2021-10-29 11:27:25 -04:00
|
|
|
"""
|
|
|
|
HeatPumpExport exports heatpump coefficient into several formats
|
|
|
|
SPDX - License - Identifier: LGPL - 3.0 - or -later
|
|
|
|
Copyright © 2021 Project Author Peter Yefi peteryefi@gmail.com
|
|
|
|
"""
|
2021-11-10 05:13:17 -05:00
|
|
|
import os
|
|
|
|
from typing import List, Tuple, Union, Dict
|
2021-11-08 11:33:24 -05:00
|
|
|
import yaml
|
|
|
|
from string import Template
|
2021-11-10 05:13:17 -05:00
|
|
|
import pandas as pd
|
2021-10-29 11:27:25 -04:00
|
|
|
|
|
|
|
|
|
|
|
class HeatPumpExport:
|
|
|
|
"""
|
|
|
|
Exports heat pump values as coefficients
|
|
|
|
of some defined function
|
|
|
|
"""
|
|
|
|
|
2021-11-12 05:14:54 -05:00
|
|
|
def __init__(self, base_path, city, output_path):
|
2021-11-08 11:33:24 -05:00
|
|
|
self._template_path = (base_path / 'heat_pumps/template.txt')
|
|
|
|
self._constants_path = (base_path / 'heat_pumps/constants.yaml')
|
|
|
|
# needed to compute max demand.
|
|
|
|
self._demand_path = (base_path / 'heat_pumps/demand.txt')
|
2021-10-29 11:27:25 -04:00
|
|
|
self._city = city
|
2021-11-08 11:33:24 -05:00
|
|
|
self._input_data = None
|
|
|
|
self._base_path = base_path
|
2021-11-12 05:14:54 -05:00
|
|
|
self._output_path = output_path
|
2021-10-29 11:27:25 -04:00
|
|
|
|
2021-11-10 05:13:17 -05:00
|
|
|
def run_insel(self, user_input: Dict, hp_model: str, data_type: str) -> None:
|
2021-10-29 11:27:25 -04:00
|
|
|
"""
|
2021-11-08 11:33:24 -05:00
|
|
|
Runs insel and write the necessary files
|
|
|
|
:param user_input: a dictionary containing the user
|
|
|
|
values necessary to run insel
|
|
|
|
:param hp_model: a string that indicates the heat
|
|
|
|
pump model to be used e.g. 012, 015
|
|
|
|
:param data_type: a string that indicates whether
|
|
|
|
insel should run for heat or cooling performance
|
|
|
|
:return:
|
2021-10-29 11:27:25 -04:00
|
|
|
"""
|
2021-11-08 11:33:24 -05:00
|
|
|
self._input_data = user_input
|
|
|
|
# update input data with other data necessary to run insel
|
|
|
|
capacity_coff, comp_power_coff = self._extract_model_coff(hp_model, data_type)
|
|
|
|
self._update_input_data_with_coff(capacity_coff, comp_power_coff)
|
|
|
|
# update input data with constants
|
|
|
|
self._update_input_data_with_constants()
|
|
|
|
# update input data with input and output files for insel
|
|
|
|
self._update_input_data_with_files()
|
|
|
|
insel_file_handler = None
|
|
|
|
insel_template_handler = None
|
|
|
|
try:
|
|
|
|
# run insel
|
|
|
|
insel_template_handler = open(self._template_path, "r")
|
2021-11-12 05:14:54 -05:00
|
|
|
insel_template_content = insel_template_handler.read()
|
|
|
|
insel_template = Template(insel_template_content).substitute(self._input_data)
|
2021-11-08 11:33:24 -05:00
|
|
|
# create the insel file and write the template with substituted values into it
|
|
|
|
insel_file = (self._base_path / 'heat_pumps/dompark_heat_pump.insel')
|
|
|
|
insel_file_handler = open(insel_file, "w")
|
|
|
|
insel_file_handler.write(insel_template)
|
|
|
|
# Now run insel
|
2021-11-10 11:58:01 -05:00
|
|
|
self._delete_existing_output_files()
|
2021-11-10 05:13:17 -05:00
|
|
|
os.system('insel {}'.format(insel_file))
|
|
|
|
# Writer headers to csv output files generated by insel
|
|
|
|
self._write_insel_output_headers()
|
2021-11-10 11:58:01 -05:00
|
|
|
# User output
|
|
|
|
self._get_user_out_put()
|
2021-11-08 11:33:24 -05:00
|
|
|
except IOError as err:
|
|
|
|
print("I/O exception: {}".format(err))
|
|
|
|
finally:
|
|
|
|
insel_file_handler.close()
|
|
|
|
insel_template_handler.close()
|
2021-10-29 11:27:25 -04:00
|
|
|
|
2021-11-10 05:13:17 -05:00
|
|
|
def _write_insel_output_headers(self):
|
|
|
|
"""
|
|
|
|
Write headers to the various csv file generated by insel
|
|
|
|
:return:
|
|
|
|
"""
|
|
|
|
header_data = {
|
|
|
|
self._input_data['fileOut1']: ['Year', ' Month', ' Day', 'Hour', 'Minute', 'HP Heat Output (kW)',
|
|
|
|
'HP Electricity Consumption (kW)', 'HP COP', 'TES Charging Rate (kg/s)',
|
|
|
|
'TES Discharging Rate (kg/s)', 'TES Node 1 Temperature', 'TES Node 2 Temperature',
|
|
|
|
'TES Node 3 Temperature', 'TES Node 4 Temperature', 'TES Energy Content (J)',
|
|
|
|
'TES Energy Content (kWh)', 'TES Energy Content Variation (kWh)',
|
|
|
|
'Auxiliary Heater Fuel Flow Rate (kg/s)', 'Auxiliary Heater Energy Input (kW)',
|
|
|
|
'HP Operational Cost (CAD)', 'Auxiliary Heater Operational Cost (CAD)',
|
|
|
|
'Operational CO2 Emissions of HP (g)',
|
|
|
|
'Operational CO2 Emissions of Auxiliary Heater (g)',
|
|
|
|
'Return Temperature', 'Demand (kW)'],
|
|
|
|
self._input_data['fileOut2']: ['Day', 'Operational Daily Emissions from Heat Pumps (g)',
|
|
|
|
'Operational Daily Emissions from Auxiliary Heater (g)'],
|
|
|
|
self._input_data['fileOut3']: ['Month', 'Monthly Operational Costs of Heat Pumps (CAD)',
|
|
|
|
'Monthly Operational Costs of Auxiliary Heater (CAD)'],
|
|
|
|
self._input_data['fileOut4']: ['Month', 'Monthly Fuel Consumption of Auxiliary Heater (m3)'],
|
|
|
|
self._input_data['fileOut5']: ['Month', 'Operational Monthly Emissions from Heat Pumps (g)',
|
|
|
|
'Operational Monthly Emissions from Auxiliary Heater (g)'],
|
|
|
|
self._input_data['fileOut6']: ['Day', 'Daily HP Electricity Demand (kWh)'],
|
|
|
|
self._input_data['fileOut7']: ['Day', 'Daily Operational Costs of Heat Pumps (CAD)',
|
|
|
|
'Daily Operational Costs of Auxiliary Heater (CAD)'],
|
|
|
|
self._input_data['fileOut8']: ['Month', 'Monthly HP Electricity Demand (kWh)'],
|
|
|
|
self._input_data['fileOut9']: ['Day', 'Daily Fuel Consumption of Auxiliary Heater (m3)'],
|
|
|
|
self._input_data['fileOut10']: ['Year', 'Month', 'Day', 'Hour', 'HP Electricity Demand (kWh)']
|
|
|
|
}
|
|
|
|
for file_path, header in header_data.items():
|
|
|
|
file_path = file_path.strip("'")
|
2021-11-10 11:58:01 -05:00
|
|
|
df = pd.read_csv(file_path, header=None, sep='\s+')
|
2021-11-10 05:13:17 -05:00
|
|
|
df.to_csv(file_path, header=header)
|
|
|
|
|
2021-11-08 11:33:24 -05:00
|
|
|
def _update_input_data_with_files(self):
|
|
|
|
"""
|
|
|
|
Updates input data for insel with some files that will
|
|
|
|
be written to after insel runs. Also specifies and input file
|
|
|
|
which is the Heating Demand (demand.txt) file
|
|
|
|
:return:
|
|
|
|
"""
|
2021-11-10 05:13:17 -05:00
|
|
|
self._input_data["HeatingDemand"] = f"'{str(self._demand_path)}'"
|
|
|
|
self._input_data["fileOut1"] = f"'{str((self._base_path / 'heat_pumps/technical_performance.csv'))}'"
|
|
|
|
self._input_data["fileOut2"] = f"'{str((self._base_path / 'heat_pumps/system_daily_emissions.csv'))}'"
|
|
|
|
self._input_data["fileOut3"] = f"'{str((self._base_path / 'heat_pumps/monthly_operational_costs.csv'))}'"
|
|
|
|
self._input_data["fileOut4"] = f"'{str((self._base_path / 'heat_pumps/monthly_fossil_fuel_consumptions.csv'))}'"
|
|
|
|
self._input_data["fileOut5"] = f"'{str((self._base_path / 'heat_pumps/system_monthly_emissions.csv'))}'"
|
|
|
|
self._input_data["fileOut6"] = f"'{str((self._base_path / 'heat_pumps/daily_hp_electricity_demand.csv'))}'"
|
|
|
|
self._input_data["fileOut7"] = f"'{str((self._base_path / 'heat_pumps/daily_operational_costs.csv'))}'"
|
|
|
|
self._input_data["fileOut8"] = f"'{str((self._base_path / 'heat_pumps/monthly_hp_electricity_demand.csv'))}'"
|
|
|
|
self._input_data["fileOut9"] = f"'{str((self._base_path / 'heat_pumps/daily_fossil_fuel_consumption.csv'))}'"
|
|
|
|
self._input_data["fileOut10"] = f"'{str((self._base_path / 'heat_pumps/hp_hourly_electricity_demand.csv'))}'"
|
2021-10-29 11:27:25 -04:00
|
|
|
|
2021-11-10 11:58:01 -05:00
|
|
|
def _delete_existing_output_files(self):
|
|
|
|
"""
|
|
|
|
Remove existing out files generated by insel before
|
|
|
|
running insel
|
|
|
|
:return:
|
|
|
|
"""
|
|
|
|
for key, file_path in self._input_data.items():
|
|
|
|
if 'fileOut' in key:
|
|
|
|
file_path = file_path.strip("'")
|
|
|
|
try:
|
|
|
|
os.remove(file_path)
|
|
|
|
except OSError:
|
|
|
|
pass
|
|
|
|
|
2021-11-08 11:33:24 -05:00
|
|
|
def _compute_max_demand(self):
|
2021-10-29 11:27:25 -04:00
|
|
|
"""
|
2021-11-08 11:33:24 -05:00
|
|
|
Retrieves the maximum demand value from
|
|
|
|
the demands text file
|
|
|
|
:return: float
|
2021-10-29 11:27:25 -04:00
|
|
|
"""
|
2021-11-08 11:33:24 -05:00
|
|
|
max_demand = -1
|
|
|
|
with open(self._demand_path) as file_handler:
|
|
|
|
for demand in file_handler.readlines():
|
|
|
|
if float(demand) > max_demand:
|
|
|
|
max_demand = float(demand)
|
|
|
|
return max_demand
|
2021-10-29 11:27:25 -04:00
|
|
|
|
2021-11-08 11:33:24 -05:00
|
|
|
def _update_input_data_with_constants(self):
|
|
|
|
with open(self._constants_path) as file:
|
|
|
|
constants_dict = yaml.load(file, Loader=yaml.FullLoader)
|
|
|
|
for key, value in constants_dict.items():
|
|
|
|
self._input_data[key] = value
|
|
|
|
# compute maximum demand. TODO: This should come from catalog in the future
|
|
|
|
max_demand = self._compute_max_demand()
|
|
|
|
# compute TESCapacity
|
|
|
|
self._input_data["TESCapacity"] = self._input_data["HoursOfStorageAtMaxDemand"] * (max_demand * 3.6) / (
|
|
|
|
(self._input_data["Cp"] / 1000) * self._input_data["TemperatureDifference"])
|
2021-10-29 11:27:25 -04:00
|
|
|
|
2021-11-10 05:13:17 -05:00
|
|
|
def _update_input_data_with_coff(self, capacity_coff: List, comp_power_coff: List):
|
2021-10-29 11:27:25 -04:00
|
|
|
"""
|
2021-11-08 11:33:24 -05:00
|
|
|
Updates the user data with coefficients derived from imports
|
|
|
|
:param capacity_coff: heat or cooling capacity coefficients
|
|
|
|
:param comp_power_coff: heat or cooling comppressor power coefficients
|
2021-10-29 11:27:25 -04:00
|
|
|
:return:
|
|
|
|
"""
|
2021-11-08 11:33:24 -05:00
|
|
|
self._input_data["a1"] = capacity_coff[0]
|
|
|
|
self._input_data["a2"] = capacity_coff[1]
|
|
|
|
self._input_data["a3"] = capacity_coff[2]
|
|
|
|
self._input_data["a4"] = capacity_coff[3]
|
|
|
|
self._input_data["a5"] = capacity_coff[4]
|
|
|
|
self._input_data["a6"] = capacity_coff[5]
|
|
|
|
self._input_data["b1"] = comp_power_coff[0]
|
|
|
|
self._input_data["b2"] = comp_power_coff[1]
|
|
|
|
self._input_data["b3"] = comp_power_coff[2]
|
|
|
|
self._input_data["b4"] = comp_power_coff[3]
|
|
|
|
self._input_data["b5"] = comp_power_coff[4]
|
|
|
|
self._input_data["b6"] = comp_power_coff[5]
|
|
|
|
|
2021-11-10 05:13:17 -05:00
|
|
|
def _extract_model_coff(self, hp_model: str, data_type='heat') -> Union[Tuple[List, List], None]:
|
2021-11-08 11:33:24 -05:00
|
|
|
"""
|
|
|
|
Extracts heat pump coefficient data for a specific
|
|
|
|
model. e.g 012, 140
|
|
|
|
:param hp_model: the model type
|
|
|
|
:param data_type: indicates whether we're extracting cooling
|
|
|
|
or heating perfarmcn coefficients
|
|
|
|
:return:
|
|
|
|
"""
|
|
|
|
for energy_system in self._city.energy_systems:
|
|
|
|
if energy_system.heat_pump.model == hp_model:
|
|
|
|
if data_type == 'heat':
|
|
|
|
return energy_system.heat_pump.heating_capacity_coff, energy_system.heat_pump.heating_comp_power_coff
|
|
|
|
return energy_system.heat_pump.cooling_capacity_coff, energy_system.heat_pump.cooling_comp_power_coff
|
|
|
|
return None
|
2021-11-10 11:58:01 -05:00
|
|
|
|
|
|
|
def _get_user_out_put(self):
|
|
|
|
"""
|
|
|
|
Extracts monthly electricity demand and fossil fuel consumption
|
|
|
|
from output files generated by insel
|
|
|
|
:return:
|
|
|
|
"""
|
|
|
|
|
|
|
|
electricity_df = pd.read_csv(self._input_data['fileOut8'].strip("'")).iloc[:, 2]
|
|
|
|
fossil_df = pd.read_csv(self._input_data['fileOut4'].strip("'")).iloc[:, 2]
|
|
|
|
|
|
|
|
data = [electricity_df, fossil_df]
|
|
|
|
df = pd.concat(data, axis=1)
|
|
|
|
df = df.append(df.agg(['sum']))
|
|
|
|
s = pd.Series(["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sept", "Oct", "Nov", "Dec", "Total"])
|
|
|
|
df = df.set_index([s])
|
2021-11-12 05:14:54 -05:00
|
|
|
df.to_csv(self._output_path)
|
|
|
|
|