2020-06-16 10:34:17 -04:00
|
|
|
""" Collection of Model instances for use with the odrpack fitting package.
|
|
|
|
"""
|
|
|
|
import numpy as np
|
|
|
|
from scipy.odr.odrpack import Model
|
|
|
|
|
|
|
|
__all__ = ['Model', 'exponential', 'multilinear', 'unilinear', 'quadratic',
|
|
|
|
'polynomial']
|
|
|
|
|
|
|
|
|
|
|
|
def _lin_fcn(B, x):
|
|
|
|
a, b = B[0], B[1:]
|
|
|
|
b.shape = (b.shape[0], 1)
|
|
|
|
|
|
|
|
return a + (x*b).sum(axis=0)
|
|
|
|
|
|
|
|
|
|
|
|
def _lin_fjb(B, x):
|
|
|
|
a = np.ones(x.shape[-1], float)
|
|
|
|
res = np.concatenate((a, x.ravel()))
|
|
|
|
res.shape = (B.shape[-1], x.shape[-1])
|
|
|
|
return res
|
|
|
|
|
|
|
|
|
|
|
|
def _lin_fjd(B, x):
|
|
|
|
b = B[1:]
|
2020-06-26 10:06:43 -04:00
|
|
|
b = np.repeat(b, (x.shape[-1],)*b.shape[-1], axis=0)
|
2020-06-16 10:34:17 -04:00
|
|
|
b.shape = x.shape
|
|
|
|
return b
|
|
|
|
|
|
|
|
|
|
|
|
def _lin_est(data):
|
|
|
|
# Eh. The answer is analytical, so just return all ones.
|
|
|
|
# Don't return zeros since that will interfere with
|
|
|
|
# ODRPACK's auto-scaling procedures.
|
|
|
|
|
|
|
|
if len(data.x.shape) == 2:
|
|
|
|
m = data.x.shape[0]
|
|
|
|
else:
|
|
|
|
m = 1
|
|
|
|
|
|
|
|
return np.ones((m + 1,), float)
|
|
|
|
|
|
|
|
|
|
|
|
def _poly_fcn(B, x, powers):
|
|
|
|
a, b = B[0], B[1:]
|
|
|
|
b.shape = (b.shape[0], 1)
|
|
|
|
|
|
|
|
return a + np.sum(b * np.power(x, powers), axis=0)
|
|
|
|
|
|
|
|
|
|
|
|
def _poly_fjacb(B, x, powers):
|
2020-06-26 10:06:43 -04:00
|
|
|
res = np.concatenate((np.ones(x.shape[-1], float),
|
|
|
|
np.power(x, powers).flat))
|
2020-06-16 10:34:17 -04:00
|
|
|
res.shape = (B.shape[-1], x.shape[-1])
|
|
|
|
return res
|
|
|
|
|
|
|
|
|
|
|
|
def _poly_fjacd(B, x, powers):
|
|
|
|
b = B[1:]
|
|
|
|
b.shape = (b.shape[0], 1)
|
|
|
|
|
|
|
|
b = b * powers
|
|
|
|
|
2020-06-26 10:06:43 -04:00
|
|
|
return np.sum(b * np.power(x, powers-1), axis=0)
|
2020-06-16 10:34:17 -04:00
|
|
|
|
|
|
|
|
|
|
|
def _exp_fcn(B, x):
|
|
|
|
return B[0] + np.exp(B[1] * x)
|
|
|
|
|
|
|
|
|
|
|
|
def _exp_fjd(B, x):
|
|
|
|
return B[1] * np.exp(B[1] * x)
|
|
|
|
|
|
|
|
|
|
|
|
def _exp_fjb(B, x):
|
|
|
|
res = np.concatenate((np.ones(x.shape[-1], float), x * np.exp(B[1] * x)))
|
|
|
|
res.shape = (2, x.shape[-1])
|
|
|
|
return res
|
|
|
|
|
|
|
|
|
|
|
|
def _exp_est(data):
|
|
|
|
# Eh.
|
|
|
|
return np.array([1., 1.])
|
|
|
|
|
|
|
|
|
2020-06-26 10:06:43 -04:00
|
|
|
class _MultilinearModel(Model):
|
|
|
|
r"""
|
|
|
|
Arbitrary-dimensional linear model
|
|
|
|
|
|
|
|
This model is defined by :math:`y=\beta_0 + \sum_{i=1}^m \beta_i x_i`
|
|
|
|
|
|
|
|
Examples
|
|
|
|
--------
|
|
|
|
We can calculate orthogonal distance regression with an arbitrary
|
|
|
|
dimensional linear model:
|
|
|
|
|
|
|
|
>>> from scipy import odr
|
|
|
|
>>> x = np.linspace(0.0, 5.0)
|
|
|
|
>>> y = 10.0 + 5.0 * x
|
|
|
|
>>> data = odr.Data(x, y)
|
|
|
|
>>> odr_obj = odr.ODR(data, odr.multilinear)
|
|
|
|
>>> output = odr_obj.run()
|
|
|
|
>>> print(output.beta)
|
|
|
|
[10. 5.]
|
|
|
|
|
|
|
|
"""
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__(
|
|
|
|
_lin_fcn, fjacb=_lin_fjb, fjacd=_lin_fjd, estimate=_lin_est,
|
|
|
|
meta={'name': 'Arbitrary-dimensional Linear',
|
|
|
|
'equ': 'y = B_0 + Sum[i=1..m, B_i * x_i]',
|
|
|
|
'TeXequ': r'$y=\beta_0 + \sum_{i=1}^m \beta_i x_i$'})
|
|
|
|
|
|
|
|
|
|
|
|
multilinear = _MultilinearModel()
|
2020-06-16 10:34:17 -04:00
|
|
|
|
|
|
|
|
|
|
|
def polynomial(order):
|
|
|
|
"""
|
|
|
|
Factory function for a general polynomial model.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
order : int or sequence
|
|
|
|
If an integer, it becomes the order of the polynomial to fit. If
|
|
|
|
a sequence of numbers, then these are the explicit powers in the
|
|
|
|
polynomial.
|
|
|
|
A constant term (power 0) is always included, so don't include 0.
|
|
|
|
Thus, polynomial(n) is equivalent to polynomial(range(1, n+1)).
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
polynomial : Model instance
|
|
|
|
Model instance.
|
|
|
|
|
2020-06-26 10:06:43 -04:00
|
|
|
Examples
|
|
|
|
--------
|
|
|
|
We can fit an input data using orthogonal distance regression (ODR) with
|
|
|
|
a polynomial model:
|
|
|
|
|
|
|
|
>>> import matplotlib.pyplot as plt
|
|
|
|
>>> from scipy import odr
|
|
|
|
>>> x = np.linspace(0.0, 5.0)
|
|
|
|
>>> y = np.sin(x)
|
|
|
|
>>> poly_model = odr.polynomial(3) # using third order polynomial model
|
|
|
|
>>> data = odr.Data(x, y)
|
|
|
|
>>> odr_obj = odr.ODR(data, poly_model)
|
|
|
|
>>> output = odr_obj.run() # running ODR fitting
|
|
|
|
>>> poly = np.poly1d(output.beta[::-1])
|
|
|
|
>>> poly_y = poly(x)
|
|
|
|
>>> plt.plot(x, y, label="input data")
|
|
|
|
>>> plt.plot(x, poly_y, label="polynomial ODR")
|
|
|
|
>>> plt.legend()
|
|
|
|
>>> plt.show()
|
|
|
|
|
2020-06-16 10:34:17 -04:00
|
|
|
"""
|
|
|
|
|
|
|
|
powers = np.asarray(order)
|
|
|
|
if powers.shape == ():
|
|
|
|
# Scalar.
|
|
|
|
powers = np.arange(1, powers + 1)
|
|
|
|
|
|
|
|
powers.shape = (len(powers), 1)
|
|
|
|
len_beta = len(powers) + 1
|
|
|
|
|
|
|
|
def _poly_est(data, len_beta=len_beta):
|
|
|
|
# Eh. Ignore data and return all ones.
|
|
|
|
return np.ones((len_beta,), float)
|
|
|
|
|
|
|
|
return Model(_poly_fcn, fjacd=_poly_fjacd, fjacb=_poly_fjacb,
|
|
|
|
estimate=_poly_est, extra_args=(powers,),
|
|
|
|
meta={'name': 'Sorta-general Polynomial',
|
|
|
|
'equ': 'y = B_0 + Sum[i=1..%s, B_i * (x**i)]' % (len_beta-1),
|
|
|
|
'TeXequ': r'$y=\beta_0 + \sum_{i=1}^{%s} \beta_i x^i$' %
|
|
|
|
(len_beta-1)})
|
|
|
|
|
|
|
|
|
2020-06-26 10:06:43 -04:00
|
|
|
class _ExponentialModel(Model):
|
|
|
|
r"""
|
|
|
|
Exponential model
|
|
|
|
|
|
|
|
This model is defined by :math:`y=\beta_0 + e^{\beta_1 x}`
|
|
|
|
|
|
|
|
Examples
|
|
|
|
--------
|
|
|
|
We can calculate orthogonal distance regression with an exponential model:
|
|
|
|
|
|
|
|
>>> from scipy import odr
|
|
|
|
>>> x = np.linspace(0.0, 5.0)
|
|
|
|
>>> y = -10.0 + np.exp(0.5*x)
|
|
|
|
>>> data = odr.Data(x, y)
|
|
|
|
>>> odr_obj = odr.ODR(data, odr.exponential)
|
|
|
|
>>> output = odr_obj.run()
|
|
|
|
>>> print(output.beta)
|
|
|
|
[-10. 0.5]
|
|
|
|
|
|
|
|
"""
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__(_exp_fcn, fjacd=_exp_fjd, fjacb=_exp_fjb,
|
|
|
|
estimate=_exp_est,
|
|
|
|
meta={'name': 'Exponential',
|
|
|
|
'equ': 'y= B_0 + exp(B_1 * x)',
|
|
|
|
'TeXequ': r'$y=\beta_0 + e^{\beta_1 x}$'})
|
|
|
|
|
|
|
|
|
|
|
|
exponential = _ExponentialModel()
|
2020-06-16 10:34:17 -04:00
|
|
|
|
|
|
|
|
|
|
|
def _unilin(B, x):
|
|
|
|
return x*B[0] + B[1]
|
|
|
|
|
|
|
|
|
|
|
|
def _unilin_fjd(B, x):
|
|
|
|
return np.ones(x.shape, float) * B[0]
|
|
|
|
|
|
|
|
|
|
|
|
def _unilin_fjb(B, x):
|
|
|
|
_ret = np.concatenate((x, np.ones(x.shape, float)))
|
|
|
|
_ret.shape = (2,) + x.shape
|
|
|
|
|
|
|
|
return _ret
|
|
|
|
|
|
|
|
|
|
|
|
def _unilin_est(data):
|
|
|
|
return (1., 1.)
|
|
|
|
|
|
|
|
|
|
|
|
def _quadratic(B, x):
|
|
|
|
return x*(x*B[0] + B[1]) + B[2]
|
|
|
|
|
|
|
|
|
|
|
|
def _quad_fjd(B, x):
|
|
|
|
return 2*x*B[0] + B[1]
|
|
|
|
|
|
|
|
|
|
|
|
def _quad_fjb(B, x):
|
|
|
|
_ret = np.concatenate((x*x, x, np.ones(x.shape, float)))
|
|
|
|
_ret.shape = (3,) + x.shape
|
|
|
|
|
|
|
|
return _ret
|
|
|
|
|
|
|
|
|
|
|
|
def _quad_est(data):
|
|
|
|
return (1.,1.,1.)
|
|
|
|
|
|
|
|
|
2020-06-26 10:06:43 -04:00
|
|
|
class _UnilinearModel(Model):
|
|
|
|
r"""
|
|
|
|
Univariate linear model
|
2020-06-16 10:34:17 -04:00
|
|
|
|
2020-06-26 10:06:43 -04:00
|
|
|
This model is defined by :math:`y = \beta_0 x + \beta_1`
|
|
|
|
|
|
|
|
Examples
|
|
|
|
--------
|
|
|
|
We can calculate orthogonal distance regression with an unilinear model:
|
|
|
|
|
|
|
|
>>> from scipy import odr
|
|
|
|
>>> x = np.linspace(0.0, 5.0)
|
|
|
|
>>> y = 1.0 * x + 2.0
|
|
|
|
>>> data = odr.Data(x, y)
|
|
|
|
>>> odr_obj = odr.ODR(data, odr.unilinear)
|
|
|
|
>>> output = odr_obj.run()
|
|
|
|
>>> print(output.beta)
|
|
|
|
[1. 2.]
|
|
|
|
|
|
|
|
"""
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__(_unilin, fjacd=_unilin_fjd, fjacb=_unilin_fjb,
|
|
|
|
estimate=_unilin_est,
|
|
|
|
meta={'name': 'Univariate Linear',
|
|
|
|
'equ': 'y = B_0 * x + B_1',
|
|
|
|
'TeXequ': '$y = \\beta_0 x + \\beta_1$'})
|
|
|
|
|
|
|
|
|
|
|
|
unilinear = _UnilinearModel()
|
|
|
|
|
|
|
|
|
|
|
|
class _QuadraticModel(Model):
|
|
|
|
r"""
|
|
|
|
Quadratic model
|
|
|
|
|
|
|
|
This model is defined by :math:`y = \beta_0 x^2 + \beta_1 x + \beta_2`
|
|
|
|
|
|
|
|
Examples
|
|
|
|
--------
|
|
|
|
We can calculate orthogonal distance regression with a quadratic model:
|
|
|
|
|
|
|
|
>>> from scipy import odr
|
|
|
|
>>> x = np.linspace(0.0, 5.0)
|
|
|
|
>>> y = 1.0 * x ** 2 + 2.0 * x + 3.0
|
|
|
|
>>> data = odr.Data(x, y)
|
|
|
|
>>> odr_obj = odr.ODR(data, odr.quadratic)
|
|
|
|
>>> output = odr_obj.run()
|
|
|
|
>>> print(output.beta)
|
|
|
|
[1. 2. 3.]
|
|
|
|
|
|
|
|
"""
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__(
|
|
|
|
_quadratic, fjacd=_quad_fjd, fjacb=_quad_fjb, estimate=_quad_est,
|
|
|
|
meta={'name': 'Quadratic',
|
2020-06-16 10:34:17 -04:00
|
|
|
'equ': 'y = B_0*x**2 + B_1*x + B_2',
|
|
|
|
'TeXequ': '$y = \\beta_0 x^2 + \\beta_1 x + \\beta_2'})
|
2020-06-26 10:06:43 -04:00
|
|
|
|
|
|
|
|
|
|
|
quadratic = _QuadraticModel()
|