emission_system.py is rolled back to original

performance_curves.py is imported in generation_system.py
The order of arguments in pv_generation_system.py is fixed
Modulation range is replaced with maximum and minimum heat output in generation_system.py
maximum,minimum, and nominal cooling output are also added to generation_system.py
This commit is contained in:
Saeed Ranjbar 2023-08-17 18:48:48 -04:00
parent 0528aa0718
commit e20a700deb
11 changed files with 353 additions and 189 deletions

View File

@ -0,0 +1,60 @@
"""
Energy System catalog emission system
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
"""
class EmissionSystem:
"""
Emission system class
"""
def __init__(self, system_id, name, system_type, parasitic_energy_consumption):
self._system_id = system_id
self._name = name
self._type = system_type
self._parasitic_energy_consumption = parasitic_energy_consumption
@property
def id(self):
"""
Get system id
:return: float
"""
return self._system_id
@property
def name(self):
"""
Get name
:return: string
"""
return self._name
@property
def type(self):
"""
Get type
:return: string
"""
return self._type
@property
def parasitic_energy_consumption(self):
"""
Get parasitic_energy_consumption in ratio (J/J)
:return: float
"""
return self._parasitic_energy_consumption
def to_dictionary(self):
"""Class content to dictionary"""
content = {'Layer': {'id': self.id,
'name': self.name,
'type': self.type,
'parasitic energy consumption per energy produced [J/J]': self.parasitic_energy_consumption
}
}
return content

View File

@ -1,94 +0,0 @@
"""
Energy System catalog emission system
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
Code contributors: Saeed Ranjbar saeed.ranjbar@concordia.ca
"""
from hub.catalog_factories.data_models.construction.material import Material
class EnergyEmissionSystem:
"""
Emission system class
"""
def __init__(self, model_name, manufacturer, system_type, parasitic_energy_consumption, nominal_heat_output,
nominal_efficiency, medium):
self._system_id = model_name
self._name = manufacturer
self._type = system_type
self._parasitic_energy_consumption = parasitic_energy_consumption
self._nominal_heat_output = nominal_heat_output
self._nominal_efficiency = nominal_efficiency
self._medium = medium
@property
def model_name(self):
"""
Get system id
:return: float
"""
return self._system_id
@property
def manufacturer(self):
"""
Get name
:return: string
"""
return self._name
@property
def type(self):
"""
Get type
:return: string
"""
return self._type
@property
def parasitic_energy_consumption(self):
"""
Get parasitic_energy_consumption in ratio (J/J)
:return: float
"""
return self._parasitic_energy_consumption
@property
def nominal_heat_output(self):
"""
Get the nominal heat output of the emission system in kW
:return: float
"""
return self._nominal_heat_output
@property
def nominal_efficiency(self):
"""
Get the nominal efficiency of the emission system
:return: float
"""
return self._nominal_efficiency
@property
def medium(self) -> Material:
"""
Get the heat transfer characteristics of the heat transfer medium
:return: Material
"""
return self._medium
def to_dictionary(self):
"""Class content to dictionary"""
content = {'Layer': {'id': self.model_name,
'name': self.manufacturer,
'type': self.type,
'parasitic energy consumption per energy produced [J/J]': self.parasitic_energy_consumption,
'nominal heat output [kW]': self.nominal_heat_output,
'nominal efficiency': self.nominal_efficiency,
'heat transfer medium': self.medium
}
}
return content

View File

@ -7,8 +7,6 @@ Code contributors: Saeed Ranjbar saeed.ranjbar@concordia.ca
"""
from __future__ import annotations
from typing import Union
from hub.catalog_factories.data_models.construction.material import Material
from hub.catalog_factories.data_models.construction.layer import Layer
@ -17,9 +15,11 @@ class EnergyStorageSystem:
Energy Storage System Class
"""
def __init__(self, model_name, manufacturer, storage_type, volume, rated_output_power,
def __init__(self, storage_id, name, model_name, manufacturer, storage_type, volume, rated_output_power,
nominal_efficiency, battery_voltage, depth_of_discharge, self_discharge_rate, height, layers,
maximum_operating_temperature):
self._storage_id = storage_id
self._name = name
self._model_name = model_name
self._manufacturer = manufacturer
self._storage_type = storage_type
@ -33,6 +33,22 @@ class EnergyStorageSystem:
self._layers = layers
self._maximum_operating_temperature = maximum_operating_temperature
@property
def stroage_id(self):
"""
Get storage id
:return: string
"""
return self._storage_id
@property
def name(self):
"""
Get storage name
:return: string
"""
return self._name
@property
def model_name(self):
"""
@ -134,18 +150,21 @@ class EnergyStorageSystem:
_layers = []
for _layer in self.layers:
_layers.append(_layer.to_dictionary())
content = {'Storage component': {'model name': self.model_name,
'manufacturer': self.manufacturer,
'storage type': self.storage_type,
'physical volume [m3]': self.physical_volume,
'rated power [kW]': self.rated_output_power,
'nominal efficiency': self.nominal_efficiency,
'battery voltage [V]': self.battery_voltage,
'depth of discharge': self.depth_of_discharge,
'self discharge rate': self.self_discharge_rate,
'height [m]': self.height,
'layers': _layers,
'maximum operating temperature [Celsius]': self.maximum_operating_temperature
}
}
content = {'Storage component': {
'storage id': self.stroage_id,
'name': self.name,
'model name': self.model_name,
'manufacturer': self.manufacturer,
'storage type': self.storage_type,
'physical volume [m3]': self.physical_volume,
'rated power [kW]': self.rated_output_power,
'nominal efficiency': self.nominal_efficiency,
'battery voltage [V]': self.battery_voltage,
'depth of discharge': self.depth_of_discharge,
'self discharge rate': self.self_discharge_rate,
'height [m]': self.height,
'layers': _layers,
'maximum operating temperature [Celsius]': self.maximum_operating_temperature
}
}
return content

View File

@ -8,6 +8,7 @@ Code contributors: Saeed Ranjbar saeed.ranjbar@concordia.ca
from __future__ import annotations
from typing import Union
from hub.catalog_factories.data_models.energy_systems.performance_curves import PerformanceCurves
class GenerationSystem:
@ -15,20 +16,29 @@ class GenerationSystem:
Heat Generation system class
"""
def __init__(self, model_name, manufacturer, system_type, fuel_type, nominal_thermal_output, modulation_range,
source_types, supply_medium, heat_efficiency, cooling_efficiency, electricity_efficiency,
source_temperature, source_mass_flow, nominal_electricity_output, maximum_heating_supply_temperature,
minimum_heating_supply_temperature, maximum_cooling_supply_temperature,
minimum_cooling_supply_temperature):
def __init__(self, system_id, name, model_name, manufacturer, system_type, fuel_type, nominal_thermal_output,
maximum_heat_output, minimum_heat_output, source_medium, supply_medium, heat_efficiency,
nominal_cooling_output, maximum_cooling_output, minimum_cooling_output, cooling_efficiency,
electricity_efficiency, source_temperature, source_mass_flow, nominal_electricity_output,
maximum_heating_supply_temperature, minimum_heating_supply_temperature,
maximum_cooling_supply_temperature, minimum_cooling_supply_temperature, heat_output_curve,
heat_fuel_consumption_curve, heat_efficiency_curve, cooling_output_curve, cooling_fuel_consumption_curve,
cooling_efficiency_curve, storage, auxiliary_equipment):
self._system_id = system_id
self._name = name
self._model_name = model_name
self._manufacturer = manufacturer
self._system_type = system_type
self._fuel_type = fuel_type
self._nominal_thermal_output = nominal_thermal_output
self._modulation_range = modulation_range
self._source_types = source_types
self._maximum_heat_output = maximum_heat_output
self._minimum_heat_output = minimum_heat_output
self._source_medium = source_medium
self._supply_medium = supply_medium
self._heat_efficiency = heat_efficiency
self._nominal_cooling_output = nominal_cooling_output
self._maximum_cooling_output = maximum_cooling_output
self._minimum_cooling_output = minimum_cooling_output
self._cooling_efficiency = cooling_efficiency
self._electricity_efficiency = electricity_efficiency
self._source_temperature = source_temperature
@ -38,6 +48,31 @@ class GenerationSystem:
self._minimum_heating_supply_temperature = minimum_heating_supply_temperature
self._maximum_cooling_supply_temperature = maximum_cooling_supply_temperature
self._minimum_cooling_supply_temperature = minimum_cooling_supply_temperature
self._heat_output_curve = heat_output_curve
self._heat_fuel_consumption_curve = heat_fuel_consumption_curve
self._heat_efficiency_curve = heat_efficiency_curve
self._cooling_output_curve = cooling_output_curve
self._cooling_fuel_consumption_curve = cooling_fuel_consumption_curve
self._cooling_efficiency_curve = cooling_efficiency_curve
self._storage = storage
self._auxiliary_equipment = auxiliary_equipment
@property
def id(self):
"""
Get system id
:return: float
"""
return self._system_id
@property
def name(self):
"""
Get name
:return: string
"""
return self._name
@property
def model_name(self):
@ -80,20 +115,28 @@ class GenerationSystem:
return self._nominal_thermal_output
@property
def modulation_range(self):
def maximum_heat_output(self):
"""
Get modulation range of heat generation devices
Get maximum heat output of heat generation devices in W
:return: float
"""
return self._modulation_range
return self._maximum_heat_output
@property
def source_types(self):
def minimum_heat_output(self):
"""
Get minimum heat output of heat generation devices in W
:return: float
"""
return self._minimum_heat_output
@property
def source_medium(self):
"""
Get source_type from [air, water, ground, district_heating, grid, on_site_electricity]
:return: [string]
"""
return self._source_types
return self._source_medium
@property
def supply_medium(self):
@ -111,6 +154,30 @@ class GenerationSystem:
"""
return self._heat_efficiency
@property
def nominal_cooling_output(self):
"""
Get nominal_thermal_output of heat generation devices in kW
:return: float
"""
return self._nominal_cooling_output
@property
def maximum_cooling_output(self):
"""
Get maximum heat output of heat generation devices in W
:return: float
"""
return self._maximum_cooling_output
@property
def minimum_cooling_output(self):
"""
Get minimum heat output of heat generation devices in W
:return: float
"""
return self._minimum_cooling_output
@property
def cooling_efficiency(self):
"""
@ -183,27 +250,108 @@ class GenerationSystem:
"""
return self._minimum_cooling_supply_temperature
@property
def heat_output_curve(self) -> Union[None, PerformanceCurves]:
"""
Get the heat output curve of the heat generation device
:return: PerformanceCurve
"""
return self._heat_output_curve
@property
def heat_fuel_consumption_curve(self) -> Union[None, PerformanceCurves]:
"""
Get the heating fuel consumption curve of the heat generation device
:return: PerformanceCurve
"""
return self._heat_fuel_consumption_curve
@property
def heat_efficiency_curve(self) -> Union[None, PerformanceCurves]:
"""
Get the heating efficiency curve of the heat generation device
:return: PerformanceCurve
"""
return self._heat_efficiency_curve
@property
def cooling_output_curve(self) -> Union[None, PerformanceCurves]:
"""
Get the heat output curve of the heat generation device
:return: PerformanceCurve
"""
return self._cooling_output_curve
@property
def cooling_fuel_consumption_curve(self) -> Union[None, PerformanceCurves]:
"""
Get the heating fuel consumption curve of the heat generation device
:return: PerformanceCurve
"""
return self._cooling_fuel_consumption_curve
@property
def cooling_efficiency_curve(self) -> Union[None, PerformanceCurves]:
"""
Get the heating efficiency curve of the heat generation device
:return: PerformanceCurve
"""
return self._cooling_efficiency_curve
@property
def storage(self):
"""
Get boolean storage exists
:return: bool
"""
return self._storage
@property
def auxiliary_equipment(self) -> Union[None, GenerationSystem]:
"""
Get auxiliary_equipment
:return: GenerationSystem
"""
return self._auxiliary_equipment
def to_dictionary(self):
"""Class content to dictionary"""
_auxiliary_equipment = []
if self.auxiliary_equipment is not None:
_auxiliary_equipment = self.auxiliary_equipment.to_dictionary()
content = {'Energy Generation component': {
'id': self.id,
'name': self.name,
'model name': self.model_name,
'manufacturer': self.manufacturer,
'type': self.system_type,
'fuel type': self.fuel_type,
'nominal thermal output': self.nominal_thermal_output,
'modulation_range': self.modulation_range,
'source types': self.source_types,
'nominal thermal output [W]': self.nominal_thermal_output,
'maximum heat output [W]': self.maximum_heat_output,
'minimum heat output [W]': self.minimum_heat_output,
'source medium': self.source_medium,
'supply medium': self.supply_medium,
'source temperature [Celsius]': self.source_temperature,
'source mass flow [kg/s]': self.source_mass_flow,
'heat efficiency': self.heat_efficiency,
'nominal cooling output [W]': self.nominal_cooling_output,
'maximum cooling output [W]': self.maximum_cooling_output,
'minimum cooling output [W]': self.minimum_cooling_output,
'cooling efficiency': self.cooling_efficiency,
'electricity efficiency': self.electricity_efficiency,
'nominal power output [kW]': self.nominal_electricity_output,
'nominal power output [W]': self.nominal_electricity_output,
'maximum heating supply temperature [Celsius]': self.maximum_heating_supply_temperature,
'minimum heating supply temperature [Celsius]': self.minimum_heating_supply_temperature,
'maximum cooling supply temperature [Celsius]': self.maximum_cooling_supply_temperature,
'minimum cooling supply temperature [Celsius]': self.minimum_cooling_supply_temperature
'minimum cooling supply temperature [Celsius]': self.minimum_cooling_supply_temperature,
'heat output curve': self.heat_output_curve,
'heat fuel consumption curve': self.heat_fuel_consumption_curve,
'heat efficiency curve': self.heat_efficiency_curve,
'cooling output curve': self.cooling_output_curve,
'cooling fuel consumption curve': self.cooling_fuel_consumption_curve,
'cooling efficiency curve': self.cooling_efficiency_curve,
'it has storage': self.storage,
'auxiliary equipment': _auxiliary_equipment
}
}
return content

View File

@ -7,7 +7,7 @@ Code contributors: Saeed Ranjbar saeed.ranjbar@concordia.ca
"""
from __future__ import annotations
from typing import Union
class PerformanceCurves:
@ -15,13 +15,13 @@ class PerformanceCurves:
Parameter function class
"""
def __init__(self, type, parameters, coefficients):
self._type = type
def __init__(self, curve_type, parameters, coefficients):
self._curve_type = curve_type
self._parameters = parameters
self._coefficients = coefficients
@property
def type(self):
def curve_type(self):
"""
The type of the fit function from the following
Linear =>>> y = a*x + b
@ -33,7 +33,7 @@ class PerformanceCurves:
Get the type of function from ['linear', 'exponential', 'polynomial', 'power', 'second degree multivariable']
:return: string
"""
return self._type
return self._curve_type
@property
def parameters(self):
@ -46,7 +46,7 @@ class PerformanceCurves:
@property
def coefficients(self):
"""
Get the coefficients of the functions as list
Get the coefficients of the functions as list of ['a', 'b', 'c', 'd', 'e', 'f']
:return: [coefficients]
"""
return self._coefficients
@ -54,7 +54,7 @@ class PerformanceCurves:
def to_dictionary(self):
"""Class content to dictionary"""
content = {'Parameter Function': {
'type': self.type,
'curve type': self.curve_type,
'parameters': self.parameters,
'coefficients': self.coefficients,
}

View File

@ -7,7 +7,6 @@ Code contributors: Saeed Ranjbar saeed.ranjbar@concordia.ca
"""
from __future__ import annotations
from typing import Union
from hub.catalog_factories.data_models.energy_systems.generation_system import GenerationSystem
@ -16,20 +15,26 @@ class PvGenerationSystem(GenerationSystem):
Electricity Generation system class
"""
def __init__(self, nominal_ambient_temperature, nominal_cell_temperature, nominal_radiation,
standard_test_condition_cell_temperature, standard_test_condition_maximum_power,
cell_temperature_coefficient, width, height, model_name, manufacturer, electricity_efficiency,
nominal_electricity_output):
super(PvGenerationSystem, self).__init__(model_name=model_name, manufacturer=manufacturer, system_type='pv',
fuel_type='renewable', nominal_thermal_output=None, modulation_range=None,
source_types=None,supply_medium=None, heat_efficiency=None,
def __init__(self, system_id, name, model_name, manufacturer, electricity_efficiency,
nominal_electricity_output, nominal_ambient_temperature, nominal_cell_temperature,
nominal_radiation, standard_test_condition_cell_temperature, standard_test_condition_maximum_power,
cell_temperature_coefficient, width, height):
super(PvGenerationSystem, self).__init__(system_id=system_id, name=name, model_name=model_name,
manufacturer=manufacturer, system_type='pv', fuel_type='renewable',
nominal_thermal_output=None, maximum_heat_output=None,
minimum_heat_output=None, source_medium=None,
supply_medium=None, heat_efficiency=None, nominal_cooling_output=None,
maximum_cooling_output=None, minimum_cooling_output=None,
cooling_efficiency=None, electricity_efficiency=electricity_efficiency,
source_temperature=None, source_mass_flow=None,
nominal_electricity_output=nominal_electricity_output,
maximum_heating_supply_temperature=None,
minimum_heating_supply_temperature=None,
maximum_cooling_supply_temperature=None,
minimum_cooling_supply_temperature=None)
minimum_cooling_supply_temperature=None, heat_output_curve=None,
heat_fuel_consumption_curve=None, heat_efficiency_curve=None,
cooling_output_curve=None, cooling_fuel_consumption_curve=None,
cooling_efficiency_curve=None, storage=None, auxiliary_equipment=None)
self._nominal_ambient_temperature = nominal_ambient_temperature
self._nominal_cell_temperature = nominal_cell_temperature
self._nominal_radiation = nominal_radiation

View File

@ -13,7 +13,7 @@ from hub.catalog_factories.data_models.energy_systems.pv_generation_system impor
from hub.catalog_factories.data_models.energy_systems.energy_storage_system import EnergyStorageSystem
from hub.catalog_factories.data_models.energy_systems.distribution_system import DistributionSystem
from hub.catalog_factories.data_models.energy_systems.performance_curves import PerformanceCurves
from hub.catalog_factories.data_models.energy_systems.energy_emission_system import EnergyEmissionSystem
from hub.catalog_factories.data_models.energy_systems.emission_system import EmissionSystem
class System:
@ -101,7 +101,7 @@ class System:
return self._distribution_system
@property
def emission_system(self) -> Union[None, EnergyEmissionSystem]:
def emission_system(self) -> Union[None, EmissionSystem]:
"""
Get emission system
:return: EmissionSystem

View File

@ -12,7 +12,7 @@ from hub.catalog_factories.data_models.energy_systems.system import System
from hub.catalog_factories.data_models.energy_systems.content import Content
from hub.catalog_factories.data_models.energy_systems.generation_system import GenerationSystem
from hub.catalog_factories.data_models.energy_systems.distribution_system import DistributionSystem
from hub.catalog_factories.data_models.energy_systems.energy_emission_system import EnergyEmissionSystem
from hub.catalog_factories.data_models.energy_systems.emission_system import EmissionSystem
from hub.catalog_factories.data_models.energy_systems.archetype import Archetype
@ -20,6 +20,7 @@ class MontrealCustomCatalog(Catalog):
"""
Montreal custom energy systems catalog class
"""
def __init__(self, path):
path = str(path / 'montreal_custom_systems.xml')
with open(path, 'r', encoding='utf-8') as xml:
@ -90,7 +91,8 @@ class MontrealCustomCatalog(Catalog):
distribution_consumption_fix_flow = float(equipment['distribution_consumption_fix_flow']['#text']) / 100
distribution_consumption_variable_flow = None
if 'distribution_consumption_variable_flow' in equipment:
distribution_consumption_variable_flow = float(equipment['distribution_consumption_variable_flow']['#text']) / 100
distribution_consumption_variable_flow = float(
equipment['distribution_consumption_variable_flow']['#text']) / 100
distribution_system = DistributionSystem(equipment_id,
name,
@ -114,10 +116,10 @@ class MontrealCustomCatalog(Catalog):
if 'parasitic_consumption' in equipment:
parasitic_consumption = float(equipment['parasitic_consumption']['#text']) / 100
emission_system = EnergyEmissionSystem(equipment_id,
name,
equipment_type,
parasitic_consumption)
emission_system = EmissionSystem(equipment_id,
name,
equipment_type,
parasitic_consumption)
_equipments.append(emission_system)
return _equipments
@ -175,7 +177,7 @@ class MontrealCustomCatalog(Catalog):
"""
if category is None:
_names = {'archetypes': [], 'systems': [], 'generation_equipments': [], 'distribution_equipments': [],
'emission_equipments':[]}
'emission_equipments': []}
for archetype in self._content.archetypes:
_names['archetypes'].append(archetype.manufacturer)
for system in self._content.systems:

View File

@ -14,7 +14,7 @@ from hub.catalog_factories.data_models.energy_systems.content import Content
from hub.catalog_factories.data_models.energy_systems.generation_system import GenerationSystem
from hub.catalog_factories.data_models.energy_systems.pv_generation_system import PvGenerationSystem
from hub.catalog_factories.data_models.energy_systems.distribution_system import DistributionSystem
from hub.catalog_factories.data_models.energy_systems.energy_emission_system import EnergyEmissionSystem
from hub.catalog_factories.data_models.energy_systems.emission_system import EnergyEmissionSystem
from hub.catalog_factories.data_models.energy_systems.energy_storage_system import EnergyStorageSystem
from hub.catalog_factories.data_models.energy_systems.performance_curves import PerformanceCurves
from hub.catalog_factories.data_models.energy_systems.archetype import Archetype
@ -199,10 +199,15 @@ class NorthAmericaEnergySystemCatalog(Catalog):
catalog_systems = self._archetypes['encomp:EnergySystemCatalog']['energysystemconfiguration']
for catalog_system in catalog_systems:
system_configuration = catalog_system['@configurationName']
demands = catalog_system['demands']
demand_types = []
for demand in demands:
name = demand['@name']
demand_types.append(name)
energy_system = System(None,
None,
system_configuration,
None,
demand_types,
None,
None,
None,
@ -241,3 +246,13 @@ class NorthAmericaEnergySystemCatalog(Catalog):
if _material is None:
raise ValueError(f'Material not found in catalog [{material_name}]')
def _load_demands(self):
demands = []
_demands = self._archetypes['encomp:EnergySystemCatalog']['energydemand']
for _demand in _demands:
demand_type = _demand['@name']
demands.append(demand_type)
return demands
# def _search_demands(self, config_name):

View File

@ -1,43 +1,43 @@
<?xml version="1.0" encoding="UTF-8"?>
<encomp:EnergySystemCatalog xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:encomp="https://www.hft-stuttgart.de/energycomponents">
<energycomponent>
<media name="Water" density="981.0" heatCapacity="4180.0" evaporationTemperature="100.0"/>
<boilers modelName="ALP080B" manufacturer="Alpine" installedThermalPower="21.0" modulationRange="0.88" nominalEfficiency="0.95" combi="true" fuel="natural gas"/>
<boilers modelName="ALP105B" manufacturer="Alpine" installedThermalPower="28.0" modulationRange="0.88" nominalEfficiency="0.95" combi="true" fuel="natural gas"/>
<boilers modelName="ALP150B" manufacturer="Alpine" installedThermalPower="40.0" modulationRange="0.88" nominalEfficiency="0.95" combi="true" fuel="natural gas"/>
<boilers modelName="ALP210B" manufacturer="Alpine" installedThermalPower="57.0" modulationRange="0.87" nominalEfficiency="0.95" combi="true" fuel="natural gas"/>
<boilers modelName="ALTAC-136" manufacturer="Alta" installedThermalPower="33.0" modulationRange="0.95" nominalEfficiency="0.95" combi="true" fuel="natural gas"/>
<boilers modelName="ALTA-120" manufacturer="Alta" installedThermalPower="33.0" modulationRange="0.95" nominalEfficiency="0.95" combi="true" fuel="natural gas"/>
<boilers modelName="ASPN-085" manufacturer="Aspen" installedThermalPower="23.15" modulationRange="0.97" nominalEfficiency="0.96" fuel="natural gas"/>
<boilers modelName="ASPN-110" manufacturer="Aspen" installedThermalPower="30.19" modulationRange="0.96" nominalEfficiency="0.96" fuel="natural gas"/>
<boilers modelName="ASPNC-155" manufacturer="Aspen" installedThermalPower="42.5" modulationRange="0.96" nominalEfficiency="0.95" combi="true" fuel="natural gas"/>
<boilers modelName="K2WTC-135B" manufacturer="K2" installedThermalPower="32.8" modulationRange="0.96" nominalEfficiency="0.95" combi="true" fuel="natural gas"/>
<boilers modelName="K2WTC-180B" manufacturer="K2" installedThermalPower="49.5" modulationRange="0.96" nominalEfficiency="0.95" combi="true" fuel="natural gas"/>
<photovoltaicModules modelName="445MS" manufacturer="Canadian Solar" nominalPower="334.0" nominalEfficiency="0.201" nominalRadiation="800.0" STCRadiation="1000.0" nominalCellTemperature="41.0" STCCellTemperature="26.0" nominalAmbientTemperature="20.0" STCMaxPower="445.0" CellTemperatureCoefficient="-0.0034" height="1.048" width="2.01"/>
<heatPumps modelName="CMAA 012" description="A second degree equation is used in form of A*T_source^2 + B*T_source + C*T_source*T_sup + D*T_sup + E*T_sup^2 + F" manufacturer="TRANE" installedThermalPower="51.7" modulationRange="0.0" fuel="Electricity" heatSource="Air" nominalCOP="3.32" maxHeatingSupTemperature="55.0" minHeatingSupTemperature="6.0" maxCoolingSupTemperature="30.0" minCoolingSupTemperature="11.0" supply_medium="water">
<media media_id="1" media_name="Water" density="981.0" heatCapacity="4180.0" evaporationTemperature="100.0"/>
<boilers generation_id="2" name="Natural-Gas Boiler" modelName="ALP080B" manufacturer="Alpine" installedThermalPower="21.0" modulationRange="0.88" nominalEfficiency="0.95" combi="true" fuel="natural gas"/>
<boilers generation_id="3" name="Natural-Gas Boiler" modelName="ALP105B" manufacturer="Alpine" installedThermalPower="28.0" modulationRange="0.88" nominalEfficiency="0.95" combi="true" fuel="natural gas"/>
<boilers generation_id="4" name="Natural-Gas Boiler" modelName="ALP150B" manufacturer="Alpine" installedThermalPower="40.0" modulationRange="0.88" nominalEfficiency="0.95" combi="true" fuel="natural gas"/>
<boilers generation_id="5" name="Natural-Gas Boiler" modelName="ALP210B" manufacturer="Alpine" installedThermalPower="57.0" modulationRange="0.87" nominalEfficiency="0.95" combi="true" fuel="natural gas"/>
<boilers generation_id="6" name="Natural-Gas Boiler" modelName="ALTAC-136" manufacturer="Alta" installedThermalPower="33.0" modulationRange="0.95" nominalEfficiency="0.95" combi="true" fuel="natural gas"/>
<boilers generation_id="7" name="Natural-Gas Boiler" modelName="ALTA-120" manufacturer="Alta" installedThermalPower="33.0" modulationRange="0.95" nominalEfficiency="0.95" combi="true" fuel="natural gas"/>
<boilers generation_id="8" name="Natural-Gas Boiler" modelName="ASPN-085" manufacturer="Aspen" installedThermalPower="23.15" modulationRange="0.97" nominalEfficiency="0.96" fuel="natural gas"/>
<boilers generation_id="9" name="Natural-Gas Boiler" modelName="ASPN-110" manufacturer="Aspen" installedThermalPower="30.19" modulationRange="0.96" nominalEfficiency="0.96" fuel="natural gas"/>
<boilers generation_id="10" name="Natural-Gas Boiler" modelName="ASPNC-155" manufacturer="Aspen" installedThermalPower="42.5" modulationRange="0.96" nominalEfficiency="0.95" combi="true" fuel="natural gas"/>
<boilers generation_id="11" name="Natural-Gas Boiler" modelName="K2WTC-135B" manufacturer="K2" installedThermalPower="32.8" modulationRange="0.96" nominalEfficiency="0.95" combi="true" fuel="natural gas"/>
<boilers generation_id="12" name="Natural-Gas Boiler" modelName="K2WTC-180B" manufacturer="K2" installedThermalPower="49.5" modulationRange="0.96" nominalEfficiency="0.95" combi="true" fuel="natural gas"/>
<photovoltaicModules generation_id="13" name="Photovoltaic Module" modelName="445MS" manufacturer="Canadian Solar" nominalPower="334.0" nominalEfficiency="0.201" nominalRadiation="800.0" STCRadiation="1000.0" nominalCellTemperature="41.0" STCCellTemperature="26.0" nominalAmbientTemperature="20.0" STCMaxPower="445.0" CellTemperatureCoefficient="-0.0034" height="1.048" wgeneration_idth="2.01"/>
<heatPumps generation_id="14" name="Air-to-Water Heat Pump" modelName="CMAA 012" description="A second degree equation is used in form of A*T_source^2 + B*T_source + C*T_source*T_sup + D*T_sup + E*T_sup^2 + F" manufacturer="TRANE" installedThermalPower="51.7" modulationRange="0.0" fuel="Electricity" heatSource="Air" nominalCOP="3.32" maxHeatingSupTemperature="55.0" minHeatingSupTemperature="6.0" maxCoolingSupTemperature="30.0" minCoolingSupTemperature="11.0" supply_medium="water">
<coefficientOfPerformance xsi:type="encomp:SecondDegreePolynomialFunction" parameter="COP" parameterA="9.5E-4" parameterB="0.177" parameterC="-0.00242" parameterD="-0.155" parameterE="9.3E-4" parameterF="8.044"/>
</heatPumps>
<heatPumps modelName="CMAA 70" description="A second degree equation is used in form of A*T_source^2 + B*T_source + C*T_source*T_sup + D*T_sup + E*T_sup^2 + F" manufacturer="TRANE" installedThermalPower="279.3" modulationRange="0.0" fuel="Electricity" heatSource="Air" nominalCOP="3.07" maxHeatingSupTemperature="55.0" minHeatingSupTemperature="6.0" maxCoolingSupTemperature="30.0" minCoolingSupTemperature="11.0" supply_medium="water">
<heatPumps generation_id="15" name="Air-to-Water Heat Pump" modelName="CMAA 70" description="A second degree equation is used in form of A*T_source^2 + B*T_source + C*T_source*T_sup + D*T_sup + E*T_sup^2 + F" manufacturer="TRANE" installedThermalPower="279.3" modulationRange="0.0" fuel="Electricity" heatSource="Air" nominalCOP="3.07" maxHeatingSupTemperature="55.0" minHeatingSupTemperature="6.0" maxCoolingSupTemperature="30.0" minCoolingSupTemperature="11.0" supply_medium="water">
<coefficientOfPerformance xsi:type="encomp:SecondDegreePolynomialFunction" parameter="COP" parameterA="0.0011" parameterB="0.207" parameterC="-0.00292" parameterD="-0.187" parameterE="0.00121" parameterF="8.95"/>
</heatPumps>
<heatPumps modelName="CMAA 140" description="A second degree equation is used in form of A*T_source^2 + B*T_source + C*T_source*T_sup + D*T_sup + E*T_sup^2 + F" manufacturer="TRANE" installedThermalPower="279.3" modulationRange="0.0" fuel="Electricity" heatSource="Air" nominalCOP="3.46" maxHeatingSupTemperature="55.0" minHeatingSupTemperature="6.0" maxCoolingSupTemperature="30.0" minCoolingSupTemperature="11.0" supply_medium="water">
<heatPumps generation_id="1" name="Air-to-Water Heat Pump" modelName="CMAA 140" description="A second degree equation is used in form of A*T_source^2 + B*T_source + C*T_source*T_sup + D*T_sup + E*T_sup^2 + F" manufacturer="TRANE" installedThermalPower="279.3" modulationRange="0.0" fuel="Electricity" heatSource="Air" nominalCOP="3.46" maxHeatingSupTemperature="55.0" minHeatingSupTemperature="6.0" maxCoolingSupTemperature="30.0" minCoolingSupTemperature="11.0" supply_medium="water">
<coefficientOfPerformance xsi:type="encomp:SecondDegreePolynomialFunction" parameter="COP" parameterA="0.00109" parameterB="0.209" parameterC="-0.00291" parameterD="-0.172" parameterE="0.00102" parameterF="8.95"/>
</heatPumps>
<thermalStorages modelName="HF 200" manufacturer="reflex" volume="0.5" maxTemp="95.0" insulationThickness="90.0" tankThickness="0" usesMedium="Water" insulationMaterial="Polyurethane" height="1.5" tankMaterial="Steel"/>
<thermalStorages modelName="HF 300" manufacturer="reflex" volume="0.6" maxTemp="95.0" insulationThickness="90.0" tankThickness="0" usesMedium="Water" insulationMaterial="Polyurethane" height="1.3" tankMaterial="Steel"/>
<thermalStorages modelName="HF 500" manufacturer="reflex" volume="0.5" maxTemp="95.0" insulationThickness="90.0" tankThickness="0" usesMedium="Water" insulationMaterial="Polyurethane" height="1.5" tankMaterial="Steel"/>
<thermalStorages modelName="HF 200" manufacturer="reflex" volume="0.5" maxTemp="95.0" insulationThickness="90.0" tankThickness="0" usesMedium="Water" insulationMaterial="Polyurethane" height="1.5" tankMaterial="Steel"/>
<thermalStorages modelName="HF 200" manufacturer="reflex" volume="0.5" maxTemp="95.0" insulationThickness="90.0" tankThickness="0" usesMedium="Water" insulationMaterial="Polyurethane" height="1.5" tankMaterial="Steel"/>
<thermalStorages storage_id="1" name="Hot Water Storage Tank" modelName="HF 200" manufacturer="reflex" volume="0.5" maxTemp="95.0" insulationThickness="90.0" tankThickness="0" usesMedium="Water" insulationMaterial="Polyurethane" height="1.5" tankMaterial="Steel"/>
<thermalStorages storage_id="2" name="Hot Water Storage Tank" modelName="HF 300" manufacturer="reflex" volume="0.6" maxTemp="95.0" insulationThickness="90.0" tankThickness="0" usesMedium="Water" insulationMaterial="Polyurethane" height="1.3" tankMaterial="Steel"/>
<thermalStorages storage_id="3" name="Hot Water Storage Tank" modelName="HF 500" manufacturer="reflex" volume="0.5" maxTemp="95.0" insulationThickness="90.0" tankThickness="0" usesMedium="Water" insulationMaterial="Polyurethane" height="1.5" tankMaterial="Steel"/>
<thermalStorages storage_id="4" name="Hot Water Storage Tank" modelName="HF 200" manufacturer="reflex" volume="0.5" maxTemp="95.0" insulationThickness="90.0" tankThickness="0" usesMedium="Water" insulationMaterial="Polyurethane" height="1.5" tankMaterial="Steel"/>
<thermalStorages storage_id="5" name="Hot Water Storage Tank" modelName="HF 200" manufacturer="reflex" volume="0.5" maxTemp="95.0" insulationThickness="90.0" tankThickness="0" usesMedium="Water" insulationMaterial="Polyurethane" height="1.5" tankMaterial="Steel"/>
<powerStorages/>
<manufacturers name="Alpine" country="USA"/>
<manufacturers name="Alta" country="USA"/>
<manufacturers name="Aspen" country="USA"/>
<manufacturers name="K2" country="USA"/>
<manufacturers name="TRANE"/>
<manufacturers name="reflex"/>
<manufacturers name="Canadian Solar" country="Canada"/>
<materials name="Polyurethane" thermalConductivity="0.028"/>
<materials name="Steel" thermalConductivity="18.0"/>
<manufacturers manufacturer_id="1" name="Alpine" country="USA"/>
<manufacturers manufacturer_id="2" name="Alta" country="USA"/>
<manufacturers manufacturer_id="3" name="Aspen" country="USA"/>
<manufacturers manufacturer_id="4" name="K2" country="USA"/>
<manufacturers manufacturer_id="5" name="TRANE"/>
<manufacturers manufacturer_id="6" name="reflex"/>
<manufacturers manufacturer_id="7" name="Canadian Solar" country="Canada"/>
<materials material_id="1" name="Polyurethane" thermalConductivity="0.028"/>
<materials material_id="2" name="Steel" thermalConductivity="18.0"/>
</energycomponent>
<energysystemconfiguration configurationName="PvHpBoiler">
<components>
@ -49,11 +49,20 @@
<demands name="electricity"/>
<demands name="domesticHotWater"/>
</energysystemconfiguration>
<energysystemconfiguration configurationName="hpTesBoiler"/>
<energysystemconfiguration configurationName="hpTesBoiler">
<components>
<boilers modelName="virtualBoiler" description="template boiler north america" nominalEfficiency="0.95"/>
<thermalStorages modelName="HF 200" manufacturer="reflex" volume="0.5" maxTemp="95.0" insulationThickness="90.0" tankThickness="0" usesMedium="Water" insulationMaterial="Polyurethane" height="1.5" tankMaterial="Steel"/>
<heatPumps modelName="virtualHp" fuel="Electricity" heatSource="Ground" nominalCOP="2.5" supply_medium="water"/>
</components>
<demands name="heating"/>
<demands name="electricity"/>
<demands name="domesticHotWater"/>
</energysystemconfiguration>
<energysystemconfiguration configurationName="hpTes"/>
<energydemand name="heating"/>
<energydemand name="domesticHotWater"/>
<energydemand name="electricity"/>
<energydemand/>
<energydemand name="cooling"/>
</encomp:EnergySystemCatalog>

View File

@ -92,7 +92,7 @@ class MontrealCustomEnergySystemParameters:
_type]
_fuel_type = Dictionaries().montreal_custom_fuel_to_hub_fuel[archetype_generation_equipment.fuel_type]
_generation_system.fuel_type = _fuel_type
_generation_system.source_types = archetype_generation_equipment.source_types
_generation_system.source_types = archetype_generation_equipment.source_medium
_generation_system.heat_efficiency = archetype_generation_equipment.heat_efficiency
_generation_system.cooling_efficiency = archetype_generation_equipment.cooling_efficiency
_generation_system.electricity_efficiency = archetype_generation_equipment.electricity_efficiency