hub/catalog_factories/usage/comnet_catalog.py

242 lines
10 KiB
Python
Raw Normal View History

"""
Comnet usage catalog
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
"""
2022-05-17 22:22:40 -04:00
from typing import Dict
2022-05-17 22:22:40 -04:00
import pandas as pd
2022-05-18 22:51:55 -04:00
import helpers.constants as cte
from catalog_factories.catalog import Catalog
2022-05-18 22:51:55 -04:00
from catalog_factories.data_models.usages.appliances import Appliances
2022-05-19 12:02:13 -04:00
from catalog_factories.data_models.usages.content import Content
2022-05-17 22:22:40 -04:00
from catalog_factories.data_models.usages.lighting import Lighting
2022-05-18 22:51:55 -04:00
from catalog_factories.data_models.usages.ocupancy import Occupancy
from catalog_factories.data_models.usages.schedule import Schedule
from catalog_factories.data_models.usages.thermal_control import ThermalControl
from catalog_factories.data_models.usages.usage import Usage
2022-05-17 22:22:40 -04:00
from catalog_factories.usage.usage_helper import UsageHelper
from helpers.configuration_helper import ConfigurationHelper as ch
class ComnetCatalog(Catalog):
def __init__(self, path):
2022-05-17 22:22:40 -04:00
self._comnet_archetypes_path = str(path / 'comnet_archetypes.xlsx')
self._comnet_schedules_path = str(path / 'comnet_schedules_archetypes.xlsx')
self._archetypes = self._read_archetype_file()
self._schedules = self._read_schedules_file()
2022-05-19 12:02:13 -04:00
2022-05-18 22:51:55 -04:00
sensible_convective = ch().comnet_occupancy_sensible_convective
sensible_radiative = ch().comnet_occupancy_sensible_radiant
lighting_convective = ch().comnet_lighting_convective
lighting_radiative = ch().comnet_lighting_radiant
lighting_latent = ch().comnet_lighting_latent
appliances_convective = ch().comnet_plugs_convective
appliances_radiative = ch().comnet_plugs_radiant
appliances_latent = ch().comnet_plugs_latent
2022-05-19 12:02:13 -04:00
usages = []
2022-05-18 22:51:55 -04:00
for schedule_key in self._archetypes['schedules_key']:
comnet_usage = schedule_key
schedule_name = self._archetypes['schedules_key'][schedule_key]
hours_day = self._calculate_hours_day(schedule_name)
occupancy_archetype = self._archetypes['occupancy'][comnet_usage]
lighting_archetype = self._archetypes['lighting'][comnet_usage]
appliances_archetype = self._archetypes['plug loads'][comnet_usage]
2022-05-19 12:02:13 -04:00
mechanical_air_change = None # comnet provides ventilation rate only
ventilation_rate = self._archetypes['ventilation rate'][comnet_usage]
# convert cfm/ft2 to m3/m2.s
ventilation_rate = ventilation_rate / (cte.METERS_TO_FEET * cte.MINUTES_TO_SECONDS)
2022-05-18 22:51:55 -04:00
# get occupancy
occupancy_density = occupancy_archetype[0] / pow(cte.METERS_TO_FEET, 2)
2022-05-19 12:02:13 -04:00
sensible_heat_gain = occupancy_archetype[1] * cte.BTU_H_TO_WATTS
latent_heat_gain = occupancy_archetype[1] * cte.BTU_H_TO_WATTS
2022-05-18 22:51:55 -04:00
if occupancy_density != 0:
occupancy_density = 1 / occupancy_density
sensible_convective_internal_gain = occupancy_density * sensible_heat_gain * sensible_convective
sensible_radiative_internal_gain = occupancy_density * sensible_heat_gain * sensible_radiative
latent_internal_gain = occupancy_density * latent_heat_gain
occupancy = Occupancy(occupancy_density,
sensible_convective_internal_gain,
sensible_radiative_internal_gain,
latent_internal_gain,
self._schedules[schedule_name]['Occupancy'])
# get lighting
2022-05-19 12:02:13 -04:00
density = lighting_archetype[4] / pow(cte.METERS_TO_FEET,2)
2022-05-18 22:51:55 -04:00
lighting = Lighting(density,
lighting_convective,
lighting_radiative,
lighting_latent,
self._schedules[schedule_name]['Lights'])
# get appliances
density = appliances_archetype[0]
2022-05-19 12:02:13 -04:00
if density == 'n.a.':
density = 0
# convert W/ft2 to W/m2
density = float(density) / pow(cte.METERS_TO_FEET,2)
2022-05-18 22:51:55 -04:00
appliances = Appliances(density,
appliances_convective,
appliances_radiative,
appliances_latent,
self._schedules[schedule_name]['Receptacle'])
# get thermal control
2022-05-19 12:02:13 -04:00
max_heating_setpoint = cte.MIN_FLOAT
min_heating_setpoint = cte.MAX_FLOAT
2022-05-18 22:51:55 -04:00
for schedule in self._schedules[schedule_name]['HtgSetPt']:
2022-05-19 12:02:13 -04:00
if schedule.values is None:
max_heating_setpoint = None
min_heating_setpoint = None
break
if max(schedule.values) > max_heating_setpoint:
max_heating_setpoint = max(schedule.values)
if min(schedule.values) < min_heating_setpoint:
min_heating_setpoint = min(schedule.values)
min_cooling_setpoint = cte.MAX_FLOAT
2022-05-18 22:51:55 -04:00
for schedule in self._schedules[schedule_name]['ClgSetPt']:
2022-05-19 12:02:13 -04:00
if schedule.values is None:
min_cooling_setpoint = None
break
if min(schedule.values) < min_cooling_setpoint:
min_cooling_setpoint = min(schedule.values)
thermal_control = ThermalControl(max_heating_setpoint,
min_heating_setpoint,
min_cooling_setpoint,
self._schedules[schedule_name]['HVAC Avail'],
self._schedules[schedule_name]['HtgSetPt'],
self._schedules[schedule_name]['ClgSetPt']
)
usages.append(Usage(comnet_usage,
hours_day,
365,
mechanical_air_change,
ventilation_rate,
occupancy,
lighting,
appliances,
thermal_control))
2022-05-18 22:51:55 -04:00
2022-05-19 12:02:13 -04:00
self._content = Content(usages)
2022-05-17 22:22:40 -04:00
def _read_schedules_file(self) -> Dict:
dictionary = {}
comnet_usages = UsageHelper().comnet_schedules_key_to_comnet_schedules
comnet_days = UsageHelper().comnet_days
2022-05-18 22:51:55 -04:00
comnet_data_types = UsageHelper().comnet_data_type_to_hub_data_type
2022-05-17 22:22:40 -04:00
for usage_name in comnet_usages:
2022-05-18 22:51:55 -04:00
if usage_name == 'C-13 Data Center':
continue
2022-05-17 22:22:40 -04:00
_extracted_data = pd.read_excel(self._comnet_schedules_path, sheet_name=comnet_usages[usage_name],
skiprows=[0, 1, 2, 3], nrows=39, usecols="A:AA")
_schedules = {}
for row in range(0, 39, 3):
_schedule_values = {}
schedule_name = _extracted_data.loc[row:row, 'Description'].item()
2022-05-18 22:51:55 -04:00
schedule_data_type = comnet_data_types[_extracted_data.loc[row:row, 'Type'].item()]
2022-05-17 22:22:40 -04:00
for day in comnet_days:
2022-05-18 22:51:55 -04:00
# Monday to Friday
2022-05-17 22:22:40 -04:00
start = row
2022-05-18 22:51:55 -04:00
end = row + 1
2022-05-17 22:22:40 -04:00
if day == cte.SATURDAY:
2022-05-18 22:51:55 -04:00
start = start + 1
end = end + 1
2022-05-17 22:22:40 -04:00
elif day == cte.SUNDAY or day == cte.HOLIDAY:
start = start + 2
end = end + 2
_schedule_values[day] = _extracted_data.iloc[start:end, 3:27].to_numpy().tolist()[0]
2022-05-18 22:51:55 -04:00
_schedule = []
for day in _schedule_values:
2022-05-19 12:02:13 -04:00
if schedule_data_type == 'temperature':
# to celsius
if 'n.a.' in _schedule_values[day]:
_schedule_values[day] = None
else:
_schedule_values[day] = [(float(value)-32)*5/9 for value in _schedule_values[day]]
2022-05-18 22:51:55 -04:00
_schedule.append(Schedule(schedule_name, _schedule_values[day], schedule_data_type, cte.HOUR, cte.DAY, [day]))
_schedules[schedule_name] = _schedule
2022-05-17 22:22:40 -04:00
dictionary[usage_name] = _schedules
return dictionary
def _read_archetype_file(self) -> Dict:
"""
reads xlsx files containing usage information into a dictionary
:return : Dict
"""
number_usage_types = 33
xl_file = pd.ExcelFile(self._comnet_archetypes_path)
file_data = pd.read_excel(xl_file, sheet_name="Modeling Data", skiprows=[0, 1, 2, 24],
2022-05-17 22:22:40 -04:00
nrows=number_usage_types, usecols="A:AB")
lighting_data = {}
plug_loads_data = {}
occupancy_data = {}
ventilation_rate = {}
water_heating = {}
process_data = {}
schedules_key = {}
for j in range(0, number_usage_types-1):
2022-05-17 22:22:40 -04:00
usage_parameters = file_data.iloc[j]
usage_type = usage_parameters[0]
lighting_data[usage_type] = usage_parameters[1:6].values.tolist()
plug_loads_data[usage_type] = usage_parameters[8:13].values.tolist()
occupancy_data[usage_type] = usage_parameters[17:20].values.tolist()
2022-05-18 22:51:55 -04:00
ventilation_rate[usage_type] = usage_parameters[20:21].item()
water_heating[usage_type] = usage_parameters[23:24].item()
2022-05-17 22:22:40 -04:00
process_data[usage_type] = usage_parameters[24:26].values.tolist()
2022-05-18 22:51:55 -04:00
schedules_key[usage_type] = usage_parameters[27:28].item()
2022-05-17 22:22:40 -04:00
2022-05-17 22:22:40 -04:00
return {'lighting': lighting_data,
'plug loads': plug_loads_data,
'occupancy': occupancy_data,
'ventilation rate': ventilation_rate,
'water heating': water_heating,
'process': process_data,
2022-05-18 22:51:55 -04:00
'schedules_key': schedules_key
}
2022-05-17 22:22:40 -04:00
2022-05-18 22:51:55 -04:00
def _calculate_hours_day(self, function):
days = [cte.MONDAY, cte.TUESDAY, cte.WEDNESDAY, cte.THURSDAY, cte.FRIDAY, cte.SATURDAY, cte.SUNDAY, cte.HOLIDAY]
number_of_days_per_type = [51, 50, 50, 50, 50, 52, 52, 10]
2022-05-17 22:22:40 -04:00
total = 0
2022-05-18 22:51:55 -04:00
for schedule in self._schedules[function]['HVAC Avail']:
yearly_days = number_of_days_per_type[days.index(schedule.day_types[0])]
for value in schedule.values:
total += value * yearly_days
return total / 365
def names(self, category=None):
2022-05-19 14:24:24 -04:00
"""
Get the catalog elements names
:parm: for usage catalog category filter does nothing as there is only one category (usages)
"""
_names = {'usages': []}
for usage in self._content.usages:
_names['usages'].append(usage.usage)
return _names
def entries(self, category=None):
2022-05-19 14:24:24 -04:00
"""
Get the catalog elements
:parm: for usage catalog category filter does nothing as there is only one category (usages)
"""
return self._content
def get_entry(self, name):
2022-05-19 14:24:24 -04:00
"""
Get one catalog element by names
:parm: entry name
"""
for usage in self._content.usages:
if usage.usage.lower() == name.lower():
return usage
raise IndexError(f"{name} doesn't exists in the catalog")