192 lines
5.4 KiB
Python
192 lines
5.4 KiB
Python
|
"""Basic morphology operations that create new encodings."""
|
||
|
import numpy as np
|
||
|
|
||
|
from . import encoding as enc
|
||
|
from . import ops
|
||
|
|
||
|
from ..constants import log_time
|
||
|
from .. import util
|
||
|
|
||
|
|
||
|
try:
|
||
|
from scipy.ndimage import morphology as _m
|
||
|
except BaseException as E:
|
||
|
# scipy is a soft dependency
|
||
|
from ..exceptions import ExceptionModule
|
||
|
_m = ExceptionModule(E)
|
||
|
|
||
|
|
||
|
def _dense(encoding, rank=None):
|
||
|
if isinstance(encoding, np.ndarray):
|
||
|
dense = encoding
|
||
|
elif isinstance(encoding, enc.Encoding):
|
||
|
dense = encoding.dense
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
'encoding must be np.ndarray or Encoding, got %s' % str(encoding))
|
||
|
if rank:
|
||
|
_assert_rank(dense, rank)
|
||
|
return dense
|
||
|
|
||
|
|
||
|
def _sparse_indices(encoding, rank=None):
|
||
|
if isinstance(encoding, np.ndarray):
|
||
|
sparse_indices = encoding
|
||
|
elif isinstance(encoding, enc.Encoding):
|
||
|
sparse_indices = encoding.sparse_indices
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
'encoding must be np.ndarray or Encoding, got %s' % str(encoding))
|
||
|
|
||
|
_assert_sparse_rank(sparse_indices, 3)
|
||
|
return sparse_indices
|
||
|
|
||
|
|
||
|
def _assert_rank(value, rank):
|
||
|
if len(value.shape) != rank:
|
||
|
raise ValueError(
|
||
|
'Expected rank %d, got shape %s' % (rank, str(value.shape)))
|
||
|
|
||
|
|
||
|
def _assert_sparse_rank(value, rank=None):
|
||
|
if len(value.shape) != 2:
|
||
|
raise ValueError(
|
||
|
'sparse_indices must be rank 2, got shape %s' % str(value.shape))
|
||
|
if rank is not None:
|
||
|
if value.shape[-1] != rank:
|
||
|
raise ValueError(
|
||
|
'sparse_indices.shape[1] must be %d, got %d'
|
||
|
% (rank, value.shape[-1]))
|
||
|
|
||
|
|
||
|
@log_time
|
||
|
def fill_base(encoding):
|
||
|
"""
|
||
|
Given a sparse surface voxelization, fill in between columns.
|
||
|
|
||
|
Parameters
|
||
|
--------------
|
||
|
encoding: Encoding object or sparse array with shape (?, 3)
|
||
|
|
||
|
Returns
|
||
|
--------------
|
||
|
A new filled encoding object.
|
||
|
"""
|
||
|
return enc.SparseBinaryEncoding(
|
||
|
ops.fill_base(_sparse_indices(encoding, rank=3)))
|
||
|
|
||
|
|
||
|
@log_time
|
||
|
def fill_orthographic(encoding):
|
||
|
"""
|
||
|
Fill the given encoding by orthographic projection method.
|
||
|
|
||
|
Any voxel in the dense representation with no free ray along the x, y, z
|
||
|
axes in each direction is assigned filled. This is likely faster than fill
|
||
|
holes, and is more stable with regards to small holes.
|
||
|
|
||
|
Parameters
|
||
|
--------------
|
||
|
encoding: Encoding object or dense rank-3 array.
|
||
|
|
||
|
Returns
|
||
|
--------------
|
||
|
A new filled encoding object.
|
||
|
"""
|
||
|
return enc.DenseEncoding(ops.fill_orthographic(_dense(encoding, rank=3)))
|
||
|
|
||
|
|
||
|
@log_time
|
||
|
def fill_holes(encoding, **kwargs):
|
||
|
"""
|
||
|
Encoding wrapper around scipy.ndimage.morphology.binary_fill_holes.
|
||
|
|
||
|
https://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.ndimage.morphology.binary_fill_holes.html#scipy.ndimage.morphology.binary_fill_holes
|
||
|
|
||
|
Parameters
|
||
|
--------------
|
||
|
encoding: Encoding object or dense rank-3 array.
|
||
|
**kwargs: see scipy.ndimage.morphology.binary_fill_holes.
|
||
|
|
||
|
Returns
|
||
|
--------------
|
||
|
A new filled in encoding object.
|
||
|
"""
|
||
|
return enc.DenseEncoding(
|
||
|
_m.binary_fill_holes(_dense(encoding, rank=3), **kwargs))
|
||
|
|
||
|
|
||
|
fillers = util.FunctionRegistry(
|
||
|
base=fill_base,
|
||
|
orthographic=fill_orthographic,
|
||
|
holes=fill_holes,
|
||
|
)
|
||
|
|
||
|
|
||
|
def fill(encoding, method='base', **kwargs):
|
||
|
"""
|
||
|
Fill the given encoding using the specified implementation.
|
||
|
|
||
|
See `fillers` for available implementations or to add your own, e.g. via
|
||
|
`fillers['custom_key'] = custom_fn`.
|
||
|
|
||
|
`custom_fn` should have signature `(encoding, **kwargs) -> filled_encoding`
|
||
|
and should not modify encoding.
|
||
|
|
||
|
Parameters
|
||
|
--------------
|
||
|
encoding: Encoding object (left unchanged).
|
||
|
method: method present in `fillers`.
|
||
|
**kwargs: additional kwargs passed to the specified implementation.
|
||
|
|
||
|
Returns
|
||
|
--------------
|
||
|
A new filled Encoding object.
|
||
|
"""
|
||
|
return fillers(method, encoding=encoding, **kwargs)
|
||
|
|
||
|
|
||
|
def binary_dilation(encoding, **kwargs):
|
||
|
"""
|
||
|
Encoding wrapper around scipy.ndimage.morphology.binary_dilation.
|
||
|
|
||
|
https://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.ndimage.morphology.binary_dilation.html#scipy.ndimage.morphology.binary_dilation
|
||
|
"""
|
||
|
return enc.DenseEncoding(
|
||
|
_m.binary_dilation(_dense(encoding, rank=3), **kwargs))
|
||
|
|
||
|
|
||
|
def binary_closing(encoding, **kwargs):
|
||
|
"""
|
||
|
Encoding wrapper around scipy.ndimage.morphology.binary_closing.
|
||
|
|
||
|
https://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.ndimage.morphology.binary_closing.html#scipy.ndimage.morphology.binary_closing
|
||
|
"""
|
||
|
return enc.DenseEncoding(
|
||
|
_m.binary_closing(_dense(encoding, rank=3), **kwargs))
|
||
|
|
||
|
|
||
|
def surface(encoding, structure=None):
|
||
|
"""
|
||
|
Get elements on the surface of encoding.
|
||
|
|
||
|
A surface element is any one in encoding that is adjacent to an empty
|
||
|
voxel.
|
||
|
|
||
|
Parameters
|
||
|
--------------
|
||
|
encoding: Encoding or dense rank-3 array
|
||
|
structure: adjacency structure. If None, square connectivity is used.
|
||
|
|
||
|
Returns
|
||
|
--------------
|
||
|
new surface Encoding.
|
||
|
"""
|
||
|
dense = _dense(encoding, rank=3)
|
||
|
# padding/unpadding resolves issues with occupied voxels on the boundary
|
||
|
dense = np.pad(dense, np.ones((3, 2), dtype=int), mode='constant')
|
||
|
empty = np.logical_not(dense)
|
||
|
dilated = _m.binary_dilation(empty, structure=structure)
|
||
|
surface = np.logical_and(dense, dilated)[1:-1, 1:-1, 1:-1]
|
||
|
return enc.DenseEncoding(surface)
|