5
|
||
|
>>> persp = np.random.random(4) - 0.5
|
||
|
>>> M0 = compose_matrix(scale, shear, angles, trans, persp)
|
||
|
>>> result = decompose_matrix(M0)
|
||
|
>>> M1 = compose_matrix(*result)
|
||
|
>>> is_same_transform(M0, M1)
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
M = np.identity(4)
|
||
|
if perspective is not None:
|
||
|
P = np.identity(4)
|
||
|
P[3, :] = perspective[:4]
|
||
|
M = np.dot(M, P)
|
||
|
if translate is not None:
|
||
|
T = np.identity(4)
|
||
|
T[:3, 3] = translate[:3]
|
||
|
M = np.dot(M, T)
|
||
|
if angles is not None:
|
||
|
R = euler_matrix(angles[0], angles[1], angles[2], 'sxyz')
|
||
|
M = np.dot(M, R)
|
||
|
if shear is not None:
|
||
|
Z = np.identity(4)
|
||
|
Z[1, 2] = shear[2]
|
||
|
Z[0, 2] = shear[1]
|
||
|
Z[0, 1] = shear[0]
|
||
|
M = np.dot(M, Z)
|
||
|
if scale is not None:
|
||
|
S = np.identity(4)
|
||
|
S[0, 0] = scale[0]
|
||
|
S[1, 1] = scale[1]
|
||
|
S[2, 2] = scale[2]
|
||
|
M = np.dot(M, S)
|
||
|
M /= M[3, 3]
|
||
|
return M
|
||
|
|
||
|
|
||
|
def orthogonalization_matrix(lengths, angles):
|
||
|
"""Return orthogonalization matrix for crystallographic cell coordinates.
|
||
|
|
||
|
Angles are expected in degrees.
|
||
|
|
||
|
The de-orthogonalization matrix is the inverse.
|
||
|
|
||
|
>>> O = orthogonalization_matrix([10, 10, 10], [90, 90, 90])
|
||
|
>>> np.allclose(O[:3, :3], np.identity(3, float) * 10)
|
||
|
True
|
||
|
>>> O = orthogonalization_matrix([9.8, 12.0, 15.5], [87.2, 80.7, 69.7])
|
||
|
>>> np.allclose(np.sum(O), 43.063229)
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
a, b, c = lengths
|
||
|
angles = np.radians(angles)
|
||
|
sina, sinb, _ = np.sin(angles)
|
||
|
cosa, cosb, cosg = np.cos(angles)
|
||
|
co = (cosa * cosb - cosg) / (sina * sinb)
|
||
|
return np.array([
|
||
|
[a * sinb * math.sqrt(1.0 - co * co), 0.0, 0.0, 0.0],
|
||
|
[-a * sinb * co, b * sina, 0.0, 0.0],
|
||
|
[a * cosb, b * cosa, c, 0.0],
|
||
|
[0.0, 0.0, 0.0, 1.0]])
|
||
|
|
||
|
|
||
|
def affine_matrix_from_points(v0, v1, shear=True, scale=True, usesvd=True):
|
||
|
"""Return affine transform matrix to register two point sets.
|
||
|
|
||
|
v0 and v1 are shape (ndims, *) arrays of at least ndims non-homogeneous
|
||
|
coordinates, where ndims is the dimensionality of the coordinate space.
|
||
|
|
||
|
If shear is False, a similarity transformation matrix is returned.
|
||
|
If also scale is False, a rigid/Euclidean transformation matrix
|
||
|
is returned.
|
||
|
|
||
|
By default the algorithm by Hartley and Zissermann [15] is used.
|
||
|
If usesvd is True, similarity and Euclidean transformation matrices
|
||
|
are calculated by minimizing the weighted sum of squared deviations
|
||
|
(RMSD) according to the algorithm by Kabsch [8].
|
||
|
Otherwise, and if ndims is 3, the quaternion based algorithm by Horn [9]
|
||
|
is used, which is slower when using this Python implementation.
|
||
|
|
||
|
The returned matrix performs rotation, translation and uniform scaling
|
||
|
(if specified).
|
||
|
|
||
|
>>> v0 = [[0, 1031, 1031, 0], [0, 0, 1600, 1600]]
|
||
|
>>> v1 = [[675, 826, 826, 677], [55, 52, 281, 277]]
|
||
|
>>> mat = affine_matrix_from_points(v0, v1)
|
||
|
>>> T = translation_matrix(np.random.random(3)-0.5)
|
||
|
>>> R = random_rotation_matrix(np.random.random(3))
|
||
|
>>> S = scale_matrix(random.random())
|
||
|
>>> M = concatenate_matrices(T, R, S)
|
||
|
>>> v0 = (np.random.rand(4, 100) - 0.5) * 20
|
||
|
>>> v0[3] = 1
|
||
|
>>> v1 = np.dot(M, v0)
|
||
|
>>> v0[:3] += np.random.normal(0, 1e-8, 300).reshape(3, -1)
|
||
|
>>> M = affine_matrix_from_points(v0[:3], v1[:3])
|
||
|
>>> check = np.allclose(v1, np.dot(M, v0))
|
||
|
|
||
|
More examples in superimposition_matrix()
|
||
|
|
||
|
"""
|
||
|
v0 = np.array(v0, dtype=np.float64, copy=True)
|
||
|
v1 = np.array(v1, dtype=np.float64, copy=True)
|
||
|
|
||
|
ndims = v0.shape[0]
|
||
|
if ndims < 2 or v0.shape[1] < ndims or v0.shape != v1.shape:
|
||
|
raise ValueError("input arrays are of wrong shape or type")
|
||
|
|
||
|
# move centroids to origin
|
||
|
t0 = -np.mean(v0, axis=1)
|
||
|
M0 = np.identity(ndims + 1)
|
||
|
M0[:ndims, ndims] = t0
|
||
|
v0 += t0.reshape(ndims, 1)
|
||
|
t1 = -np.mean(v1, axis=1)
|
||
|
M1 = np.identity(ndims + 1)
|
||
|
M1[:ndims, ndims] = t1
|
||
|
v1 += t1.reshape(ndims, 1)
|
||
|
|
||
|
if shear:
|
||
|
# Affine transformation
|
||
|
A = np.concatenate((v0, v1), axis=0)
|
||
|
u, s, vh = np.linalg.svd(A.T)
|
||
|
vh = vh[:ndims].T
|
||
|
B = vh[:ndims]
|
||
|
C = vh[ndims:2 * ndims]
|
||
|
t = np.dot(C, np.linalg.pinv(B))
|
||
|
t = np.concatenate((t, np.zeros((ndims, 1))), axis=1)
|
||
|
M = np.vstack((t, ((0.0,) * ndims) + (1.0,)))
|
||
|
elif usesvd or ndims != 3:
|
||
|
# Rigid transformation via SVD of covariance matrix
|
||
|
u, s, vh = np.linalg.svd(np.dot(v1, v0.T))
|
||
|
# rotation matrix from SVD orthonormal bases
|
||
|
R = np.dot(u, vh)
|
||
|
if np.linalg.det(R) < 0.0:
|
||
|
# R does not constitute right handed system
|
||
|
R -= np.outer(u[:, ndims - 1], vh[ndims - 1, :] * 2.0)
|
||
|
s[-1] *= -1.0
|
||
|
# homogeneous transformation matrix
|
||
|
M = np.identity(ndims + 1)
|
||
|
M[:ndims, :ndims] = R
|
||
|
else:
|
||
|
# Rigid transformation matrix via quaternion
|
||
|
# compute symmetric matrix N
|
||
|
xx, yy, zz = np.sum(v0 * v1, axis=1)
|
||
|
xy, yz, zx = np.sum(v0 * np.roll(v1, -1, axis=0), axis=1)
|
||
|
xz, yx, zy = np.sum(v0 * np.roll(v1, -2, axis=0), axis=1)
|
||
|
N = [[xx + yy + zz, 0.0, 0.0, 0.0],
|
||
|
[yz - zy, xx - yy - zz, 0.0, 0.0],
|
||
|
[zx - xz, xy + yx, yy - xx - zz, 0.0],
|
||
|
[xy - yx, zx + xz, yz + zy, zz - xx - yy]]
|
||
|
# quaternion: eigenvector corresponding to most positive eigenvalue
|
||
|
w, V = np.linalg.eigh(N)
|
||
|
q = V[:, np.argmax(w)]
|
||
|
q /= vector_norm(q) # unit quaternion
|
||
|
# homogeneous transformation matrix
|
||
|
M = quaternion_matrix(q)
|
||
|
|
||
|
if scale and not shear:
|
||
|
# Affine transformation; scale is ratio of RMS deviations from centroid
|
||
|
v0 *= v0
|
||
|
v1 *= v1
|
||
|
M[:ndims, :ndims] *= math.sqrt(np.sum(v1) / np.sum(v0))
|
||
|
|
||
|
# move centroids back
|
||
|
M = np.dot(np.linalg.inv(M1), np.dot(M, M0))
|
||
|
M /= M[ndims, ndims]
|
||
|
return M
|
||
|
|
||
|
|
||
|
def superimposition_matrix(v0, v1, scale=False, usesvd=True):
|
||
|
"""Return matrix to transform given 3D point set into second point set.
|
||
|
|
||
|
v0 and v1 are shape (3, *) or (4, *) arrays of at least 3 points.
|
||
|
|
||
|
The parameters scale and usesvd are explained in the more general
|
||
|
affine_matrix_from_points function.
|
||
|
|
||
|
The returned matrix is a similarity or Euclidean transformation matrix.
|
||
|
This function has a fast C implementation in transformations.c.
|
||
|
|
||
|
>>> v0 = np.random.rand(3, 10)
|
||
|
>>> M = superimposition_matrix(v0, v0)
|
||
|
>>> np.allclose(M, np.identity(4))
|
||
|
True
|
||
|
>>> R = random_rotation_matrix(np.random.random(3))
|
||
|
>>> v0 = [[1,0,0], [0,1,0], [0,0,1], [1,1,1]]
|
||
|
>>> v1 = np.dot(R, v0)
|
||
|
>>> M = superimposition_matrix(v0, v1)
|
||
|
>>> np.allclose(v1, np.dot(M, v0))
|
||
|
True
|
||
|
>>> v0 = (np.random.rand(4, 100) - 0.5) * 20
|
||
|
>>> v0[3] = 1
|
||
|
>>> v1 = np.dot(R, v0)
|
||
|
>>> M = superimposition_matrix(v0, v1)
|
||
|
>>> np.allclose(v1, np.dot(M, v0))
|
||
|
True
|
||
|
>>> S = scale_matrix(random.random())
|
||
|
>>> T = translation_matrix(np.random.random(3)-0.5)
|
||
|
>>> M = concatenate_matrices(T, R, S)
|
||
|
>>> v1 = np.dot(M, v0)
|
||
|
>>> v0[:3] += np.random.normal(0, 1e-9, 300).reshape(3, -1)
|
||
|
>>> M = superimposition_matrix(v0, v1, scale=True)
|
||
|
>>> np.allclose(v1, np.dot(M, v0))
|
||
|
True
|
||
|
>>> M = superimposition_matrix(v0, v1, scale=True, usesvd=False)
|
||
|
>>> np.allclose(v1, np.dot(M, v0))
|
||
|
True
|
||
|
>>> v = np.empty((4, 100, 3))
|
||
|
>>> v[:, :, 0] = v0
|
||
|
>>> M = superimposition_matrix(v0, v1, scale=True, usesvd=False)
|
||
|
>>> np.allclose(v1, np.dot(M, v[:, :, 0]))
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
v0 = np.array(v0, dtype=np.float64, copy=False)[:3]
|
||
|
v1 = np.array(v1, dtype=np.float64, copy=False)[:3]
|
||
|
return affine_matrix_from_points(v0, v1, shear=False,
|
||
|
scale=scale, usesvd=usesvd)
|
||
|
|
||
|
|
||
|
def euler_matrix(ai, aj, ak, axes='sxyz'):
|
||
|
"""Return homogeneous rotation matrix from Euler angles and axis sequence.
|
||
|
|
||
|
ai, aj, ak : Euler's roll, pitch and yaw angles
|
||
|
axes : One of 24 axis sequences as string or encoded tuple
|
||
|
|
||
|
>>> R = euler_matrix(1, 2, 3, 'syxz')
|
||
|
>>> np.allclose(np.sum(R[0]), -1.34786452)
|
||
|
True
|
||
|
>>> R = euler_matrix(1, 2, 3, (0, 1, 0, 1))
|
||
|
>>> np.allclose(np.sum(R[0]), -0.383436184)
|
||
|
True
|
||
|
>>> ai, aj, ak = (4*math.pi) * (np.random.random(3) - 0.5)
|
||
|
>>> for axes in _AXES2TUPLE.keys():
|
||
|
... R = euler_matrix(ai, aj, ak, axes)
|
||
|
>>> for axes in _TUPLE2AXES.keys():
|
||
|
... R = euler_matrix(ai, aj, ak, axes)
|
||
|
|
||
|
"""
|
||
|
try:
|
||
|
firstaxis, parity, repetition, frame = _AXES2TUPLE[axes]
|
||
|
except (AttributeError, KeyError):
|
||
|
_TUPLE2AXES[axes] # validation
|
||
|
firstaxis, parity, repetition, frame = axes
|
||
|
|
||
|
i = firstaxis
|
||
|
j = _NEXT_AXIS[i + parity]
|
||
|
k = _NEXT_AXIS[i - parity + 1]
|
||
|
|
||
|
if frame:
|
||
|
ai, ak = ak, ai
|
||
|
if parity:
|
||
|
ai, aj, ak = -ai, -aj, -ak
|
||
|
|
||
|
si, sj, sk = math.sin(ai), math.sin(aj), math.sin(ak)
|
||
|
ci, cj, ck = math.cos(ai), math.cos(aj), math.cos(ak)
|
||
|
cc, cs = ci * ck, ci * sk
|
||
|
sc, ss = si * ck, si * sk
|
||
|
|
||
|
M = np.identity(4)
|
||
|
if repetition:
|
||
|
M[i, i] = cj
|
||
|
M[i, j] = sj * si
|
||
|
M[i, k] = sj * ci
|
||
|
M[j, i] = sj * sk
|
||
|
M[j, j] = -cj * ss + cc
|
||
|
M[j, k] = -cj * cs - sc
|
||
|
M[k, i] = -sj * ck
|
||
|
M[k, j] = cj * sc + cs
|
||
|
M[k, k] = cj * cc - ss
|
||
|
else:
|
||
|
M[i, i] = cj * ck
|
||
|
M[i, j] = sj * sc - cs
|
||
|
M[i, k] = sj * cc + ss
|
||
|
M[j, i] = cj * sk
|
||
|
M[j, j] = sj * ss + cc
|
||
|
M[j, k] = sj * cs - sc
|
||
|
M[k, i] = -sj
|
||
|
M[k, j] = cj * si
|
||
|
M[k, k] = cj * ci
|
||
|
return M
|
||
|
|
||
|
|
||
|
def euler_from_matrix(matrix, axes='sxyz'):
|
||
|
"""Return Euler angles from rotation matrix for specified axis sequence.
|
||
|
|
||
|
axes : One of 24 axis sequences as string or encoded tuple
|
||
|
|
||
|
Note that many Euler angle triplets can describe one matrix.
|
||
|
|
||
|
>>> R0 = euler_matrix(1, 2, 3, 'syxz')
|
||
|
>>> al, be, ga = euler_from_matrix(R0, 'syxz')
|
||
|
>>> R1 = euler_matrix(al, be, ga, 'syxz')
|
||
|
>>> np.allclose(R0, R1)
|
||
|
True
|
||
|
>>> angles = (4*math.pi) * (np.random.random(3) - 0.5)
|
||
|
>>> for axes in _AXES2TUPLE.keys():
|
||
|
... R0 = euler_matrix(axes=axes, *angles)
|
||
|
... R1 = euler_matrix(axes=axes, *euler_from_matrix(R0, axes))
|
||
|
... if not np.allclose(R0, R1): print(axes, "failed")
|
||
|
|
||
|
"""
|
||
|
try:
|
||
|
firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()]
|
||
|
except (AttributeError, KeyError):
|
||
|
_TUPLE2AXES[axes] # validation
|
||
|
firstaxis, parity, repetition, frame = axes
|
||
|
|
||
|
i = firstaxis
|
||
|
j = _NEXT_AXIS[i + parity]
|
||
|
k = _NEXT_AXIS[i - parity + 1]
|
||
|
|
||
|
M = np.array(matrix, dtype=np.float64, copy=False)[:3, :3]
|
||
|
if repetition:
|
||
|
sy = math.sqrt(M[i, j] * M[i, j] + M[i, k] * M[i, k])
|
||
|
if sy > _EPS:
|
||
|
ax = math.atan2(M[i, j], M[i, k])
|
||
|
ay = math.atan2(sy, M[i, i])
|
||
|
az = math.atan2(M[j, i], -M[k, i])
|
||
|
else:
|
||
|
ax = math.atan2(-M[j, k], M[j, j])
|
||
|
ay = math.atan2(sy, M[i, i])
|
||
|
az = 0.0
|
||
|
else:
|
||
|
cy = math.sqrt(M[i, i] * M[i, i] + M[j, i] * M[j, i])
|
||
|
if cy > _EPS:
|
||
|
ax = math.atan2(M[k, j], M[k, k])
|
||
|
ay = math.atan2(-M[k, i], cy)
|
||
|
az = math.atan2(M[j, i], M[i, i])
|
||
|
else:
|
||
|
ax = math.atan2(-M[j, k], M[j, j])
|
||
|
ay = math.atan2(-M[k, i], cy)
|
||
|
az = 0.0
|
||
|
|
||
|
if parity:
|
||
|
ax, ay, az = -ax, -ay, -az
|
||
|
if frame:
|
||
|
ax, az = az, ax
|
||
|
return ax, ay, az
|
||
|
|
||
|
|
||
|
def euler_from_quaternion(quaternion, axes='sxyz'):
|
||
|
"""Return Euler angles from quaternion for specified axis sequence.
|
||
|
|
||
|
>>> angles = euler_from_quaternion([0.99810947, 0.06146124, 0, 0])
|
||
|
>>> np.allclose(angles, [0.123, 0, 0])
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
return euler_from_matrix(quaternion_matrix(quaternion), axes)
|
||
|
|
||
|
|
||
|
def quaternion_from_euler(ai, aj, ak, axes='sxyz'):
|
||
|
"""Return quaternion from Euler angles and axis sequence.
|
||
|
|
||
|
ai, aj, ak : Euler's roll, pitch and yaw angles
|
||
|
axes : One of 24 axis sequences as string or encoded tuple
|
||
|
|
||
|
>>> q = quaternion_from_euler(1, 2, 3, 'ryxz')
|
||
|
>>> np.allclose(q, [0.435953, 0.310622, -0.718287, 0.444435])
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
try:
|
||
|
firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()]
|
||
|
except (AttributeError, KeyError):
|
||
|
_TUPLE2AXES[axes] # validation
|
||
|
firstaxis, parity, repetition, frame = axes
|
||
|
|
||
|
i = firstaxis + 1
|
||
|
j = _NEXT_AXIS[i + parity - 1] + 1
|
||
|
k = _NEXT_AXIS[i - parity] + 1
|
||
|
|
||
|
if frame:
|
||
|
ai, ak = ak, ai
|
||
|
if parity:
|
||
|
aj = -aj
|
||
|
|
||
|
ai /= 2.0
|
||
|
aj /= 2.0
|
||
|
ak /= 2.0
|
||
|
ci = math.cos(ai)
|
||
|
si = math.sin(ai)
|
||
|
cj = math.cos(aj)
|
||
|
sj = math.sin(aj)
|
||
|
ck = math.cos(ak)
|
||
|
sk = math.sin(ak)
|
||
|
cc = ci * ck
|
||
|
cs = ci * sk
|
||
|
sc = si * ck
|
||
|
ss = si * sk
|
||
|
|
||
|
q = np.empty((4, ))
|
||
|
if repetition:
|
||
|
q[0] = cj * (cc - ss)
|
||
|
q[i] = cj * (cs + sc)
|
||
|
q[j] = sj * (cc + ss)
|
||
|
q[k] = sj * (cs - sc)
|
||
|
else:
|
||
|
q[0] = cj * cc + sj * ss
|
||
|
q[i] = cj * sc - sj * cs
|
||
|
q[j] = cj * ss + sj * cc
|
||
|
q[k] = cj * cs - sj * sc
|
||
|
if parity:
|
||
|
q[j] *= -1.0
|
||
|
|
||
|
return q
|
||
|
|
||
|
|
||
|
def quaternion_about_axis(angle, axis):
|
||
|
"""Return quaternion for rotation about axis.
|
||
|
|
||
|
>>> q = quaternion_about_axis(0.123, [1, 0, 0])
|
||
|
>>> np.allclose(q, [0.99810947, 0.06146124, 0, 0])
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
q = np.array([0.0, axis[0], axis[1], axis[2]])
|
||
|
qlen = vector_norm(q)
|
||
|
if qlen > _EPS:
|
||
|
q *= math.sin(angle / 2.0) / qlen
|
||
|
q[0] = math.cos(angle / 2.0)
|
||
|
return q
|
||
|
|
||
|
|
||
|
def quaternion_matrix(quaternion):
|
||
|
"""
|
||
|
Return a homogeneous rotation matrix from quaternion.
|
||
|
|
||
|
>>> M = quaternion_matrix([0.99810947, 0.06146124, 0, 0])
|
||
|
>>> np.allclose(M, rotation_matrix(0.123, [1, 0, 0]))
|
||
|
True
|
||
|
>>> M = quaternion_matrix([1, 0, 0, 0])
|
||
|
>>> np.allclose(M, np.identity(4))
|
||
|
True
|
||
|
>>> M = quaternion_matrix([0, 1, 0, 0])
|
||
|
>>> np.allclose(M, np.diag([1, -1, -1, 1]))
|
||
|
True
|
||
|
>>> M = quaternion_matrix([[1, 0, 0, 0],[0, 1, 0, 0]])
|
||
|
>>> np.allclose(M, np.array([np.identity(4), np.diag([1, -1, -1, 1])]))
|
||
|
True
|
||
|
|
||
|
|
||
|
"""
|
||
|
q = np.array(quaternion,
|
||
|
dtype=np.float64,
|
||
|
copy=True).reshape((-1, 4))
|
||
|
n = np.einsum('ij,ij->i', q, q)
|
||
|
# how many entries do we have
|
||
|
num_qs = len(n)
|
||
|
identities = n < _EPS
|
||
|
q[~identities, :] *= np.sqrt(2.0 / n[~identities, None])
|
||
|
q = np.einsum('ij,ik->ikj', q, q)
|
||
|
|
||
|
# store the result
|
||
|
ret = np.zeros((num_qs, 4, 4))
|
||
|
|
||
|
# pack the values into the result
|
||
|
ret[:, 0, 0] = 1.0 - q[:, 2, 2] - q[:, 3, 3]
|
||
|
ret[:, 0, 1] = q[:, 1, 2] - q[:, 3, 0]
|
||
|
ret[:, 0, 2] = q[:, 1, 3] + q[:, 2, 0]
|
||
|
ret[:, 1, 0] = q[:, 1, 2] + q[:, 3, 0]
|
||
|
ret[:, 1, 1] = 1.0 - q[:, 1, 1] - q[:, 3, 3]
|
||
|
ret[:, 1, 2] = q[:, 2, 3] - q[:, 1, 0]
|
||
|
ret[:, 2, 0] = q[:, 1, 3] - q[:, 2, 0]
|
||
|
ret[:, 2, 1] = q[:, 2, 3] + q[:, 1, 0]
|
||
|
ret[:, 2, 2] = 1.0 - q[:, 1, 1] - q[:, 2, 2]
|
||
|
ret[:, 3, 3] = 1.0
|
||
|
# set any identities
|
||
|
ret[identities] = np.eye(4)[None, ...]
|
||
|
|
||
|
return ret.squeeze()
|
||
|
|
||
|
|
||
|
def quaternion_from_matrix(matrix, isprecise=False):
|
||
|
"""Return quaternion from rotation matrix.
|
||
|
|
||
|
If isprecise is True, the input matrix is assumed to be a precise rotation
|
||
|
matrix and a faster algorithm is used.
|
||
|
|
||
|
>>> q = quaternion_from_matrix(np.identity(4), True)
|
||
|
>>> np.allclose(q, [1, 0, 0, 0])
|
||
|
True
|
||
|
>>> q = quaternion_from_matrix(np.diag([1, -1, -1, 1]))
|
||
|
>>> np.allclose(q, [0, 1, 0, 0]) or np.allclose(q, [0, -1, 0, 0])
|
||
|
True
|
||
|
>>> R = rotation_matrix(0.123, (1, 2, 3))
|
||
|
>>> q = quaternion_from_matrix(R, True)
|
||
|
>>> np.allclose(q, [0.9981095, 0.0164262, 0.0328524, 0.0492786])
|
||
|
True
|
||
|
>>> R = [[-0.545, 0.797, 0.260, 0], [0.733, 0.603, -0.313, 0],
|
||
|
... [-0.407, 0.021, -0.913, 0], [0, 0, 0, 1]]
|
||
|
>>> q = quaternion_from_matrix(R)
|
||
|
>>> np.allclose(q, [0.19069, 0.43736, 0.87485, -0.083611])
|
||
|
True
|
||
|
>>> R = [[0.395, 0.362, 0.843, 0], [-0.626, 0.796, -0.056, 0],
|
||
|
... [-0.677, -0.498, 0.529, 0], [0, 0, 0, 1]]
|
||
|
>>> q = quaternion_from_matrix(R)
|
||
|
>>> np.allclose(q, [0.82336615, -0.13610694, 0.46344705, -0.29792603])
|
||
|
True
|
||
|
>>> R = random_rotation_matrix()
|
||
|
>>> q = quaternion_from_matrix(R)
|
||
|
>>> is_same_transform(R, quaternion_matrix(q))
|
||
|
True
|
||
|
>>> is_same_quaternion(quaternion_from_matrix(R, isprecise=False),
|
||
|
... quaternion_from_matrix(R, isprecise=True))
|
||
|
True
|
||
|
>>> R = euler_matrix(0.0, 0.0, np.pi/2.0)
|
||
|
>>> is_same_quaternion(quaternion_from_matrix(R, isprecise=False),
|
||
|
... quaternion_from_matrix(R, isprecise=True))
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
M = np.array(matrix, dtype=np.float64, copy=False)[:4, :4]
|
||
|
if isprecise:
|
||
|
q = np.empty((4, ))
|
||
|
t = np.trace(M)
|
||
|
if t > M[3, 3]:
|
||
|
q[0] = t
|
||
|
q[3] = M[1, 0] - M[0, 1]
|
||
|
q[2] = M[0, 2] - M[2, 0]
|
||
|
q[1] = M[2, 1] - M[1, 2]
|
||
|
else:
|
||
|
i, j, k = 0, 1, 2
|
||
|
if M[1, 1] > M[0, 0]:
|
||
|
i, j, k = 1, 2, 0
|
||
|
if M[2, 2] > M[i, i]:
|
||
|
i, j, k = 2, 0, 1
|
||
|
t = M[i, i] - (M[j, j] + M[k, k]) + M[3, 3]
|
||
|
q[i] = t
|
||
|
q[j] = M[i, j] + M[j, i]
|
||
|
q[k] = M[k, i] + M[i, k]
|
||
|
q[3] = M[k, j] - M[j, k]
|
||
|
q = q[[3, 0, 1, 2]]
|
||
|
q *= 0.5 / math.sqrt(t * M[3, 3])
|
||
|
else:
|
||
|
m00 = M[0, 0]
|
||
|
m01 = M[0, 1]
|
||
|
m02 = M[0, 2]
|
||
|
m10 = M[1, 0]
|
||
|
m11 = M[1, 1]
|
||
|
m12 = M[1, 2]
|
||
|
m20 = M[2, 0]
|
||
|
m21 = M[2, 1]
|
||
|
m22 = M[2, 2]
|
||
|
# symmetric matrix K
|
||
|
K = np.array([[m00 - m11 - m22, 0.0, 0.0, 0.0],
|
||
|
[m01 + m10, m11 - m00 - m22, 0.0, 0.0],
|
||
|
[m02 + m20, m12 + m21, m22 - m00 - m11, 0.0],
|
||
|
[m21 - m12, m02 - m20, m10 - m01, m00 + m11 + m22]])
|
||
|
K /= 3.0
|
||
|
# quaternion is eigenvector of K that corresponds to largest eigenvalue
|
||
|
w, V = np.linalg.eigh(K)
|
||
|
q = V[[3, 0, 1, 2], np.argmax(w)]
|
||
|
if q[0] < 0.0:
|
||
|
np.negative(q, q)
|
||
|
return q
|
||
|
|
||
|
|
||
|
def quaternion_multiply(quaternion1, quaternion0):
|
||
|
"""Return multiplication of two quaternions.
|
||
|
|
||
|
>>> q = quaternion_multiply([4, 1, -2, 3], [8, -5, 6, 7])
|
||
|
>>> np.allclose(q, [28, -44, -14, 48])
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
w0, x0, y0, z0 = quaternion0
|
||
|
w1, x1, y1, z1 = quaternion1
|
||
|
return np.array([-x1 * x0 - y1 * y0 - z1 * z0 + w1 * w0,
|
||
|
x1 * w0 + y1 * z0 - z1 * y0 + w1 * x0,
|
||
|
-x1 * z0 + y1 * w0 + z1 * x0 + w1 * y0,
|
||
|
x1 * y0 - y1 * x0 + z1 * w0 + w1 * z0], dtype=np.float64)
|
||
|
|
||
|
|
||
|
def quaternion_conjugate(quaternion):
|
||
|
"""Return conjugate of quaternion.
|
||
|
|
||
|
>>> q0 = random_quaternion()
|
||
|
>>> q1 = quaternion_conjugate(q0)
|
||
|
>>> q1[0] == q0[0] and all(q1[1:] == -q0[1:])
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
q = np.array(quaternion, dtype=np.float64, copy=True)
|
||
|
np.negative(q[1:], q[1:])
|
||
|
return q
|
||
|
|
||
|
|
||
|
def quaternion_inverse(quaternion):
|
||
|
"""Return inverse of quaternion.
|
||
|
|
||
|
>>> q0 = random_quaternion()
|
||
|
>>> q1 = quaternion_inverse(q0)
|
||
|
>>> np.allclose(quaternion_multiply(q0, q1), [1, 0, 0, 0])
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
q = np.array(quaternion, dtype=np.float64, copy=True)
|
||
|
np.negative(q[1:], q[1:])
|
||
|
return q / np.dot(q, q)
|
||
|
|
||
|
|
||
|
def quaternion_real(quaternion):
|
||
|
"""Return real part of quaternion.
|
||
|
|
||
|
>>> quaternion_real([3, 0, 1, 2])
|
||
|
3.0
|
||
|
|
||
|
"""
|
||
|
return float(quaternion[0])
|
||
|
|
||
|
|
||
|
def quaternion_imag(quaternion):
|
||
|
"""Return imaginary part of quaternion.
|
||
|
|
||
|
>>> quaternion_imag([3, 0, 1, 2])
|
||
|
array([0., 1., 2.])
|
||
|
|
||
|
"""
|
||
|
return np.array(quaternion[1:4], dtype=np.float64, copy=True)
|
||
|
|
||
|
|
||
|
def quaternion_slerp(quat0, quat1, fraction, spin=0, shortestpath=True):
|
||
|
"""Return spherical linear interpolation between two quaternions.
|
||
|
|
||
|
>>> q0 = random_quaternion()
|
||
|
>>> q1 = random_quaternion()
|
||
|
>>> q = quaternion_slerp(q0, q1, 0)
|
||
|
>>> np.allclose(q, q0)
|
||
|
True
|
||
|
>>> q = quaternion_slerp(q0, q1, 1, 1)
|
||
|
>>> np.allclose(q, q1)
|
||
|
True
|
||
|
>>> q = quaternion_slerp(q0, q1, 0.5)
|
||
|
>>> angle = math.acos(np.dot(q0, q))
|
||
|
>>> np.allclose(2, math.acos(np.dot(q0, q1)) / angle) or \
|
||
|
np.allclose(2, math.acos(-np.dot(q0, q1)) / angle)
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
q0 = unit_vector(quat0[:4])
|
||
|
q1 = unit_vector(quat1[:4])
|
||
|
if fraction == 0.0:
|
||
|
return q0
|
||
|
elif fraction == 1.0:
|
||
|
return q1
|
||
|
d = np.dot(q0, q1)
|
||
|
if abs(abs(d) - 1.0) < _EPS:
|
||
|
return q0
|
||
|
if shortestpath and d < 0.0:
|
||
|
# invert rotation
|
||
|
d = -d
|
||
|
np.negative(q1, q1)
|
||
|
angle = math.acos(d) + spin * math.pi
|
||
|
if abs(angle) < _EPS:
|
||
|
return q0
|
||
|
isin = 1.0 / math.sin(angle)
|
||
|
q0 *= math.sin((1.0 - fraction) * angle) * isin
|
||
|
q1 *= math.sin(fraction * angle) * isin
|
||
|
q0 += q1
|
||
|
return q0
|
||
|
|
||
|
|
||
|
def random_quaternion(rand=None, num=1):
|
||
|
"""Return uniform random unit quaternion.
|
||
|
|
||
|
rand: array like or None
|
||
|
Three independent random variables that are uniformly distributed
|
||
|
between 0 and 1.
|
||
|
|
||
|
>>> q = random_quaternion()
|
||
|
>>> np.allclose(1, vector_norm(q))
|
||
|
True
|
||
|
>>> q = random_quaternion(num=10)
|
||
|
>>> np.allclose(1, vector_norm(q, axis=1))
|
||
|
True
|
||
|
>>> q = random_quaternion(np.random.random(3))
|
||
|
>>> len(q.shape), q.shape[0]==4
|
||
|
(1, True)
|
||
|
|
||
|
"""
|
||
|
if rand is None:
|
||
|
rand = np.random.rand(3 * num).reshape((3, -1))
|
||
|
else:
|
||
|
assert rand.shape[0] == 3
|
||
|
r1 = np.sqrt(1.0 - rand[0])
|
||
|
r2 = np.sqrt(rand[0])
|
||
|
pi2 = math.pi * 2.0
|
||
|
t1 = pi2 * rand[1]
|
||
|
t2 = pi2 * rand[2]
|
||
|
return np.array([np.cos(t2) * r2, np.sin(t1) * r1,
|
||
|
np.cos(t1) * r1, np.sin(t2) * r2]).T.squeeze()
|
||
|
|
||
|
|
||
|
def random_rotation_matrix(rand=None, num=1):
|
||
|
"""Return uniform random rotation matrix.
|
||
|
|
||
|
rand: array like
|
||
|
Three independent random variables that are uniformly distributed
|
||
|
between 0 and 1 for each returned quaternion.
|
||
|
|
||
|
>>> R = random_rotation_matrix()
|
||
|
>>> np.allclose(np.dot(R.T, R), np.identity(4))
|
||
|
True
|
||
|
>>> R = random_rotation_matrix(num=10)
|
||
|
>>> np.allclose(np.einsum('...ji,...jk->...ik', R, R), np.identity(4))
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
return quaternion_matrix(random_quaternion(rand=rand, num=num))
|
||
|
|
||
|
|
||
|
class Arcball(object):
|
||
|
"""Virtual Trackball Control.
|
||
|
|
||
|
>>> ball = Arcball()
|
||
|
>>> ball = Arcball(initial=np.identity(4))
|
||
|
>>> ball.place([320, 320], 320)
|
||
|
>>> ball.down([500, 250])
|
||
|
>>> ball.drag([475, 275])
|
||
|
>>> R = ball.matrix()
|
||
|
>>> np.allclose(np.sum(R), 3.90583455)
|
||
|
True
|
||
|
>>> ball = Arcball(initial=[1, 0, 0, 0])
|
||
|
>>> ball.place([320, 320], 320)
|
||
|
>>> ball.setaxes([1, 1, 0], [-1, 1, 0])
|
||
|
>>> ball.constrain = True
|
||
|
>>> ball.down([400, 200])
|
||
|
>>> ball.drag([200, 400])
|
||
|
>>> R = ball.matrix()
|
||
|
>>> np.allclose(np.sum(R), 0.2055924)
|
||
|
True
|
||
|
>>> ball.next()
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, initial=None):
|
||
|
"""Initialize virtual trackball control.
|
||
|
|
||
|
initial : quaternion or rotation matrix
|
||
|
|
||
|
"""
|
||
|
self._axis = None
|
||
|
self._axes = None
|
||
|
self._radius = 1.0
|
||
|
self._center = [0.0, 0.0]
|
||
|
self._vdown = np.array([0.0, 0.0, 1.0])
|
||
|
self._constrain = False
|
||
|
if initial is None:
|
||
|
self._qdown = np.array([1.0, 0.0, 0.0, 0.0])
|
||
|
else:
|
||
|
initial = np.array(initial, dtype=np.float64)
|
||
|
if initial.shape == (4, 4):
|
||
|
self._qdown = quaternion_from_matrix(initial)
|
||
|
elif initial.shape == (4, ):
|
||
|
initial /= vector_norm(initial)
|
||
|
self._qdown = initial
|
||
|
else:
|
||
|
raise ValueError("initial not a quaternion or matrix")
|
||
|
self._qnow = self._qpre = self._qdown
|
||
|
|
||
|
def place(self, center, radius):
|
||
|
"""Place Arcball, e.g. when window size changes.
|
||
|
|
||
|
center : sequence[2]
|
||
|
Window coordinates of trackball center.
|
||
|
radius : float
|
||
|
Radius of trackball in window coordinates.
|
||
|
|
||
|
"""
|
||
|
self._radius = float(radius)
|
||
|
self._center[0] = center[0]
|
||
|
self._center[1] = center[1]
|
||
|
|
||
|
def setaxes(self, *axes):
|
||
|
"""Set axes to constrain rotations."""
|
||
|
if axes is None:
|
||
|
self._axes = None
|
||
|
else:
|
||
|
self._axes = [unit_vector(axis) for axis in axes]
|
||
|
|
||
|
@property
|
||
|
def constrain(self):
|
||
|
"""Return state of constrain to axis mode."""
|
||
|
return self._constrain
|
||
|
|
||
|
@constrain.setter
|
||
|
def constrain(self, value):
|
||
|
"""Set state of constrain to axis mode."""
|
||
|
self._constrain = bool(value)
|
||
|
|
||
|
def down(self, point):
|
||
|
"""Set initial cursor window coordinates and pick constrain-axis."""
|
||
|
self._vdown = arcball_map_to_sphere(point, self._center, self._radius)
|
||
|
self._qdown = self._qpre = self._qnow
|
||
|
if self._constrain and self._axes is not None:
|
||
|
self._axis = arcball_nearest_axis(self._vdown, self._axes)
|
||
|
self._vdown = arcball_constrain_to_axis(self._vdown, self._axis)
|
||
|
else:
|
||
|
self._axis = None
|
||
|
|
||
|
def drag(self, point):
|
||
|
"""Update current cursor window coordinates."""
|
||
|
vnow = arcball_map_to_sphere(point, self._center, self._radius)
|
||
|
if self._axis is not None:
|
||
|
vnow = arcball_constrain_to_axis(vnow, self._axis)
|
||
|
self._qpre = self._qnow
|
||
|
t = np.cross(self._vdown, vnow)
|
||
|
if np.dot(t, t) < _EPS:
|
||
|
self._qnow = self._qdown
|
||
|
else:
|
||
|
q = [np.dot(self._vdown, vnow), t[0], t[1], t[2]]
|
||
|
self._qnow = quaternion_multiply(q, self._qdown)
|
||
|
|
||
|
def next(self, acceleration=0.0):
|
||
|
"""Continue rotation in direction of last drag."""
|
||
|
q = quaternion_slerp(self._qpre, self._qnow, 2.0 + acceleration, False)
|
||
|
self._qpre, self._qnow = self._qnow, q
|
||
|
|
||
|
def matrix(self):
|
||
|
"""Return homogeneous rotation matrix."""
|
||
|
return quaternion_matrix(self._qnow)
|
||
|
|
||
|
|
||
|
def arcball_map_to_sphere(point, center, radius):
|
||
|
"""Return unit sphere coordinates from window coordinates."""
|
||
|
v0 = (point[0] - center[0]) / radius
|
||
|
v1 = (center[1] - point[1]) / radius
|
||
|
n = v0 * v0 + v1 * v1
|
||
|
if n > 1.0:
|
||
|
# position outside of sphere
|
||
|
n = math.sqrt(n)
|
||
|
return np.array([v0 / n, v1 / n, 0.0])
|
||
|
else:
|
||
|
return np.array([v0, v1, math.sqrt(1.0 - n)])
|
||
|
|
||
|
|
||
|
def arcball_constrain_to_axis(point, axis):
|
||
|
"""Return sphere point perpendicular to axis."""
|
||
|
v = np.array(point, dtype=np.float64, copy=True)
|
||
|
a = np.array(axis, dtype=np.float64, copy=True)
|
||
|
v -= a * np.dot(a, v) # on plane
|
||
|
n = vector_norm(v)
|
||
|
if n > _EPS:
|
||
|
if v[2] < 0.0:
|
||
|
np.negative(v, v)
|
||
|
v /= n
|
||
|
return v
|
||
|
if a[2] == 1.0:
|
||
|
return np.array([1.0, 0.0, 0.0])
|
||
|
return unit_vector([-a[1], a[0], 0.0])
|
||
|
|
||
|
|
||
|
def arcball_nearest_axis(point, axes):
|
||
|
"""Return axis, which arc is nearest to point."""
|
||
|
point = np.array(point, dtype=np.float64, copy=False)
|
||
|
nearest = None
|
||
|
mx = -1.0
|
||
|
for axis in axes:
|
||
|
t = np.dot(arcball_constrain_to_axis(point, axis), point)
|
||
|
if t > mx:
|
||
|
nearest = axis
|
||
|
mx = t
|
||
|
return nearest
|
||
|
|
||
|
|
||
|
# epsilon for testing whether a number is close to zero
|
||
|
_EPS = np.finfo(float).eps * 4.0
|
||
|
|
||
|
# axis sequences for Euler angles
|
||
|
_NEXT_AXIS = [1, 2, 0, 1]
|
||
|
|
||
|
# map axes strings to/from tuples of inner axis, parity, repetition, frame
|
||
|
_AXES2TUPLE = {
|
||
|
'sxyz': (0, 0, 0, 0), 'sxyx': (0, 0, 1, 0), 'sxzy': (0, 1, 0, 0),
|
||
|
'sxzx': (0, 1, 1, 0), 'syzx': (1, 0, 0, 0), 'syzy': (1, 0, 1, 0),
|
||
|
'syxz': (1, 1, 0, 0), 'syxy': (1, 1, 1, 0), 'szxy': (2, 0, 0, 0),
|
||
|
'szxz': (2, 0, 1, 0), 'szyx': (2, 1, 0, 0), 'szyz': (2, 1, 1, 0),
|
||
|
'rzyx': (0, 0, 0, 1), 'rxyx': (0, 0, 1, 1), 'ryzx': (0, 1, 0, 1),
|
||
|
'rxzx': (0, 1, 1, 1), 'rxzy': (1, 0, 0, 1), 'ryzy': (1, 0, 1, 1),
|
||
|
'rzxy': (1, 1, 0, 1), 'ryxy': (1, 1, 1, 1), 'ryxz': (2, 0, 0, 1),
|
||
|
'rzxz': (2, 0, 1, 1), 'rxyz': (2, 1, 0, 1), 'rzyz': (2, 1, 1, 1)}
|
||
|
|
||
|
_TUPLE2AXES = dict((v, k) for k, v in _AXES2TUPLE.items())
|
||
|
|
||
|
|
||
|
def vector_norm(data, axis=None, out=None):
|
||
|
"""Return length, i.e. Euclidean norm, of ndarray along axis.
|
||
|
|
||
|
>>> v = np.random.random(3)
|
||
|
>>> n = vector_norm(v)
|
||
|
>>> np.allclose(n, np.linalg.norm(v))
|
||
|
True
|
||
|
>>> v = np.random.rand(6, 5, 3)
|
||
|
>>> n = vector_norm(v, axis=-1)
|
||
|
>>> np.allclose(n, np.sqrt(np.sum(v*v, axis=2)))
|
||
|
True
|
||
|
>>> n = vector_norm(v, axis=1)
|
||
|
>>> np.allclose(n, np.sqrt(np.sum(v*v, axis=1)))
|
||
|
True
|
||
|
>>> v = np.random.rand(5, 4, 3)
|
||
|
>>> n = np.empty((5, 3))
|
||
|
>>> vector_norm(v, axis=1, out=n)
|
||
|
>>> np.allclose(n, np.sqrt(np.sum(v*v, axis=1)))
|
||
|
True
|
||
|
>>> vector_norm([])
|
||
|
0.0
|
||
|
>>> vector_norm([1])
|
||
|
1.0
|
||
|
|
||
|
"""
|
||
|
data = np.array(data, dtype=np.float64, copy=True)
|
||
|
if out is None:
|
||
|
if data.ndim == 1:
|
||
|
return math.sqrt(np.dot(data, data))
|
||
|
data *= data
|
||
|
out = np.atleast_1d(np.sum(data, axis=axis))
|
||
|
np.sqrt(out, out)
|
||
|
return out
|
||
|
else:
|
||
|
data *= data
|
||
|
np.sum(data, axis=axis, out=out)
|
||
|
np.sqrt(out, out)
|
||
|
|
||
|
|
||
|
def unit_vector(data, axis=None, out=None):
|
||
|
"""Return ndarray normalized by length, i.e. Euclidean norm, along axis.
|
||
|
|
||
|
>>> v0 = np.random.random(3)
|
||
|
>>> v1 = unit_vector(v0)
|
||
|
>>> np.allclose(v1, v0 / np.linalg.norm(v0))
|
||
|
True
|
||
|
>>> v0 = np.random.rand(5, 4, 3)
|
||
|
>>> v1 = unit_vector(v0, axis=-1)
|
||
|
>>> v2 = v0 / np.expand_dims(np.sqrt(np.sum(v0*v0, axis=2)), 2)
|
||
|
>>> np.allclose(v1, v2)
|
||
|
True
|
||
|
>>> v1 = unit_vector(v0, axis=1)
|
||
|
>>> v2 = v0 / np.expand_dims(np.sqrt(np.sum(v0*v0, axis=1)), 1)
|
||
|
>>> np.allclose(v1, v2)
|
||
|
True
|
||
|
>>> v1 = np.empty((5, 4, 3))
|
||
|
>>> unit_vector(v0, axis=1, out=v1)
|
||
|
>>> np.allclose(v1, v2)
|
||
|
True
|
||
|
>>> list(unit_vector([]))
|
||
|
[]
|
||
|
>>> list(unit_vector([1]))
|
||
|
[1.0]
|
||
|
|
||
|
"""
|
||
|
if out is None:
|
||
|
data = np.array(data, dtype=np.float64, copy=True)
|
||
|
if data.ndim == 1:
|
||
|
data /= math.sqrt(np.dot(data, data))
|
||
|
return data
|
||
|
else:
|
||
|
if out is not data:
|
||
|
out[:] = np.array(data, copy=False)
|
||
|
data = out
|
||
|
length = np.atleast_1d(np.sum(data * data, axis))
|
||
|
np.sqrt(length, length)
|
||
|
if axis is not None:
|
||
|
length = np.expand_dims(length, axis)
|
||
|
data /= length
|
||
|
if out is None:
|
||
|
return data
|
||
|
|
||
|
|
||
|
def random_vector(size):
|
||
|
"""Return array of random doubles in the half-open interval [0.0, 1.0).
|
||
|
|
||
|
>>> v = random_vector(10000)
|
||
|
>>> np.all(v >= 0) and np.all(v < 1)
|
||
|
True
|
||
|
>>> v0 = random_vector(10)
|
||
|
>>> v1 = random_vector(10)
|
||
|
>>> np.any(v0 == v1)
|
||
|
False
|
||
|
|
||
|
"""
|
||
|
return np.random.random(size)
|
||
|
|
||
|
|
||
|
def vector_product(v0, v1, axis=0):
|
||
|
"""Return vector perpendicular to vectors.
|
||
|
|
||
|
>>> v = vector_product([2, 0, 0], [0, 3, 0])
|
||
|
>>> np.allclose(v, [0, 0, 6])
|
||
|
True
|
||
|
>>> v0 = [[2, 0, 0, 2], [0, 2, 0, 2], [0, 0, 2, 2]]
|
||
|
>>> v1 = [[3], [0], [0]]
|
||
|
>>> v = vector_product(v0, v1)
|
||
|
>>> np.allclose(v, [[0, 0, 0, 0], [0, 0, 6, 6], [0, -6, 0, -6]])
|
||
|
True
|
||
|
>>> v0 = [[2, 0, 0], [2, 0, 0], [0, 2, 0], [2, 0, 0]]
|
||
|
>>> v1 = [[0, 3, 0], [0, 0, 3], [0, 0, 3], [3, 3, 3]]
|
||
|
>>> v = vector_product(v0, v1, axis=1)
|
||
|
>>> np.allclose(v, [[0, 0, 6], [0, -6, 0], [6, 0, 0], [0, -6, 6]])
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
return np.cross(v0, v1, axis=axis)
|
||
|
|
||
|
|
||
|
def angle_between_vectors(v0, v1, directed=True, axis=0):
|
||
|
"""Return angle between vectors.
|
||
|
|
||
|
If directed is False, the input vectors are interpreted as undirected axes,
|
||
|
i.e. the maximum angle is pi/2.
|
||
|
|
||
|
>>> a = angle_between_vectors([1, -2, 3], [-1, 2, -3])
|
||
|
>>> np.allclose(a, math.pi)
|
||
|
True
|
||
|
>>> a = angle_between_vectors([1, -2, 3], [-1, 2, -3], directed=False)
|
||
|
>>> np.allclose(a, 0)
|
||
|
True
|
||
|
>>> v0 = [[2, 0, 0, 2], [0, 2, 0, 2], [0, 0, 2, 2]]
|
||
|
>>> v1 = [[3], [0], [0]]
|
||
|
>>> a = angle_between_vectors(v0, v1)
|
||
|
>>> np.allclose(a, [0, 1.5708, 1.5708, 0.95532])
|
||
|
True
|
||
|
>>> v0 = [[2, 0, 0], [2, 0, 0], [0, 2, 0], [2, 0, 0]]
|
||
|
>>> v1 = [[0, 3, 0], [0, 0, 3], [0, 0, 3], [3, 3, 3]]
|
||
|
>>> a = angle_between_vectors(v0, v1, axis=1)
|
||
|
>>> np.allclose(a, [1.5708, 1.5708, 1.5708, 0.95532])
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
v0 = np.array(v0, dtype=np.float64, copy=False)
|
||
|
v1 = np.array(v1, dtype=np.float64, copy=False)
|
||
|
dot = np.sum(v0 * v1, axis=axis)
|
||
|
dot /= vector_norm(v0, axis=axis) * vector_norm(v1, axis=axis)
|
||
|
return np.arccos(dot if directed else np.fabs(dot))
|
||
|
|
||
|
|
||
|
def inverse_matrix(matrix):
|
||
|
"""Return inverse of square transformation matrix.
|
||
|
|
||
|
>>> M0 = random_rotation_matrix()
|
||
|
>>> M1 = inverse_matrix(M0.T)
|
||
|
>>> np.allclose(M1, np.linalg.inv(M0.T))
|
||
|
True
|
||
|
>>> for size in range(1, 7):
|
||
|
... M0 = np.random.rand(size, size)
|
||
|
... M1 = inverse_matrix(M0)
|
||
|
... if not np.allclose(M1, np.linalg.inv(M0)): print(size)
|
||
|
|
||
|
"""
|
||
|
return np.linalg.inv(matrix)
|
||
|
|
||
|
|
||
|
def concatenate_matrices(*matrices):
|
||
|
"""Return concatenation of series of transformation matrices.
|
||
|
|
||
|
>>> M = np.random.rand(16).reshape((4, 4)) - 0.5
|
||
|
>>> np.allclose(M, concatenate_matrices(M))
|
||
|
True
|
||
|
>>> np.allclose(np.dot(M, M.T), concatenate_matrices(M, M.T))
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
M = np.identity(4)
|
||
|
for i in matrices:
|
||
|
M = np.dot(M, i)
|
||
|
return M
|
||
|
|
||
|
|
||
|
def is_same_transform(matrix0, matrix1):
|
||
|
"""Return True if two matrices perform same transformation.
|
||
|
|
||
|
>>> is_same_transform(np.identity(4), np.identity(4))
|
||
|
True
|
||
|
>>> is_same_transform(np.identity(4), random_rotation_matrix())
|
||
|
False
|
||
|
|
||
|
"""
|
||
|
matrix0 = np.array(matrix0, dtype=np.float64, copy=True)
|
||
|
matrix0 /= matrix0[3, 3]
|
||
|
matrix1 = np.array(matrix1, dtype=np.float64, copy=True)
|
||
|
matrix1 /= matrix1[3, 3]
|
||
|
return np.allclose(matrix0, matrix1)
|
||
|
|
||
|
|
||
|
def is_same_quaternion(q0, q1):
|
||
|
"""Return True if two quaternions are equal."""
|
||
|
q0 = np.array(q0)
|
||
|
q1 = np.array(q1)
|
||
|
return np.allclose(q0, q1) or np.allclose(q0, -q1)
|
||
|
|
||
|
|
||
|
def transform_around(matrix, point):
|
||
|
"""
|
||
|
Given a transformation matrix, apply its rotation
|
||
|
around a point in space.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
matrix: (4,4) or (3, 3) float, transformation matrix
|
||
|
point: (3,) or (2,) float, point in space
|
||
|
|
||
|
Returns
|
||
|
---------
|
||
|
result: (4,4) transformation matrix
|
||
|
"""
|
||
|
point = np.asanyarray(point)
|
||
|
matrix = np.asanyarray(matrix)
|
||
|
dim = len(point)
|
||
|
if matrix.shape != (dim + 1,
|
||
|
dim + 1):
|
||
|
raise ValueError('matrix must be (d+1, d+1)')
|
||
|
|
||
|
translate = np.eye(dim + 1)
|
||
|
translate[:dim, dim] = -point
|
||
|
result = np.dot(matrix, translate)
|
||
|
translate[:dim, dim] = point
|
||
|
result = np.dot(translate, result)
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
def planar_matrix(offset=None,
|
||
|
theta=None,
|
||
|
point=None):
|
||
|
"""
|
||
|
2D homogeonous transformation matrix
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
offset : (2,) float
|
||
|
XY offset
|
||
|
theta : float
|
||
|
Rotation around Z in radians
|
||
|
point : (2, ) float
|
||
|
point to rotate around
|
||
|
|
||
|
Returns
|
||
|
----------
|
||
|
matrix : (3, 3) flat
|
||
|
Homogeneous 2D transformation matrix
|
||
|
"""
|
||
|
if offset is None:
|
||
|
offset = [0.0, 0.0]
|
||
|
if theta is None:
|
||
|
theta = 0.0
|
||
|
offset = np.asanyarray(offset, dtype=np.float64)
|
||
|
theta = float(theta)
|
||
|
if not np.isfinite(theta):
|
||
|
raise ValueError('theta must be finite angle!')
|
||
|
if offset.shape != (2,):
|
||
|
raise ValueError('offset must be length 2!')
|
||
|
|
||
|
T = np.eye(3, dtype=np.float64)
|
||
|
s = np.sin(theta)
|
||
|
c = np.cos(theta)
|
||
|
|
||
|
T[0, 0:2] = [c, s]
|
||
|
T[1, 0:2] = [-s, c]
|
||
|
T[0:2, 2] = offset
|
||
|
|
||
|
if point is not None:
|
||
|
T = transform_around(matrix=T, point=point)
|
||
|
|
||
|
return T
|
||
|
|
||
|
|
||
|
def planar_matrix_to_3D(matrix_2D):
|
||
|
"""
|
||
|
Given a 2D homogeneous rotation matrix convert it to a 3D rotation
|
||
|
matrix that is rotating around the Z axis
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
matrix_2D: (3,3) float, homogeneous 2D rotation matrix
|
||
|
|
||
|
Returns
|
||
|
----------
|
||
|
matrix_3D: (4,4) float, homogeneous 3D rotation matrix
|
||
|
"""
|
||
|
|
||
|
matrix_2D = np.asanyarray(matrix_2D, dtype=np.float64)
|
||
|
if matrix_2D.shape != (3, 3):
|
||
|
raise ValueError('Homogenous 2D transformation matrix required!')
|
||
|
|
||
|
matrix_3D = np.eye(4)
|
||
|
# translation
|
||
|
matrix_3D[0:2, 3] = matrix_2D[0:2, 2]
|
||
|
# rotation from 2D to around Z
|
||
|
matrix_3D[0:2, 0:2] = matrix_2D[0:2, 0:2]
|
||
|
|
||
|
return matrix_3D
|
||
|
|
||
|
|
||
|
def spherical_matrix(theta, phi, axes='sxyz'):
|
||
|
"""
|
||
|
Give a spherical coordinate vector, find the rotation that will
|
||
|
transform a [0,0,1] vector to those coordinates
|
||
|
|
||
|
Parameters
|
||
|
-----------
|
||
|
theta: float, rotation angle in radians
|
||
|
phi: float, rotation angle in radians
|
||
|
|
||
|
Returns
|
||
|
----------
|
||
|
matrix: (4,4) rotation matrix where the following will
|
||
|
be a cartesian vector in the direction of the
|
||
|
input spherical coordinates:
|
||
|
np.dot(matrix, [0,0,1,0])
|
||
|
|
||
|
"""
|
||
|
result = euler_matrix(0.0, phi, theta, axes=axes)
|
||
|
return result
|
||
|
|
||
|
|
||
|
def transform_points(points,
|
||
|
matrix,
|
||
|
translate=True):
|
||
|
"""
|
||
|
Returns points rotated by a homogeneous
|
||
|
transformation matrix.
|
||
|
|
||
|
If points are (n, 2) matrix must be (3, 3)
|
||
|
If points are (n, 3) matrix must be (4, 4)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
points : (n, D) float
|
||
|
Points where D is 2 or 3
|
||
|
matrix : (3, 3) or (4, 4) float
|
||
|
Homogeneous rotation matrix
|
||
|
translate : bool
|
||
|
Apply translation from matrix or not
|
||
|
|
||
|
Returns
|
||
|
----------
|
||
|
transformed : (n, d) float
|
||
|
Transformed points
|
||
|
"""
|
||
|
points = np.asanyarray(
|
||
|
points, dtype=np.float64)
|
||
|
# no points no cry
|
||
|
if len(points) == 0:
|
||
|
return points.copy()
|
||
|
|
||
|
matrix = np.asanyarray(matrix, dtype=np.float64)
|
||
|
if (len(points.shape) != 2 or
|
||
|
(points.shape[1] + 1 != matrix.shape[1])):
|
||
|
raise ValueError('matrix shape ({}) doesn\'t match points ({})'.format(
|
||
|
matrix.shape,
|
||
|
points.shape))
|
||
|
|
||
|
# check to see if we've been passed an identity matrix
|
||
|
identity = np.abs(matrix - np.eye(matrix.shape[0])).max()
|
||
|
if identity < 1e-8:
|
||
|
return np.ascontiguousarray(points.copy())
|
||
|
|
||
|
dimension = points.shape[1]
|
||
|
column = np.zeros(len(points)) + int(bool(translate))
|
||
|
stacked = np.column_stack((points, column))
|
||
|
transformed = np.dot(matrix, stacked.T).T[:, :dimension]
|
||
|
transformed = np.ascontiguousarray(transformed)
|
||
|
return transformed
|
||
|
|
||
|
|
||
|
def is_rigid(matrix, epsilon=1e-8):
|
||
|
"""
|
||
|
Check to make sure a homogeonous transformation
|
||
|
matrix is a rigid transform.
|
||
|
|
||
|
Parameters
|
||
|
-----------
|
||
|
matrix : (4, 4) float
|
||
|
A transformation matrix
|
||
|
|
||
|
Returns
|
||
|
-----------
|
||
|
check : bool
|
||
|
True if matrix is a a transform with
|
||
|
only translation, scale, and rotation
|
||
|
"""
|
||
|
|
||
|
matrix = np.asanyarray(matrix, dtype=np.float64)
|
||
|
|
||
|
if matrix.shape != (4, 4):
|
||
|
return False
|
||
|
|
||
|
# make sure last row has no scaling
|
||
|
if (matrix[-1] - [0, 0, 0, 1]).ptp() > epsilon:
|
||
|
return False
|
||
|
|
||
|
# check dot product of rotation against transpose
|
||
|
check = np.dot(matrix[:3, :3],
|
||
|
matrix[:3, :3].T) - np.eye(3)
|
||
|
|
||
|
return check.ptp() < epsilon
|
||
|
|
||
|
|
||
|
def scale_and_translate(scale=None, translate=None):
|
||
|
"""
|
||
|
Optimized version of `compose_matrix` for just
|
||
|
scaling then translating.
|
||
|
|
||
|
Scalar args are broadcast to arrays of shape (3,)
|
||
|
|
||
|
Parameters
|
||
|
--------------
|
||
|
scale : float or (3,) float
|
||
|
Scale factor
|
||
|
translate : float or (3,) float
|
||
|
Translation
|
||
|
"""
|
||
|
M = np.eye(4)
|
||
|
if np.any(scale != 1):
|
||
|
M[:3, :3] *= scale
|
||
|
if translate is not None:
|
||
|
M[:3, 3] = translate
|
||
|
return M
|
||
|
|
||
|
|
||
|
def flips_winding(matrix):
|
||
|
"""
|
||
|
Check to see if a matrix will invert triangles.
|
||
|
|
||
|
Parameters
|
||
|
-------------
|
||
|
matrix : (4, 4) float
|
||
|
Homogeneous transformation matrix
|
||
|
|
||
|
Returns
|
||
|
--------------
|
||
|
flip : bool
|
||
|
True if matrix will flip winding of triangles.
|
||
|
"""
|
||
|
# get input as numpy array
|
||
|
matrix = np.asanyarray(matrix, dtype=np.float64)
|
||
|
# how many random triangles do we really want
|
||
|
count = 3
|
||
|
# test rotation against some random triangles
|
||
|
tri = np.random.random((count * 3, 3))
|
||
|
rot = np.dot(matrix[:3, :3], tri.T).T
|
||
|
|
||
|
# stack them into one triangle soup
|
||
|
triangles = np.vstack((tri, rot)).reshape((-1, 3, 3))
|
||
|
# find the normals of every triangle
|
||
|
vectors = np.diff(triangles, axis=1)
|
||
|
cross = np.cross(vectors[:, 0], vectors[:, 1])
|
||
|
# rotate the original normals to match
|
||
|
cross[:count] = np.dot(matrix[:3, :3],
|
||
|
cross[:count].T).T
|
||
|
# unitize normals
|
||
|
norm = np.sqrt(np.dot(cross * cross, [1, 1, 1])).reshape((-1, 1))
|
||
|
cross = cross / norm
|
||
|
# find the projection of the two normals
|
||
|
projection = np.dot(cross[:count] * cross[count:],
|
||
|
[1.0] * 3)
|
||
|
# if the winding was flipped but not the normal
|
||
|
# the projection will be negative, and since we're
|
||
|
# checking a few triangles check against the mean
|
||
|
flip = projection.mean() < 0.0
|
||
|
|
||
|
return flip
|