hub/venv/lib/python3.7/site-packages/trimesh/voxel/ops.py

436 lines
12 KiB
Python
Raw Normal View History

import numpy as np
from .. import util
from ..constants import log
def fill_orthographic(dense):
shape = dense.shape
indices = np.stack(
np.meshgrid(*(np.arange(s) for s in shape), indexing='ij'),
axis=-1)
empty = np.logical_not(dense)
def fill_axis(axis):
base_local_indices = indices[..., axis]
local_indices = base_local_indices.copy()
local_indices[empty] = shape[axis]
mins = np.min(local_indices, axis=axis, keepdims=True)
local_indices = base_local_indices.copy()
local_indices[empty] = -1
maxs = np.max(local_indices, axis=axis, keepdims=True)
return np.logical_and(
base_local_indices >= mins,
base_local_indices <= maxs,
)
filled = fill_axis(axis=0)
for axis in range(1, len(shape)):
filled = np.logical_and(filled, fill_axis(axis))
return filled
def fill_base(sparse_indices):
"""
Given a sparse surface voxelization, fill in between columns.
Parameters
--------------
sparse_indices: (n, 3) int, location of filled cells
Returns
--------------
filled: (m, 3) int, location of filled cells
"""
# validate inputs
sparse_indices = np.asanyarray(sparse_indices, dtype=np.int64)
if not util.is_shape(sparse_indices, (-1, 3)):
raise ValueError('incorrect shape')
# create grid and mark inner voxels
max_value = sparse_indices.max() + 3
grid = np.zeros((max_value,
max_value,
max_value),
bool)
voxels_sparse = np.add(sparse_indices, 1)
grid[tuple(voxels_sparse.T)] = 1
for i in range(max_value):
check_dir2 = False
for j in range(0, max_value - 1):
idx = []
# find transitions first
# transition positions are from 0 to 1 and from 1 to 0
eq = np.equal(grid[i, j, :-1], grid[i, j, 1:])
idx = np.where(np.logical_not(eq))[0] + 1
c = len(idx)
check_dir2 = (c % 4) > 0 and c > 4
if c < 4:
continue
for s in range(0, c - c % 4, 4):
grid[i, j, idx[s]:idx[s + 3]] = 1
if not check_dir2:
continue
# check another direction for robustness
for k in range(0, max_value - 1):
idx = []
# find transitions first
eq = np.equal(grid[i, :-1, k], grid[i, 1:, k])
idx = np.where(np.logical_not(eq))[0] + 1
c = len(idx)
if c < 4:
continue
for s in range(0, c - c % 4, 4):
grid[i, idx[s]:idx[s + 3], k] = 1
# generate new voxels
filled = np.column_stack(np.where(grid))
filled -= 1
return filled
fill_voxelization = fill_base
def matrix_to_marching_cubes(matrix, pitch=1.0):
"""
Convert an (n, m, p) matrix into a mesh, using marching_cubes.
Parameters
-----------
matrix : (n, m, p) bool
Occupancy array
Returns
----------
mesh : trimesh.Trimesh
Mesh generated by meshing voxels using
the marching cubes algorithm in skimage
"""
from skimage import measure
from ..base import Trimesh
matrix = np.asanyarray(matrix, dtype=np.bool)
rev_matrix = np.logical_not(matrix) # Takes set about 0.
# Add in padding so marching cubes can function properly with
# voxels on edge of AABB
pad_width = 1
rev_matrix = np.pad(rev_matrix,
pad_width=(pad_width),
mode='constant',
constant_values=(1))
# pick between old and new API
if hasattr(measure, 'marching_cubes_lewiner'):
func = measure.marching_cubes_lewiner
else:
func = measure.marching_cubes
# Run marching cubes.
pitch = np.asanyarray(pitch)
if pitch.size == 1:
pitch = (pitch,) * 3
meshed = func(volume=rev_matrix,
level=.5, # it is a boolean voxel grid
spacing=pitch)
# allow results from either marching cubes function in skimage
# binaries available for python 3.3 and 3.4 appear to use the classic
# method
if len(meshed) == 2:
log.warning('using old marching cubes, may not be watertight!')
vertices, faces = meshed
normals = None
elif len(meshed) == 4:
vertices, faces, normals, vals = meshed
# Return to the origin, add in the pad_width
vertices = np.subtract(vertices, pad_width * pitch)
# create the mesh
mesh = Trimesh(vertices=vertices,
faces=faces,
vertex_normals=normals)
return mesh
def sparse_to_matrix(sparse):
"""
Take a sparse (n,3) list of integer indexes of filled cells,
turn it into a dense (m,o,p) matrix.
Parameters
-----------
sparse : (n, 3) int
Index of filled cells
Returns
------------
dense : (m, o, p) bool
Matrix of filled cells
"""
sparse = np.asanyarray(sparse, dtype=np.int)
if not util.is_shape(sparse, (-1, 3)):
raise ValueError('sparse must be (n,3)!')
shape = sparse.max(axis=0) + 1
matrix = np.zeros(np.product(shape), dtype=np.bool)
multiplier = np.array([np.product(shape[1:]), shape[2], 1])
index = (sparse * multiplier).sum(axis=1)
matrix[index] = True
dense = matrix.reshape(shape)
return dense
def points_to_marching_cubes(points, pitch=1.0):
"""
Mesh points by assuming they fill a voxel box, and then
running marching cubes on them
Parameters
------------
points : (n, 3) float
Points in 3D space
Returns
-------------
mesh : trimesh.Trimesh
Points meshed using marching cubes
"""
# make sure inputs are as expected
points = np.asanyarray(points, dtype=np.float64)
pitch = np.asanyarray(pitch, dtype=float)
# find the minimum value of points for origin
origin = points.min(axis=0)
# convert points to occupied voxel cells
index = ((points - origin) / pitch).round().astype(np.int64)
# convert voxel indices to a matrix
matrix = sparse_to_matrix(index)
# run marching cubes on the matrix to generate a mesh
mesh = matrix_to_marching_cubes(matrix, pitch=pitch)
mesh.vertices += origin
return mesh
def multibox(centers, pitch=1.0, colors=None):
"""
Return a Trimesh object with a box at every center.
Doesn't do anything nice or fancy.
Parameters
-----------
centers : (n, 3) float
Center of boxes that are occupied
pitch : float
The edge length of a voxel
colors : (3,) or (4,) or (n,3) or (n, 4) float
Color of boxes
Returns
---------
rough : Trimesh
Mesh object representing inputs
"""
from .. import primitives
from ..base import Trimesh
# get centers as numpy array
centers = np.asanyarray(
centers, dtype=np.float64)
# get a basic box
b = primitives.Box()
# apply the pitch
b.apply_scale(float(pitch))
# tile into one box vertex per center
v = np.tile(
centers,
(1, len(b.vertices))).reshape((-1, 3))
# offset to centers
v += np.tile(b.vertices, (len(centers), 1))
f = np.tile(b.faces, (len(centers), 1))
f += np.tile(
np.arange(len(centers)) * len(b.vertices),
(len(b.faces), 1)).T.reshape((-1, 1))
face_colors = None
if colors is not None:
colors = np.asarray(colors)
if colors.ndim == 1:
colors = colors[None].repeat(len(centers), axis=0)
if colors.ndim == 2 and len(colors) == len(centers):
face_colors = colors.repeat(12, axis=0)
mesh = Trimesh(vertices=v,
faces=f,
face_colors=face_colors)
return mesh
def boolean_sparse(a, b, operation=np.logical_and):
"""
Find common rows between two arrays very quickly
using 3D boolean sparse matrices.
Parameters
-----------
a: (n, d) int, coordinates in space
b: (m, d) int, coordinates in space
operation: numpy operation function, ie:
np.logical_and
np.logical_or
Returns
-----------
coords: (q, d) int, coordinates in space
"""
# 3D sparse arrays, using wrapped scipy.sparse
# pip install sparse
import sparse
# find the bounding box of both arrays
extrema = np.array([a.min(axis=0),
a.max(axis=0),
b.min(axis=0),
b.max(axis=0)])
origin = extrema.min(axis=0) - 1
size = tuple(extrema.ptp(axis=0) + 2)
# put nearby voxel arrays into same shape sparse array
sp_a = sparse.COO((a - origin).T,
data=np.ones(len(a), dtype=np.bool),
shape=size)
sp_b = sparse.COO((b - origin).T,
data=np.ones(len(b), dtype=np.bool),
shape=size)
# apply the logical operation
# get a sparse matrix out
applied = operation(sp_a, sp_b)
# reconstruct the original coordinates
coords = np.column_stack(applied.coords) + origin
return coords
def strip_array(data):
shape = data.shape
ndims = len(shape)
padding = []
slices = []
for dim, size in enumerate(shape):
axis = tuple(range(dim)) + tuple(range(dim + 1, ndims))
filled = np.any(data, axis=axis)
indices, = np.nonzero(filled)
pad_left = indices[0]
pad_right = indices[-1]
padding.append([pad_left, pad_right])
slices.append(slice(pad_left, pad_right))
return data[tuple(slices)], np.array(padding, int)
def indices_to_points(indices, pitch=None, origin=None):
"""
Convert indices of an (n,m,p) matrix into a set of voxel center points.
Parameters
----------
indices: (q, 3) int, index of voxel matrix (n,m,p)
pitch: float, what pitch was the voxel matrix computed with
origin: (3,) float, what is the origin of the voxel matrix
Returns
----------
points: (q, 3) float, list of points
"""
indices = np.asanyarray(indices)
if indices.shape[1:] != (3,):
from IPython import embed
embed()
raise ValueError('shape of indices must be (q, 3)')
points = np.array(indices, dtype=np.float64)
if pitch is not None:
points *= float(pitch)
if origin is not None:
origin = np.asanyarray(origin)
if origin.shape != (3,):
raise ValueError('shape of origin must be (3,)')
points += origin
return points
def matrix_to_points(matrix, pitch=None, origin=None):
"""
Convert an (n,m,p) matrix into a set of points for each voxel center.
Parameters
-----------
matrix: (n,m,p) bool, voxel matrix
pitch: float, what pitch was the voxel matrix computed with
origin: (3,) float, what is the origin of the voxel matrix
Returns
----------
points: (q, 3) list of points
"""
indices = np.column_stack(np.nonzero(matrix))
points = indices_to_points(indices=indices,
pitch=pitch,
origin=origin)
return points
def points_to_indices(points, pitch=None, origin=None):
"""
Convert center points of an (n,m,p) matrix into its indices.
Parameters
----------
points : (q, 3) float
Center points of voxel matrix (n,m,p)
pitch : float
What pitch was the voxel matrix computed with
origin : (3,) float
What is the origin of the voxel matrix
Returns
----------
indices : (q, 3) int
List of indices
"""
points = np.array(points, dtype=np.float64)
if points.shape != (points.shape[0], 3):
raise ValueError('shape of points must be (q, 3)')
if origin is not None:
origin = np.asanyarray(origin)
if origin.shape != (3,):
raise ValueError('shape of origin must be (3,)')
points -= origin
if pitch is not None:
points /= pitch
origin = np.asanyarray(origin, dtype=np.float64)
pitch = float(pitch)
indices = np.round(points).astype(int)
return indices