hub/venv/lib/python3.7/site-packages/trimesh/voxel/creation.py

301 lines
9.5 KiB
Python
Raw Normal View History

import numpy as np
from ..constants import log_time
from .. import remesh
from .. import grouping
from .. import util
from .. import transformations as tr
from . import base
from . import encoding as enc
@log_time
def voxelize_subdivide(mesh,
pitch,
max_iter=10,
edge_factor=2.0):
"""
Voxelize a surface by subdividing a mesh until every edge is
shorter than: (pitch / edge_factor)
Parameters
-----------
mesh: Trimesh object
pitch: float, side length of a single voxel cube
max_iter: int, cap maximum subdivisions or None for no limit.
edge_factor: float,
Returns
-----------
VoxelGrid instance representing the voxelized mesh.
"""
max_edge = pitch / edge_factor
if max_iter is None:
longest_edge = np.linalg.norm(mesh.vertices[mesh.edges[:, 0]] -
mesh.vertices[mesh.edges[:, 1]],
axis=1).max()
max_iter = max(int(np.ceil(np.log2(longest_edge / max_edge))), 0)
# get the same mesh sudivided so every edge is shorter
# than a factor of our pitch
v, f = remesh.subdivide_to_size(mesh.vertices,
mesh.faces,
max_edge=max_edge,
max_iter=max_iter)
# convert the vertices to their voxel grid position
hit = v / pitch
# Provided edge_factor > 1 and max_iter is large enough, this is
# sufficient to preserve 6-connectivity at the level of voxels.
hit = np.round(hit).astype(int)
# remove duplicates
unique, inverse = grouping.unique_rows(hit)
# get the voxel centers in model space
occupied_index = hit[unique]
origin_index = occupied_index.min(axis=0)
origin_position = origin_index * pitch
return base.VoxelGrid(
enc.SparseBinaryEncoding(occupied_index - origin_index),
transform=tr.scale_and_translate(
scale=pitch, translate=origin_position))
def local_voxelize(mesh,
point,
pitch,
radius,
fill=True,
**kwargs):
"""
Voxelize a mesh in the region of a cube around a point. When fill=True,
uses proximity.contains to fill the resulting voxels so may be meaningless
for non-watertight meshes. Useful to reduce memory cost for small values of
pitch as opposed to global voxelization.
Parameters
-----------
mesh : trimesh.Trimesh
Source geometry
point : (3, ) float
Point in space to voxelize around
pitch : float
Side length of a single voxel cube
radius : int
Number of voxel cubes to return in each direction.
kwargs : parameters to pass to voxelize_subdivide
Returns
-----------
voxels : VoxelGrid instance with resolution (m, m, m) where m=2*radius+1
or None if the volume is empty
"""
from scipy import ndimage
# make sure point is correct type/shape
point = np.asanyarray(point, dtype=np.float64).reshape(3)
# this is a gotcha- radius sounds a lot like it should be in
# float model space, not int voxel space so check
if not isinstance(radius, int):
raise ValueError('radius needs to be an integer number of cubes!')
# Bounds of region
bounds = np.concatenate((point - (radius + 0.5) * pitch,
point + (radius + 0.5) * pitch))
# faces that intersect axis aligned bounding box
faces = list(mesh.triangles_tree.intersection(bounds))
# didn't hit anything so exit
if len(faces) == 0:
return None
local = mesh.submesh([[f] for f in faces], append=True)
# Translate mesh so point is at 0,0,0
local.apply_translation(-point)
# sparse, origin = voxelize_subdivide(local, pitch, **kwargs)
vox = voxelize_subdivide(local, pitch, **kwargs)
origin = vox.transform[:3, 3]
matrix = vox.encoding.dense
# Find voxel index for point
center = np.round(-origin / pitch).astype(np.int64)
# pad matrix if necessary
prepad = np.maximum(radius - center, 0)
postpad = np.maximum(center + radius + 1 - matrix.shape, 0)
matrix = np.pad(matrix, np.stack((prepad, postpad), axis=-1),
mode='constant')
center += prepad
# Extract voxels within the bounding box
voxels = matrix[center[0] - radius:center[0] + radius + 1,
center[1] - radius:center[1] + radius + 1,
center[2] - radius:center[2] + radius + 1]
local_origin = point - radius * pitch # origin of local voxels
# Fill internal regions
if fill:
regions, n = ndimage.measurements.label(~voxels)
distance = ndimage.morphology.distance_transform_cdt(~voxels)
representatives = [
np.unravel_index((distance * (regions == i)).argmax(),
distance.shape) for i in range(1, n + 1)]
contains = mesh.contains(
np.asarray(representatives) *
pitch +
local_origin)
where = np.where(contains)[0] + 1
# use in1d vs isin for older numpy versions
internal = np.in1d(regions.flatten(), where).reshape(regions.shape)
voxels = np.logical_or(voxels, internal)
return base.VoxelGrid(voxels, tr.translation_matrix(local_origin))
@log_time
def voxelize_ray(mesh,
pitch,
per_cell=[2, 2]):
"""
Voxelize a mesh using ray queries.
Parameters
-------------
mesh : Trimesh object
Mesh to be voxelized
pitch : float
Length of voxel cube
per_cell : (2,) int
How many ray queries to make per cell
Returns
-------------
VoxelGrid instance representing the voxelized mesh.
"""
# how many rays per cell
per_cell = np.array(per_cell).astype(np.int).reshape(2)
# edge length of cube voxels
pitch = float(pitch)
# create the ray origins in a grid
bounds = mesh.bounds[:, :2].copy()
# offset start so we get the requested number per cell
bounds[0] += pitch / (1.0 + per_cell)
# offset end so arange doesn't short us
bounds[1] += pitch
# on X we are doing multiple rays per voxel step
step = pitch / per_cell
# 2D grid
ray_ori = util.grid_arange(bounds, step=step)
# a Z position below the mesh
z = np.ones(len(ray_ori)) * (mesh.bounds[0][2] - pitch)
ray_ori = np.column_stack((ray_ori, z))
# all rays are along positive Z
ray_dir = np.ones_like(ray_ori) * [0, 0, 1]
# if you have pyembree this should be decently fast
hits = mesh.ray.intersects_location(ray_ori, ray_dir)[0]
# just convert hit locations to integer positions
voxels = np.round(hits / pitch).astype(np.int64)
# offset voxels by min, so matrix isn't huge
origin_index = voxels.min(axis=0)
voxels -= origin_index
encoding = enc.SparseBinaryEncoding(voxels)
origin_position = origin_index * pitch
return base.VoxelGrid(
encoding,
tr.scale_and_translate(scale=pitch, translate=origin_position))
@log_time
def voxelize_binvox(
mesh, pitch=None, dimension=None, bounds=None, **binvoxer_kwargs):
"""
Voxelize via binvox tool.
Parameters
--------------
mesh : trimesh.Trimesh
Mesh to voxelize
pitch : float
Side length of each voxel. Ignored if dimension is provided
dimension: int
Number of voxels along each dimension. If not provided, this is
calculated based on pitch and bounds/mesh extents
bounds: (2, 3) float
min/max values of the returned `VoxelGrid` in each instance. Uses
`mesh.bounds` if not provided.
**binvoxer_kwargs:
Passed to `trimesh.exchange.binvox.Binvoxer`.
Should not contain `bounding_box` if bounds is not None.
Returns
--------------
`VoxelGrid` instance
Raises
--------------
`ValueError` if `bounds is not None and 'bounding_box' in binvoxer_kwargs`.
"""
from trimesh.exchange import binvox
if dimension is None:
# pitch must be provided
if bounds is None:
extents = mesh.extents
else:
mins, maxs = bounds
extents = maxs - mins
dimension = int(np.ceil(np.max(extents) / pitch))
if bounds is not None:
if 'bounding_box' in binvoxer_kwargs:
raise ValueError('Cannot provide both bounds and bounding_box')
binvoxer_kwargs['bounding_box'] = np.asanyarray(bounds).flatten()
binvoxer = binvox.Binvoxer(dimension=dimension, **binvoxer_kwargs)
return binvox.voxelize_mesh(mesh, binvoxer)
voxelizers = util.FunctionRegistry(
ray=voxelize_ray,
subdivide=voxelize_subdivide,
binvox=voxelize_binvox)
def voxelize(mesh, pitch, method='subdivide', **kwargs):
"""
Voxelize the given mesh using the specified implementation.
See `voxelizers` for available implementations or to add your own, e.g. via
`voxelizers['custom_key'] = custom_fn`.
`custom_fn` should have signature `(mesh, pitch, **kwargs) -> VoxelGrid`
and should not modify encoding.
Parameters
--------------
mesh: Trimesh object (left unchanged).
pitch: float, side length of each voxel.
method: implementation method. Must be in `fillers`.
**kwargs: additional kwargs passed to the specified implementation.
Returns
--------------
A VoxelGrid instance.
"""
return voxelizers(method, mesh=mesh, pitch=pitch, **kwargs)