260 lines
7.8 KiB
Python
260 lines
7.8 KiB
Python
|
"""
|
||
|
Spectral Algorithm for Nonlinear Equations
|
||
|
"""
|
||
|
from __future__ import division, absolute_import, print_function
|
||
|
|
||
|
import collections
|
||
|
|
||
|
import numpy as np
|
||
|
from scipy.optimize import OptimizeResult
|
||
|
from scipy.optimize.optimize import _check_unknown_options
|
||
|
from .linesearch import _nonmonotone_line_search_cruz, _nonmonotone_line_search_cheng
|
||
|
|
||
|
class _NoConvergence(Exception):
|
||
|
pass
|
||
|
|
||
|
|
||
|
def _root_df_sane(func, x0, args=(), ftol=1e-8, fatol=1e-300, maxfev=1000,
|
||
|
fnorm=None, callback=None, disp=False, M=10, eta_strategy=None,
|
||
|
sigma_eps=1e-10, sigma_0=1.0, line_search='cruz', **unknown_options):
|
||
|
r"""
|
||
|
Solve nonlinear equation with the DF-SANE method
|
||
|
|
||
|
Options
|
||
|
-------
|
||
|
ftol : float, optional
|
||
|
Relative norm tolerance.
|
||
|
fatol : float, optional
|
||
|
Absolute norm tolerance.
|
||
|
Algorithm terminates when ``||func(x)|| < fatol + ftol ||func(x_0)||``.
|
||
|
fnorm : callable, optional
|
||
|
Norm to use in the convergence check. If None, 2-norm is used.
|
||
|
maxfev : int, optional
|
||
|
Maximum number of function evaluations.
|
||
|
disp : bool, optional
|
||
|
Whether to print convergence process to stdout.
|
||
|
eta_strategy : callable, optional
|
||
|
Choice of the ``eta_k`` parameter, which gives slack for growth
|
||
|
of ``||F||**2``. Called as ``eta_k = eta_strategy(k, x, F)`` with
|
||
|
`k` the iteration number, `x` the current iterate and `F` the current
|
||
|
residual. Should satisfy ``eta_k > 0`` and ``sum(eta, k=0..inf) < inf``.
|
||
|
Default: ``||F||**2 / (1 + k)**2``.
|
||
|
sigma_eps : float, optional
|
||
|
The spectral coefficient is constrained to ``sigma_eps < sigma < 1/sigma_eps``.
|
||
|
Default: 1e-10
|
||
|
sigma_0 : float, optional
|
||
|
Initial spectral coefficient.
|
||
|
Default: 1.0
|
||
|
M : int, optional
|
||
|
Number of iterates to include in the nonmonotonic line search.
|
||
|
Default: 10
|
||
|
line_search : {'cruz', 'cheng'}
|
||
|
Type of line search to employ. 'cruz' is the original one defined in
|
||
|
[Martinez & Raydan. Math. Comp. 75, 1429 (2006)], 'cheng' is
|
||
|
a modified search defined in [Cheng & Li. IMA J. Numer. Anal. 29, 814 (2009)].
|
||
|
Default: 'cruz'
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] "Spectral residual method without gradient information for solving
|
||
|
large-scale nonlinear systems of equations." W. La Cruz,
|
||
|
J.M. Martinez, M. Raydan. Math. Comp. **75**, 1429 (2006).
|
||
|
.. [2] W. La Cruz, Opt. Meth. Software, 29, 24 (2014).
|
||
|
.. [3] W. Cheng, D.-H. Li. IMA J. Numer. Anal. **29**, 814 (2009).
|
||
|
|
||
|
"""
|
||
|
_check_unknown_options(unknown_options)
|
||
|
|
||
|
if line_search not in ('cheng', 'cruz'):
|
||
|
raise ValueError("Invalid value %r for 'line_search'" % (line_search,))
|
||
|
|
||
|
nexp = 2
|
||
|
|
||
|
if eta_strategy is None:
|
||
|
# Different choice from [1], as their eta is not invariant
|
||
|
# vs. scaling of F.
|
||
|
def eta_strategy(k, x, F):
|
||
|
# Obtain squared 2-norm of the initial residual from the outer scope
|
||
|
return f_0 / (1 + k)**2
|
||
|
|
||
|
if fnorm is None:
|
||
|
def fnorm(F):
|
||
|
# Obtain squared 2-norm of the current residual from the outer scope
|
||
|
return f_k**(1.0/nexp)
|
||
|
|
||
|
def fmerit(F):
|
||
|
return np.linalg.norm(F)**nexp
|
||
|
|
||
|
nfev = [0]
|
||
|
f, x_k, x_shape, f_k, F_k, is_complex = _wrap_func(func, x0, fmerit, nfev, maxfev, args)
|
||
|
|
||
|
k = 0
|
||
|
f_0 = f_k
|
||
|
sigma_k = sigma_0
|
||
|
|
||
|
F_0_norm = fnorm(F_k)
|
||
|
|
||
|
# For the 'cruz' line search
|
||
|
prev_fs = collections.deque([f_k], M)
|
||
|
|
||
|
# For the 'cheng' line search
|
||
|
Q = 1.0
|
||
|
C = f_0
|
||
|
|
||
|
converged = False
|
||
|
message = "too many function evaluations required"
|
||
|
|
||
|
while True:
|
||
|
F_k_norm = fnorm(F_k)
|
||
|
|
||
|
if disp:
|
||
|
print("iter %d: ||F|| = %g, sigma = %g" % (k, F_k_norm, sigma_k))
|
||
|
|
||
|
if callback is not None:
|
||
|
callback(x_k, F_k)
|
||
|
|
||
|
if F_k_norm < ftol * F_0_norm + fatol:
|
||
|
# Converged!
|
||
|
message = "successful convergence"
|
||
|
converged = True
|
||
|
break
|
||
|
|
||
|
# Control spectral parameter, from [2]
|
||
|
if abs(sigma_k) > 1/sigma_eps:
|
||
|
sigma_k = 1/sigma_eps * np.sign(sigma_k)
|
||
|
elif abs(sigma_k) < sigma_eps:
|
||
|
sigma_k = sigma_eps
|
||
|
|
||
|
# Line search direction
|
||
|
d = -sigma_k * F_k
|
||
|
|
||
|
# Nonmonotone line search
|
||
|
eta = eta_strategy(k, x_k, F_k)
|
||
|
try:
|
||
|
if line_search == 'cruz':
|
||
|
alpha, xp, fp, Fp = _nonmonotone_line_search_cruz(f, x_k, d, prev_fs, eta=eta)
|
||
|
elif line_search == 'cheng':
|
||
|
alpha, xp, fp, Fp, C, Q = _nonmonotone_line_search_cheng(f, x_k, d, f_k, C, Q, eta=eta)
|
||
|
except _NoConvergence:
|
||
|
break
|
||
|
|
||
|
# Update spectral parameter
|
||
|
s_k = xp - x_k
|
||
|
y_k = Fp - F_k
|
||
|
sigma_k = np.vdot(s_k, s_k) / np.vdot(s_k, y_k)
|
||
|
|
||
|
# Take step
|
||
|
x_k = xp
|
||
|
F_k = Fp
|
||
|
f_k = fp
|
||
|
|
||
|
# Store function value
|
||
|
if line_search == 'cruz':
|
||
|
prev_fs.append(fp)
|
||
|
|
||
|
k += 1
|
||
|
|
||
|
x = _wrap_result(x_k, is_complex, shape=x_shape)
|
||
|
F = _wrap_result(F_k, is_complex)
|
||
|
|
||
|
result = OptimizeResult(x=x, success=converged,
|
||
|
message=message,
|
||
|
fun=F, nfev=nfev[0], nit=k)
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
def _wrap_func(func, x0, fmerit, nfev_list, maxfev, args=()):
|
||
|
"""
|
||
|
Wrap a function and an initial value so that (i) complex values
|
||
|
are wrapped to reals, and (ii) value for a merit function
|
||
|
fmerit(x, f) is computed at the same time, (iii) iteration count
|
||
|
is maintained and an exception is raised if it is exceeded.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func : callable
|
||
|
Function to wrap
|
||
|
x0 : ndarray
|
||
|
Initial value
|
||
|
fmerit : callable
|
||
|
Merit function fmerit(f) for computing merit value from residual.
|
||
|
nfev_list : list
|
||
|
List to store number of evaluations in. Should be [0] in the beginning.
|
||
|
maxfev : int
|
||
|
Maximum number of evaluations before _NoConvergence is raised.
|
||
|
args : tuple
|
||
|
Extra arguments to func
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
wrap_func : callable
|
||
|
Wrapped function, to be called as
|
||
|
``F, fp = wrap_func(x0)``
|
||
|
x0_wrap : ndarray of float
|
||
|
Wrapped initial value; raveled to 1D and complex
|
||
|
values mapped to reals.
|
||
|
x0_shape : tuple
|
||
|
Shape of the initial value array
|
||
|
f : float
|
||
|
Merit function at F
|
||
|
F : ndarray of float
|
||
|
Residual at x0_wrap
|
||
|
is_complex : bool
|
||
|
Whether complex values were mapped to reals
|
||
|
|
||
|
"""
|
||
|
x0 = np.asarray(x0)
|
||
|
x0_shape = x0.shape
|
||
|
F = np.asarray(func(x0, *args)).ravel()
|
||
|
is_complex = np.iscomplexobj(x0) or np.iscomplexobj(F)
|
||
|
x0 = x0.ravel()
|
||
|
|
||
|
nfev_list[0] = 1
|
||
|
|
||
|
if is_complex:
|
||
|
def wrap_func(x):
|
||
|
if nfev_list[0] >= maxfev:
|
||
|
raise _NoConvergence()
|
||
|
nfev_list[0] += 1
|
||
|
z = _real2complex(x).reshape(x0_shape)
|
||
|
v = np.asarray(func(z, *args)).ravel()
|
||
|
F = _complex2real(v)
|
||
|
f = fmerit(F)
|
||
|
return f, F
|
||
|
|
||
|
x0 = _complex2real(x0)
|
||
|
F = _complex2real(F)
|
||
|
else:
|
||
|
def wrap_func(x):
|
||
|
if nfev_list[0] >= maxfev:
|
||
|
raise _NoConvergence()
|
||
|
nfev_list[0] += 1
|
||
|
x = x.reshape(x0_shape)
|
||
|
F = np.asarray(func(x, *args)).ravel()
|
||
|
f = fmerit(F)
|
||
|
return f, F
|
||
|
|
||
|
return wrap_func, x0, x0_shape, fmerit(F), F, is_complex
|
||
|
|
||
|
|
||
|
def _wrap_result(result, is_complex, shape=None):
|
||
|
"""
|
||
|
Convert from real to complex and reshape result arrays.
|
||
|
"""
|
||
|
if is_complex:
|
||
|
z = _real2complex(result)
|
||
|
else:
|
||
|
z = result
|
||
|
if shape is not None:
|
||
|
z = z.reshape(shape)
|
||
|
return z
|
||
|
|
||
|
|
||
|
def _real2complex(x):
|
||
|
return np.ascontiguousarray(x, dtype=float).view(np.complex128)
|
||
|
|
||
|
|
||
|
def _complex2real(z):
|
||
|
return np.ascontiguousarray(z, dtype=complex).view(np.float64)
|