hub/venv/lib/python3.7/site-packages/trimesh/scene/scene.py

1269 lines
39 KiB
Python
Raw Normal View History

import os
import numpy as np
import collections
from .. import util
from .. import units
from .. import convex
from .. import caching
from .. import grouping
from .. import transformations
from .. import bounds as bounds_module
from ..exchange import gltf
from ..parent import Geometry
from . import cameras
from . import lighting
from .transforms import TransformForest
class Scene(Geometry):
"""
A simple scene graph which can be rendered directly via
pyglet/openGL or through other endpoints such as a
raytracer. Meshes are added by name, which can then be
moved by updating transform in the transform tree.
"""
def __init__(self,
geometry=None,
base_frame='world',
metadata={},
graph=None,
camera=None,
lights=None,
camera_transform=None):
"""
Create a new Scene object.
Parameters
-------------
geometry : Trimesh, Path2D, Path3D PointCloud or list
Geometry to initially add to the scene
base_frame : str or hashable
Name of base frame
metadata : dict
Any metadata about the scene
graph : TransformForest or None
A passed transform graph to use
camera : Camera or None
A passed camera to use
lights : [trimesh.scene.lighting.Light] or None
A passed lights to use
camera_transform : (4, 4) float or None
Camera transform in the base frame
"""
# mesh name : Trimesh object
self.geometry = collections.OrderedDict()
# create a new graph
self.graph = TransformForest(base_frame=base_frame)
# create our cache
self._cache = caching.Cache(id_function=self.md5)
# add passed geometry to scene
self.add_geometry(geometry)
# hold metadata about the scene
self.metadata = {}
self.metadata.update(metadata)
if graph is not None:
# if we've been passed a graph override the default
self.graph = graph
self.camera = camera
self.lights = lights
self.camera_transform = camera_transform
def apply_transform(self, transform):
"""
Apply a transform to every geometry in the scene.
Parameters
--------------
transform : (4, 4)
Homogeneous transformation matrix
"""
for geometry in self.geometry.values():
geometry.apply_transform(transform)
def add_geometry(self,
geometry,
node_name=None,
geom_name=None,
parent_node_name=None,
transform=None):
"""
Add a geometry to the scene.
If the mesh has multiple transforms defined in its
metadata, they will all be copied into the
TransformForest of the current scene automatically.
Parameters
----------
geometry : Trimesh, Path2D, Path3D PointCloud or list
Geometry to initially add to the scene
base_frame : str or hashable
Name of base frame
metadata : dict
Any metadata about the scene
graph : TransformForest or None
A passed transform graph to use
Returns
----------
node_name : str
Name of node in self.graph
"""
if geometry is None:
return
# PointCloud objects will look like a sequence
elif util.is_sequence(geometry):
# if passed a sequence add all elements
return [self.add_geometry(
geometry=value,
node_name=node_name,
geom_name=geom_name,
parent_node_name=parent_node_name,
transform=transform) for value in geometry]
elif isinstance(geometry, dict):
# if someone passed us a dict of geometry
for key, value in geometry.items():
self.add_geometry(value, geom_name=key)
return
elif isinstance(geometry, Scene):
# concatenate current scene with passed scene
concat = self + geometry
# replace geometry in-place
self.geometry.clear()
self.geometry.update(concat.geometry)
# replace graph data with concatenated graph
self.graph.transforms = concat.graph.transforms
return
elif not hasattr(geometry, 'vertices'):
util.log.warning('unknown type ({}) added to scene!'.format(
type(geometry).__name__))
# get or create a name to reference the geometry by
if geom_name is not None:
# if name is passed use it
name = geom_name
elif 'name' in geometry.metadata:
# if name is in metadata use it
name = geometry.metadata['name']
elif 'file_name' in geometry.metadata:
name = geometry.metadata['file_name']
else:
# try to create a simple name
name = 'geometry_' + str(len(self.geometry))
# if its already taken add a unique random string to it
if name in self.geometry:
name += ':' + util.unique_id().upper()
# save the geometry reference
self.geometry[name] = geometry
# create a unique node name if not passed
if node_name is None:
# if the name of the geometry is also a transform node
if name in self.graph.nodes:
# a random unique identifier
unique = util.unique_id(increment=len(self.geometry))
# geometry name + UUID
node_name = name + '_' + unique.upper()
else:
# otherwise make the transform node name the same as the geom
node_name = name
if transform is None:
# create an identity transform from parent_node
transform = np.eye(4)
self.graph.update(frame_to=node_name,
frame_from=parent_node_name,
matrix=transform,
geometry=name,
geometry_flags={'visible': True})
return node_name
def delete_geometry(self, names):
"""
Delete one more multiple geometries from the scene and also
remove any node in the transform graph which references it.
Parameters
--------------
name : hashable
Name that references self.geometry
"""
# make sure we have a set we can check
if util.is_string(names):
names = [names]
names = set(names)
# remove the geometry reference from relevant nodes
self.graph.remove_geometries(names)
# remove the geometries from our geometry store
[self.geometry.pop(name, None) for name in names]
def md5(self):
"""
MD5 of scene which will change when meshes or
transforms are changed
Returns
--------
hashed : str
MD5 hash of scene
"""
# start with transforms hash
return util.md5_object(self._hashable())
def crc(self):
return caching.crc32(self._hashable())
def _hashable(self):
hashes = [self.graph.md5()]
for g in self.geometry.values():
if hasattr(g, 'md5'):
hashes.append(g.md5())
elif hasattr(g, 'tostring'):
hashes.append(str(hash(g.tostring())))
else:
# try to just straight up hash
# this may raise errors
hashes.append(str(hash(g)))
hashable = ''.join(sorted(hashes)).encode('utf-8')
return hashable
@property
def is_empty(self):
"""
Does the scene have anything in it.
Returns
----------
is_empty: bool, True if nothing is in the scene
"""
is_empty = len(self.geometry) == 0
return is_empty
@property
def is_valid(self):
"""
Is every geometry connected to the root node.
Returns
-----------
is_valid : bool
Does every geometry have a transform
"""
if len(self.geometry) == 0:
return True
try:
referenced = {self.graph[i][1]
for i in self.graph.nodes_geometry}
except BaseException:
# if connectivity to world frame is broken return false
return False
# every geometry is referenced
ok = referenced == set(self.geometry.keys())
return ok
@caching.cache_decorator
def bounds_corners(self):
"""
A list of points that represent the corners of the
AABB of every geometry in the scene.
This can be useful if you want to take the AABB in
a specific frame.
Returns
-----------
corners: (n, 3) float, points in space
"""
# the saved corners of each instance
corners_inst = []
# (n, 3) float corners of each geometry
corners_geom = {k: bounds_module.corners(v.bounds)
for k, v in self.geometry.items()
if v.bounds is not None}
if len(corners_geom) == 0:
return np.array([])
for node_name in self.graph.nodes_geometry:
# access the transform and geometry name from node
transform, geometry_name = self.graph[node_name]
# not all nodes have associated geometry
if geometry_name not in corners_geom:
continue
# transform geometry corners into where
# the instance of the geometry is located
corners_inst.extend(
transformations.transform_points(
corners_geom[geometry_name],
transform))
# make corners numpy array
corners_inst = np.array(corners_inst,
dtype=np.float64)
return corners_inst
@caching.cache_decorator
def bounds(self):
"""
Return the overall bounding box of the scene.
Returns
--------
bounds : (2, 3) float or None
Position of [min, max] bounding box
Returns None if no valid bounds exist
"""
corners = self.bounds_corners
if len(corners) == 0:
return None
bounds = np.array([corners.min(axis=0),
corners.max(axis=0)])
return bounds
@caching.cache_decorator
def extents(self):
"""
Return the axis aligned box size of the current scene.
Returns
----------
extents : (3,) float
Bounding box sides length
"""
return np.diff(self.bounds, axis=0).reshape(-1)
@caching.cache_decorator
def scale(self):
"""
The approximate scale of the mesh
Returns
-----------
scale : float
The mean of the bounding box edge lengths
"""
scale = (self.extents ** 2).sum() ** .5
return scale
@caching.cache_decorator
def centroid(self):
"""
Return the center of the bounding box for the scene.
Returns
--------
centroid : (3) float
Point for center of bounding box
"""
centroid = np.mean(self.bounds, axis=0)
return centroid
@caching.cache_decorator
def area(self):
"""
What is the summed area of every geometry which
has area.
Returns
------------
area : float
Summed area of every instanced geometry
"""
# get the area of every geometry that has an area property
areas = {n: g.area for n, g in self.geometry.items()
if hasattr(g, 'area')}
# get the name of every geometry instance in the scene
geoms = [self.graph[n][1] for n in
self.graph.nodes_geometry]
# sum the area for every instanced geometry
area = sum(areas[n] for n in geoms if n in geoms)
return area
@caching.cache_decorator
def triangles(self):
"""
Return a correctly transformed polygon soup of the
current scene.
Returns
----------
triangles : (n, 3, 3) float
Triangles in space
"""
triangles = collections.deque()
triangles_node = collections.deque()
for node_name in self.graph.nodes_geometry:
# which geometry does this node refer to
transform, geometry_name = self.graph[node_name]
# get the actual potential mesh instance
geometry = self.geometry[geometry_name]
if not hasattr(geometry, 'triangles'):
continue
# append the (n, 3, 3) triangles to a sequence
triangles.append(
transformations.transform_points(
geometry.triangles.copy().reshape((-1, 3)),
matrix=transform))
# save the node names for each triangle
triangles_node.append(
np.tile(node_name,
len(geometry.triangles)))
# save the resulting nodes to the cache
self._cache['triangles_node'] = np.hstack(triangles_node)
triangles = np.vstack(triangles).reshape((-1, 3, 3))
return triangles
@caching.cache_decorator
def triangles_node(self):
"""
Which node of self.graph does each triangle come from.
Returns
---------
triangles_index : (len(self.triangles),)
Node name for each triangle
"""
populate = self.triangles # NOQA
return self._cache['triangles_node']
@caching.cache_decorator
def geometry_identifiers(self):
"""
Look up geometries by identifier MD5
Returns
---------
identifiers : dict
{Identifier MD5: key in self.geometry}
"""
identifiers = {mesh.identifier_md5: name
for name, mesh in self.geometry.items()}
return identifiers
@caching.cache_decorator
def duplicate_nodes(self):
"""
Return a sequence of node keys of identical meshes.
Will include meshes with different geometry but identical
spatial hashes as well as meshes repeated by self.nodes.
Returns
-----------
duplicates : (m) sequenc
Keys of self.nodes that represent identical geometry
"""
# if there is no geometry we can have no duplicate nodes
if len(self.geometry) == 0:
return []
# geometry name : md5 of mesh
mesh_hash = {k: int(m.identifier_md5, 16)
for k, m in self.geometry.items()}
# the name of nodes in the scene graph with geometry
node_names = np.array(self.graph.nodes_geometry)
# the geometry names for each node in the same order
node_geom = np.array([self.graph[i][1] for i in node_names])
# the mesh md5 for each node in the same order
node_hash = np.array([mesh_hash[v] for v in node_geom])
# indexes of identical hashes
node_groups = grouping.group(node_hash)
# sequence of node names where each
# sublist has identical geometry
duplicates = [np.sort(node_names[g]).tolist()
for g in node_groups]
return duplicates
def deduplicated(self):
"""
Return a new scene where each unique geometry is only
included once and transforms are discarded.
Returns
-------------
dedupe : Scene
One copy of each unique geometry from scene
"""
# collect geometry
geometry = {}
# loop through groups of identical nodes
for group in self.duplicate_nodes:
# get the name of the geometry
name = self.graph[group[0]][1]
# collect our unique collection of geometry
geometry[name] = self.geometry[name]
return Scene(geometry)
def set_camera(self,
angles=None,
distance=None,
center=None,
resolution=None,
fov=None):
"""
Create a camera object for self.camera, and add
a transform to self.graph for it.
If arguments are not passed sane defaults will be figured
out which show the mesh roughly centered.
Parameters
-----------
angles : (3,) float
Initial euler angles in radians
distance : float
Distance from centroid
center : (3,) float
Point camera should be center on
camera : Camera object
Object that stores camera parameters
"""
if fov is None:
fov = np.array([60, 45])
# if no geometry nothing to set camera to
if len(self.geometry) == 0:
self._camera = cameras.Camera(fov=fov)
self.graph[self._camera.name] = np.eye(4)
return self._camera
# set with no rotation by default
if angles is None:
angles = np.zeros(3)
rotation = transformations.euler_matrix(*angles)
transform = cameras.look_at(
self.bounds_corners,
fov=fov,
rotation=rotation,
distance=distance,
center=center)
if hasattr(self, '_camera') and self._camera is not None:
self._camera.fov = fov
if resolution is not None:
self._camera.resolution = resolution
else:
# create a new camera object
self._camera = cameras.Camera(fov=fov, resolution=resolution)
self.graph[self._camera.name] = transform
return self._camera
@property
def camera_transform(self):
"""
Get camera transform in the base frame
Returns
-------
camera_transform : (4, 4) float
Camera transform in the base frame
"""
return self.graph[self.camera.name][0]
def camera_rays(self):
"""
Calculate the trimesh.scene.Camera origin and ray
direction vectors. Returns one ray per pixel as set
in camera.resolution
Returns
--------------
origin: (n, 3) float
Ray origins in space
vectors: (n, 3) float
Ray direction unit vectors in world coordinates
pixels : (n, 2) int
Which pixel does each ray correspond to in an image
"""
# get the unit vectors of the camera
vectors, pixels = self.camera.to_rays()
# find our scene's transform for the camera
transform = self.camera_transform
# apply the rotation to the unit ray direction vectors
vectors = transformations.transform_points(
vectors,
transform,
translate=False)
# camera origin is single point so extract from
origins = (np.ones_like(vectors) *
transformations.translation_from_matrix(transform))
return origins, vectors, pixels
@camera_transform.setter
def camera_transform(self, camera_transform):
"""
Set the camera transform in the base frame
Parameters
----------
camera_transform : (4, 4) float
Camera transform in the base frame
"""
if camera_transform is None:
return
self.graph[self.camera.name] = camera_transform
@property
def camera(self):
"""
Get the single camera for the scene. If not manually
set one will abe automatically generated.
Returns
----------
camera : trimesh.scene.Camera
Camera object defined for the scene
"""
# no camera set for the scene yet
if not self.has_camera:
# will create a camera with everything in view
return self.set_camera()
assert self._camera is not None
return self._camera
@camera.setter
def camera(self, camera):
"""
Set a camera object for the Scene.
Parameters
-----------
camera : trimesh.scene.Camera
Camera object for the scene
"""
if camera is None:
return
self._camera = camera
@property
def has_camera(self):
return hasattr(self, '_camera') and self._camera is not None
@property
def lights(self):
"""
Get a list of the lights in the scene. If nothing is
set it will generate some automatically.
Returns
-------------
lights : [trimesh.scene.lighting.Light]
Lights in the scene.
"""
if not hasattr(self, '_lights') or self._lights is None:
# do some automatic lighting
lights, transforms = lighting.autolight(self)
# assign the transforms to the scene graph
for L, T in zip(lights, transforms):
self.graph[L.name] = T
# set the lights
self._lights = lights
return self._lights
@lights.setter
def lights(self, lights):
"""
Assign a list of light objects to the scene
Parameters
--------------
lights : [trimesh.scene.lighting.Light]
Lights in the scene.
"""
self._lights = lights
def rezero(self):
"""
Move the current scene so that the AABB of the whole
scene is centered at the origin.
Does this by changing the base frame to a new, offset
base frame.
"""
if self.is_empty or np.allclose(self.centroid, 0.0):
# early exit since what we want already exists
return
# the transformation to move the overall scene to AABB centroid
matrix = np.eye(4)
matrix[:3, 3] = -self.centroid
# we are going to change the base frame
new_base = str(self.graph.base_frame) + '_I'
self.graph.update(frame_from=new_base,
frame_to=self.graph.base_frame,
matrix=matrix)
self.graph.base_frame = new_base
def dump(self, concatenate=False):
"""
Append all meshes in scene freezing transforms.
Parameters
------------
concatenate : bool
If True, concatenate results into single mesh
Returns
----------
dumped : (n,) Trimesh or Trimesh
Trimesh objects transformed to their
location the scene.graph
"""
result = []
for node_name in self.graph.nodes_geometry:
transform, geometry_name = self.graph[node_name]
# get a copy of the geometry
current = self.geometry[geometry_name].copy()
# move the geometry vertices into the requested frame
current.apply_transform(transform)
current.metadata['name'] = node_name
# save to our list of meshes
result.append(current)
if concatenate:
return util.concatenate(result)
return np.array(result)
@caching.cache_decorator
def convex_hull(self):
"""
The convex hull of the whole scene
Returns
---------
hull: Trimesh object, convex hull of all meshes in scene
"""
points = util.vstack_empty([m.vertices for m in self.dump()])
hull = convex.convex_hull(points)
return hull
def export(self,
file_obj=None,
file_type=None,
**kwargs):
"""
Export a snapshot of the current scene.
Parameters
----------
file_obj : str, file-like, or None
File object to export to
file_type : str or None
What encoding to use for meshes
IE: dict, dict64, stl
Returns
----------
export : bytes
Only returned if file_obj is None
"""
# if we weren't passed a file type extract from file_obj
if file_type is None:
if util.is_string(file_obj):
file_type = str(file_obj).split('.')[-1]
else:
raise ValueError('file_type not specified!')
# always remove whitepace and leading characters
file_type = file_type.strip().lower().lstrip('.')
# now handle our different scene export types
if file_type == 'gltf':
data = gltf.export_gltf(self, **kwargs)
elif file_type == 'glb':
data = gltf.export_glb(self, **kwargs)
elif file_type == 'dict':
from ..exchange.export import scene_to_dict
data = scene_to_dict(self)
elif file_type == 'obj':
from ..exchange.obj import export_obj
data = export_obj(self)
elif file_type == 'dict64':
from ..exchange.export import scene_to_dict
data = scene_to_dict(self, use_base64=True)
else:
raise ValueError(
'unsupported export format: {}'.format(file_type))
# now write the data or return bytes of result
if hasattr(file_obj, 'write'):
# if it's just a regular file object
file_obj.write(data)
elif util.is_string(file_obj):
# assume strings are file paths
file_path = os.path.expanduser(
os.path.abspath(file_obj))
if util.is_string(data):
mode = 'w'
else:
mode = 'wb'
with open(file_path, mode) as f:
f.write(data)
else:
# no writeable file object so return data
return data
def save_image(self, resolution=None, **kwargs):
"""
Get a PNG image of a scene.
Parameters
-----------
resolution : (2,) int
Resolution to render image
**kwargs
Passed to SceneViewer constructor
Returns
-----------
png : bytes
Render of scene as a PNG
"""
from ..viewer import render_scene
png = render_scene(scene=self,
resolution=resolution,
**kwargs)
return png
@property
def units(self):
"""
Get the units for every model in the scene, and
raise a ValueError if there are mixed units.
Returns
-----------
units : str
Units for every model in the scene
"""
existing = [i.units for i in self.geometry.values()]
if any(existing[0] != e for e in existing):
# if all of our geometry doesn't have the same units already
# this function will only do some hot nonsense
raise ValueError('models in scene have inconsistent units!')
return existing[0]
@units.setter
def units(self, value):
"""
Set the units for every model in the scene without
converting any units just setting the tag.
Parameters
------------
value : str
Value to set every geometry unit value to
"""
for m in self.geometry.values():
m.units = value
def convert_units(self, desired, guess=False):
"""
If geometry has units defined convert them to new units.
Returns a new scene with geometries and transforms scaled.
Parameters
----------
desired : str
Desired final unit system: 'inches', 'mm', etc.
guess : bool
Is the converter allowed to guess scale when models
don't have it specified in their metadata.
Returns
----------
scaled : trimesh.Scene
Copy of scene with scaling applied and units set
for every model
"""
# if there is no geometry do nothing
if len(self.geometry) == 0:
return self.copy()
current = self.units
if current is None:
# will raise ValueError if not in metadata
# and not allowed to guess
current = units.units_from_metadata(self, guess=guess)
# find the float conversion
scale = units.unit_conversion(current=current,
desired=desired)
# exit early if our current units are the same as desired units
if np.isclose(scale, 1.0):
result = self.copy()
else:
result = self.scaled(scale=scale)
# apply the units to every geometry of the scaled result
result.units = desired
return result
def explode(self, vector=None, origin=None):
"""
Explode a scene around a point and vector.
Parameters
-----------
vector : (3,) float or float
Explode radially around a direction vector or spherically
origin : (3,) float
Point to explode around
"""
if origin is None:
origin = self.centroid
if vector is None:
vector = self.scale / 25.0
vector = np.asanyarray(vector, dtype=np.float64)
origin = np.asanyarray(origin, dtype=np.float64)
for node_name in self.graph.nodes_geometry:
transform, geometry_name = self.graph[node_name]
centroid = self.geometry[geometry_name].centroid
# transform centroid into nodes location
centroid = np.dot(transform,
np.append(centroid, 1))[:3]
if vector.shape == ():
# case where our vector is a single number
offset = (centroid - origin) * vector
elif np.shape(vector) == (3,):
projected = np.dot(vector, (centroid - origin))
offset = vector * projected
else:
raise ValueError('explode vector wrong shape!')
transform[0:3, 3] += offset
self.graph[node_name] = transform
def scaled(self, scale):
"""
Return a copy of the current scene, with meshes and scene
transforms scaled to the requested factor.
Parameters
-----------
scale : float
Factor to scale meshes and transforms
Returns
-----------
scaled : trimesh.Scene
A copy of the current scene but scaled
"""
scale = float(scale)
# matrix for 2D scaling
scale_2D = np.eye(3) * scale
# matrix for 3D scaling
scale_3D = np.eye(4) * scale
# preallocate transforms and geometries
nodes = np.array(self.graph.nodes_geometry)
transforms = np.zeros((len(nodes), 4, 4))
geometries = [None] * len(nodes)
# collect list of transforms
for i, node in enumerate(nodes):
transforms[i], geometries[i] = self.graph[node]
# result is a copy
result = self.copy()
# remove all existing transforms
result.graph.clear()
for group in grouping.group(geometries):
# hashable reference to self.geometry
geometry = geometries[group[0]]
# original transform from world to geometry
original = transforms[group[0]]
# transform for geometry
new_geom = np.dot(scale_3D, original)
if result.geometry[geometry].vertices.shape[1] == 2:
# if our scene is 2D only scale in 2D
result.geometry[geometry].apply_transform(scale_2D)
else:
# otherwise apply the full transform
result.geometry[geometry].apply_transform(new_geom)
for node, T in zip(nodes[group],
transforms[group]):
# generate the new transforms
transform = util.multi_dot(
[scale_3D, T, np.linalg.inv(new_geom)])
# apply scale to translation
transform[:3, 3] *= scale
# update scene with new transforms
result.graph.update(frame_to=node,
matrix=transform,
geometry=geometry)
return result
def copy(self):
"""
Return a deep copy of the current scene
Returns
----------
copied : trimesh.Scene
Copy of the current scene
"""
# use the geometries copy method to
# allow them to handle references to unpickle-able objects
geometry = {n: g.copy() for n, g in self.geometry.items()}
if not hasattr(self, '_camera') or self._camera is None:
# if no camera set don't include it
camera = None
else:
# otherwise get a copy of the camera
camera = self.camera.copy()
# create a new scene with copied geometry and graph
copied = Scene(geometry=geometry,
graph=self.graph.copy(),
camera=camera)
return copied
def show(self, viewer=None, **kwargs):
"""
Display the current scene.
Parameters
-----------
viewer: str
What kind of viewer to open, including
'gl' to open a pyglet window, 'notebook'
for a jupyter notebook or None
kwargs : dict
Includes `smooth`, which will turn
on or off automatic smooth shading
"""
if viewer is None:
# check to see if we are in a notebook or not
from ..viewer import in_notebook
viewer = 'gl'
if in_notebook():
viewer = 'notebook'
if viewer == 'gl':
# this imports pyglet, and will raise an ImportError
# if pyglet is not available
from ..viewer import SceneViewer
return SceneViewer(self, **kwargs)
elif viewer == 'notebook':
from ..viewer import scene_to_notebook
return scene_to_notebook(self, **kwargs)
else:
raise ValueError('viewer must be "gl", "notebook", or None')
def __add__(self, other):
"""
Concatenate the current scene with another scene or mesh.
Parameters
------------
other : trimesh.Scene, trimesh.Trimesh, trimesh.Path
Other object to append into the result scene
Returns
------------
appended : trimesh.Scene
Scene with geometry from both scenes
"""
result = append_scenes([self, other],
common=[self.graph.base_frame])
return result
def split_scene(geometry, **kwargs):
"""
Given a geometry, list of geometries, or a Scene
return them as a single Scene object.
Parameters
----------
geometry : splittable
Returns
---------
scene: trimesh.Scene
"""
# already a scene, so return it
if util.is_instance_named(geometry, 'Scene'):
return geometry
# a list of things
if util.is_sequence(geometry):
metadata = {}
for g in geometry:
try:
metadata.update(g.metadata)
except BaseException:
continue
return Scene(geometry,
metadata=metadata)
# a single geometry so we are going to split
split = []
metadata = {}
for g in util.make_sequence(geometry):
split.extend(g.split(**kwargs))
metadata.update(g.metadata)
# if there is only one geometry in the mesh
# name it from the file name
if len(split) == 1 and 'file_name' in metadata:
split = {metadata['file_name']: split[0]}
scene = Scene(split, metadata=metadata)
return scene
def append_scenes(iterable, common=['world']):
"""
Concatenate multiple scene objects into one scene.
Parameters
-------------
iterable : (n,) Trimesh or Scene
Geometries that should be appended
common : (n,) str
Nodes that shouldn't be remapped
Returns
------------
result : trimesh.Scene
Scene containing all geometry
"""
if isinstance(iterable, Scene):
return iterable
# save geometry in dict
geometry = {}
# save transforms as edge tuples
edges = []
# nodes which shouldn't be remapped
common = set(common)
# nodes which are consumed and need to be remapped
consumed = set()
def node_remap(node):
"""
Remap node to new name if necessary
Parameters
-------------
node : hashable
Node name in original scene
Returns
-------------
name : hashable
Node name in concatenated scene
"""
# if we've already remapped a node use it
if node in map_node:
return map_node[node]
# if a node is consumed and isn't one of the nodes
# we're going to hold common between scenes remap it
if node not in common and node in consumed:
name = str(node) + '-' + util.unique_id().upper()
map_node[node] = name
node = name
# keep track of which nodes have been used
# in the current scene
current.add(node)
return node
# loop through every geometry
for s in iterable:
# allow Trimesh/Path2D geometry to be passed
if hasattr(s, 'scene'):
s = s.scene()
# if we don't have a scene raise an exception
if not isinstance(s, Scene):
raise ValueError('{} is not a scene!'.format(
type(s).__name__))
# remap geometries if they have been consumed
map_geom = {}
for k, v in s.geometry.items():
# if a geometry already exists add a UUID to the name
if k in geometry:
name = str(k) + '-' + util.unique_id().upper()
else:
name = k
# store name mapping
map_geom[k] = name
# store geometry with new name
geometry[name] = v
# remap nodes and edges so duplicates won't
# stomp all over each other
map_node = {}
# the nodes used in this scene
current = set()
for a, b, attr in s.graph.to_edgelist():
# remap node names from local names
a, b = node_remap(a), node_remap(b)
# remap geometry keys
# if key is not in map_geom it means one of the scenes
# referred to geometry that doesn't exist
# rather than crash here we ignore it as the user
# possibly intended to add in geometries back later
if 'geometry' in attr and attr['geometry'] in map_geom:
attr['geometry'] = map_geom[attr['geometry']]
# save the new edge
edges.append((a, b, attr))
# mark nodes from current scene as consumed
consumed.update(current)
# add all data to a new scene
result = Scene()
result.graph.from_edgelist(edges)
result.geometry.update(geometry)
return result