68 lines
1.9 KiB
Python
68 lines
1.9 KiB
Python
|
import pandas as pd
|
||
|
import glob
|
||
|
import os
|
||
|
|
||
|
main_df = pd.read_csv('../your_output_file.csv')
|
||
|
|
||
|
final_columns = main_df.columns.tolist()
|
||
|
|
||
|
def process_archetype_file(filepath):
|
||
|
filename = os.path.basename(filepath)
|
||
|
base_name = filename.replace('_Results.csv', '')
|
||
|
parts = base_name.split('_', 1)
|
||
|
usage = parts[0]
|
||
|
vintage = parts[1] if len(parts) > 1 else ''
|
||
|
|
||
|
df = pd.read_csv(filepath, encoding='latin-1')
|
||
|
|
||
|
column_mapping = {
|
||
|
'Heating Demand [kWh/m²]': 'Heating',
|
||
|
'Cooling Demand [kWh/m²]': 'Cooling',
|
||
|
'SHW Demand [kWh/m²]': 'DHW',
|
||
|
'Electricity Demand [kWh/m²]': 'Equipment and lighting',
|
||
|
'Superficie [m²]': 'Surface'
|
||
|
}
|
||
|
|
||
|
for old_col, new_col in column_mapping.items():
|
||
|
if old_col in df.columns:
|
||
|
df.rename(columns={old_col: new_col}, inplace=True)
|
||
|
|
||
|
if 'Date/Time' in df.columns:
|
||
|
df['Date/Time'] = pd.to_datetime(df['Date/Time'], errors='coerce')
|
||
|
df.rename(columns={'Date/Time': 'Timestamps'}, inplace=True)
|
||
|
else:
|
||
|
pass
|
||
|
|
||
|
if 'Type_of_building' not in df.columns:
|
||
|
df['Type_of_building'] = ''
|
||
|
if 'Equipment' not in df.columns:
|
||
|
df['Equipment'] = 0
|
||
|
if 'Lighting' not in df.columns:
|
||
|
df['Lighting'] = 0
|
||
|
if 'Heating' not in df.columns:
|
||
|
df['Heating'] = 0
|
||
|
if 'Cooling' not in df.columns:
|
||
|
df['Cooling'] = 0
|
||
|
if 'DHW' not in df.columns:
|
||
|
df['DHW'] = 0
|
||
|
if 'Equipment and lighting' not in df.columns:
|
||
|
df['Equipment and lighting'] = 0
|
||
|
if 'Surface' not in df.columns:
|
||
|
df['Surface'] = 0
|
||
|
if 'Timestamps' not in df.columns:
|
||
|
df['Timestamps'] = pd.NaT
|
||
|
|
||
|
df['Usage'] = usage
|
||
|
df['Vintage'] = vintage
|
||
|
|
||
|
df = df[final_columns]
|
||
|
|
||
|
return df
|
||
|
|
||
|
|
||
|
for filepath in glob.glob("./data/*_Results.csv"):
|
||
|
archetype_df = process_archetype_file(filepath)
|
||
|
main_df = pd.concat([main_df, archetype_df], ignore_index=True)
|
||
|
|
||
|
main_df.to_csv("energy_demand_data_combined.csv", index=False)
|