(WIP) feat: add result factory for archetype mapping
This commit is contained in:
parent
79edd8f6a2
commit
b4f1a2471e
210241
data/energy_demand_data.csv
Normal file
210241
data/energy_demand_data.csv
Normal file
File diff suppressed because it is too large
Load Diff
|
@ -14,6 +14,10 @@ class SimplifiedBuilding:
|
|||
self._postal_code = postal_code
|
||||
self._city = city
|
||||
self._type = 'building'
|
||||
self.heating_demand = []
|
||||
self.cooling_demand = []
|
||||
self.electricity_demand = []
|
||||
self.appliance_demand = []
|
||||
|
||||
@property
|
||||
def name(self):
|
||||
|
|
152
hub/imports/results/archetype_based_demand.py
Normal file
152
hub/imports/results/archetype_based_demand.py
Normal file
|
@ -0,0 +1,152 @@
|
|||
import pandas as pd
|
||||
from sqlalchemy import create_engine, text
|
||||
|
||||
|
||||
class DemandEnricher:
|
||||
"""
|
||||
DemandEnricher class to enrich buildings with demand data
|
||||
"""
|
||||
|
||||
def __init__(self, database_url):
|
||||
# Create a SQLAlchemy engine using the provided database URL
|
||||
self.engine = create_engine(database_url)
|
||||
# Initialize the function mapping and cache
|
||||
self.create_function_mapping()
|
||||
self.archetype_cache = {}
|
||||
|
||||
def create_function_mapping(self):
|
||||
# Define function mapping from city functions to archetype functions
|
||||
self.function_mapping = {
|
||||
'residential': 'Maison Unifamiliale',
|
||||
'single family house': 'Maison Unifamiliale',
|
||||
'multifamily house': 'Apartements partie 3 du code',
|
||||
'medium office': 'Bureaux',
|
||||
'office and administration': 'Bureaux',
|
||||
'commercial': 'Commercial attaché',
|
||||
'warehouse': 'Commercial détaché', # Approximate
|
||||
'restaurant': 'Commercial attaché', # Approximate
|
||||
'hotel': 'Commercial attaché', # Approximate
|
||||
# Add more mappings as needed
|
||||
}
|
||||
|
||||
def get_vintage_range(self, year):
|
||||
# Determine the vintage range based on the year of construction
|
||||
if year <= 1947:
|
||||
return 'avant 1947'
|
||||
elif 1947 < year <= 1983:
|
||||
return '1947-1983'
|
||||
elif 1983 < year <= 2010:
|
||||
return '1984-2010'
|
||||
elif year > 2010:
|
||||
return 'après 2010'
|
||||
else:
|
||||
return None
|
||||
|
||||
def get_archetype_demands(self, type_of_building):
|
||||
# Check if the demands for this archetype are already cached
|
||||
if type_of_building in self.archetype_cache:
|
||||
return self.archetype_cache[type_of_building]
|
||||
|
||||
# Construct the SQL query
|
||||
query = text("""
|
||||
SELECT heating, cooling, equipment, lighting
|
||||
FROM energy_data
|
||||
WHERE type_of_building = :type_of_building
|
||||
ORDER BY timestamp
|
||||
""")
|
||||
|
||||
# Execute the query with parameter substitution
|
||||
with self.engine.connect() as conn:
|
||||
result = conn.execute(query, type_of_building=type_of_building)
|
||||
demands = result.fetchall()
|
||||
if not demands:
|
||||
return None
|
||||
|
||||
# Convert the result to a DataFrame
|
||||
demands_df = pd.DataFrame(demands, columns=['heating', 'cooling', 'equipment', 'lighting'])
|
||||
# Convert columns to numeric types
|
||||
for demand_column in ['heating', 'cooling', 'equipment', 'lighting']:
|
||||
demands_df[demand_column] = pd.to_numeric(demands_df[demand_column], errors='coerce')
|
||||
demands_df[demand_column].fillna(0, inplace=True)
|
||||
|
||||
# Cache the demands for future use
|
||||
self.archetype_cache[type_of_building] = demands_df
|
||||
return demands_df
|
||||
|
||||
def enrich_city(self, city):
|
||||
# Enrich each building in the city with demand data
|
||||
for building in city.buildings:
|
||||
# Ensure the building has the necessary attributes
|
||||
if (building.year_of_construction is not None and
|
||||
building.function is not None and
|
||||
building.total_floor_area is not None):
|
||||
# Map the building's function to an archetype function
|
||||
building_function_lower = building.function.lower()
|
||||
mapped_function = None
|
||||
for key in self.function_mapping:
|
||||
if key in building_function_lower:
|
||||
mapped_function = self.function_mapping[key]
|
||||
break
|
||||
if mapped_function:
|
||||
# Determine the vintage range
|
||||
vintage_range = self.get_vintage_range(building.year_of_construction)
|
||||
if vintage_range:
|
||||
# Construct the Type_of_building string
|
||||
type_of_building = f"{mapped_function} {vintage_range}"
|
||||
# Get the demands for this archetype
|
||||
demands_df = self.get_archetype_demands(type_of_building)
|
||||
if demands_df is not None:
|
||||
# Check total_floor_area
|
||||
total_floor_area = building.total_floor_area
|
||||
if not isinstance(total_floor_area, (int, float)) or pd.isnull(total_floor_area):
|
||||
print(f"Invalid total_floor_area for building {building.name}. Skipping.")
|
||||
building.heating_demand = []
|
||||
building.cooling_demand = []
|
||||
building.electricity_demand = []
|
||||
building.appliance_demand = []
|
||||
continue
|
||||
# Proceed with multiplication
|
||||
try:
|
||||
demands_df['Heating_total'] = demands_df['heating'] * total_floor_area
|
||||
demands_df['Cooling_total'] = demands_df['cooling'] * total_floor_area
|
||||
demands_df['Equipment_total'] = demands_df['equipment'] * total_floor_area
|
||||
demands_df['Lighting_total'] = demands_df['lighting'] * total_floor_area
|
||||
# Assign the total demand profiles to the building's attributes
|
||||
building.heating_demand = demands_df['Heating_total'].tolist()
|
||||
building.cooling_demand = demands_df['Cooling_total'].tolist()
|
||||
building.electricity_demand = demands_df['Lighting_total'].tolist()
|
||||
building.appliance_demand = demands_df['Equipment_total'].tolist()
|
||||
except Exception as e:
|
||||
print(f"Error calculating demands for building {building.name}: {e}")
|
||||
building.heating_demand = []
|
||||
building.cooling_demand = []
|
||||
building.electricity_demand = []
|
||||
building.appliance_demand = []
|
||||
else:
|
||||
# No data found for this Type_of_building
|
||||
building.heating_demand = []
|
||||
building.cooling_demand = []
|
||||
building.electricity_demand = []
|
||||
building.appliance_demand = []
|
||||
else:
|
||||
# Vintage range could not be determined
|
||||
building.heating_demand = []
|
||||
building.cooling_demand = []
|
||||
building.electricity_demand = []
|
||||
building.appliance_demand = []
|
||||
else:
|
||||
# Function mapping not found
|
||||
building.heating_demand = []
|
||||
building.cooling_demand = []
|
||||
building.electricity_demand = []
|
||||
building.appliance_demand = []
|
||||
else:
|
||||
# Missing necessary attributes
|
||||
building.heating_demand = []
|
||||
building.cooling_demand = []
|
||||
building.electricity_demand = []
|
||||
building.appliance_demand = []
|
||||
|
||||
def close_connection(self):
|
||||
# Dispose of the engine to close the database connection
|
||||
self.engine.dispose()
|
28
main.py
28
main.py
|
@ -1,10 +1,24 @@
|
|||
from hub.imports.geometry_factory import GeometryFactory
|
||||
from hub.helpers.dictionaries import Dictionaries
|
||||
import os
|
||||
import psycopg2
|
||||
import csv
|
||||
from hub.imports.results.archetype_based_demand import DemandEnricher
|
||||
import urllib.parse
|
||||
|
||||
input_file = "data/cmm_points_function_vintage_surface.csv"
|
||||
output_file = "output_buildings.csv"
|
||||
|
||||
# Database credentials
|
||||
db_username = 'postgres'
|
||||
db_password = 'your_password_with_special_characters' # Replace with your actual password
|
||||
db_host = 'localhost'
|
||||
db_port = '5432'
|
||||
db_name = 'energydemanddb'
|
||||
|
||||
# URL-encode username and password
|
||||
db_username_encoded = urllib.parse.quote_plus(db_username)
|
||||
db_password_encoded = urllib.parse.quote_plus(db_password)
|
||||
|
||||
# Construct the database connection URL
|
||||
database_url = f'postgresql://{db_username_encoded}:{db_password_encoded}@{db_host}:{db_port}/{db_name}'
|
||||
|
||||
# Initialize city object from GeometryFactory
|
||||
city = GeometryFactory(
|
||||
|
@ -17,3 +31,11 @@ city = GeometryFactory(
|
|||
function_to_hub=Dictionaries().montreal_function_to_hub_function,
|
||||
total_floor_area_field="supfi_etag"
|
||||
).city
|
||||
|
||||
# Create an instance of DemandEnricher using the database URL
|
||||
demand_enricher = DemandEnricher(database_url)
|
||||
demand_enricher.enrich_city(city)
|
||||
# Close the database connection when done
|
||||
demand_enricher.close_connection()
|
||||
|
||||
print("done")
|
||||
|
|
1125156
output_buildings.csv
Normal file
1125156
output_buildings.csv
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user