Compare commits

...

42 Commits

Author SHA1 Message Date
3db3acd3c6 update version number 2024-10-29 22:00:57 +01:00
15aaf2a337 Merge pull request 'feat: Palma catalogues and importers are added' (#73) from feature/palma into main
Reviewed-on: #73
2024-10-29 16:46:17 -04:00
7ad16ba640 feat: Palma catalogues and importers are added 2024-10-29 11:36:47 +01:00
f42bb64b85 revert 3dd64143ab
revert Merge pull request 'feat: all the catalogues, importers, data and tests of palma are added' (#72) from feature/palma into main

Reviewed-on: #72
2024-10-22 14:27:35 -04:00
3dd64143ab Merge pull request 'feat: all the catalogues, importers, data and tests of palma are added' (#72) from feature/palma into main
Reviewed-on: #72
2024-10-21 17:32:20 -04:00
164ffbf9c8 feat: all the catalogues, importers, data and tests of palma are added 2024-10-21 23:30:10 +02:00
bf4018a649 Update version number 2024-10-20 17:39:54 +02:00
6c7f652390 Merge pull request 'fix: the small bug in test units is resolved, the construction and usage factories can be loaded without any order' (#71) from small_bugs_in_user_tests into main
Reviewed-on: #71
2024-10-20 11:15:40 -04:00
4e46b6bc0d fix: the small bug in test units is resolved, the construction and usage factories can be loaded without any order 2024-10-18 12:28:38 +02:00
4ac9ccda81 Update hub/version.py 2024-10-17 08:05:13 -04:00
df2d7a3054 Geojson class modified for the geojson format Guille suggested 2024-10-17 07:40:13 -04:00
47810737fa geojson, construction and usage importers are all modified for mixed use buildings 2024-10-17 07:40:13 -04:00
99535a979c Update hub/version.py 2024-10-17 00:19:27 -04:00
9986552ec1 Merge remote-tracking branch 'origin/main' 2024-10-17 06:17:48 +02:00
d1719b50ed Merge branch 'infilt_availability_oriol' 2024-10-17 06:15:04 +02:00
5e01f4eb7f Merge pull request 'Remove build from setup.py and add it to requirements.txt' (#69) from fix/fix-build into main
Reviewed-on: #69
2024-10-03 14:08:37 -04:00
d38150ac2d Remove build from setup.py and add it to requirements.txt 2024-10-03 13:05:56 -05:00
5e5129ecd7 Merge pull request 'Add build package to setup.py and remove texttest' (#68) from fix/update-setup.py into main
Reviewed-on: #68
2024-10-02 12:07:55 -04:00
3905f228dc correct unittests 2024-10-02 06:30:43 +02:00
33049441f0 Add build package to setup.py and remove texttest 2024-10-01 14:35:08 -05:00
70dd9f7c6a Merge pull request 'fix: change building names in ep_multiple_buildings.py to upper case' (#66) from fix/ep-result-factory-naming-bug into main
Reviewed-on: #66
2024-10-01 10:15:40 -04:00
0ce392ea06 fix: change building names in ep_multiple_buildings.py to upper case 2024-10-01 09:43:57 -04:00
ogavalda
4b6a942324 Small change. test 2024-09-30 15:58:21 -04:00
2495046c44 correct typo 2024-09-30 19:46:07 +02:00
4738de0d8c Merge branch 'infilt_availability_oriol' 2024-09-30 15:17:05 +02:00
e220bf2c0d Merge remote-tracking branch 'origin/main' 2024-09-23 18:26:33 +02:00
a45cf02b28 Update hub/version.py 2024-09-23 11:57:33 -04:00
ef62e2531f add weather file to the EnergyBuildingsExportsFactory 2024-09-23 17:56:58 +02:00
ogavalda
cd34435a9f Including air temperature output 2024-09-16 15:49:18 -04:00
ogavalda
15b96fe154 Changing the full structure to incorporate a second way of entering infiltration (infiltration per outdoor area) 2024-09-16 15:41:27 -04:00
ogavalda
54a6e6b2db Adding infiltration per m2 2024-09-15 10:22:07 -04:00
ogavalda
a7375f0b53 Adding infiltration per m2 2024-09-15 10:15:41 -04:00
ogavalda
725746fbcb Changes in infiltration profiles and the source of values for infiltration 2024-09-15 09:44:07 -04:00
ec320a2e1c Merge pull request 'fix: small bugs in the irradiance units were fixed.' (#65) from irradiance_unit_fixing into main
Reviewed-on: #65
2024-09-09 13:27:05 -04:00
8a68118503 fix: small bugs in the irradiance units were fixed. 2024-09-09 11:11:33 -04:00
a3ec3c7e19 Merge pull request 'Add version number to numpy' (#64) from fix/downgrade-numpy into main
Reviewed-on: https://nextgenerations-cities.encs.concordia.ca/gitea/CERC/hub/pulls/64

Hi Connor, I have accepted the change, but some additional review will be needed, it creates a hard dependency from a specific version of numpy with almost sure will create issues with other libraries, will be nice if you could keep an eye on the issue resolution from sqlalchemy
2024-09-02 12:35:30 -04:00
connor
ace666553a Add version number to numpy 2024-08-30 18:01:26 -04:00
c4636c2c3c Merge remote-tracking branch 'origin/main' 2024-07-25 18:11:10 +02:00
4a01ac51d8 Remove the building from the targets if needed 2024-07-25 18:10:51 +02:00
ee846a6225 Update hub/version.py 2024-07-16 01:25:01 -04:00
a4f3b48617 Merge remote-tracking branch 'origin/main' 2024-07-16 07:24:41 +02:00
abc3fc48dd Add type to constructions to avoid collisions in constructions names 2024-07-16 07:24:22 +02:00
64 changed files with 11646 additions and 1093 deletions

View File

@ -22,6 +22,7 @@ class EilatCatalog(Catalog):
""" """
Eilat catalog class Eilat catalog class
""" """
def __init__(self, path): def __init__(self, path):
_path_archetypes = Path(path / 'eilat_archetypes.json').resolve() _path_archetypes = Path(path / 'eilat_archetypes.json').resolve()
_path_constructions = (path / 'eilat_constructions.json').resolve() _path_constructions = (path / 'eilat_constructions.json').resolve()
@ -121,8 +122,10 @@ class EilatCatalog(Catalog):
construction_period = archetype['period_of_construction'] construction_period = archetype['period_of_construction']
average_storey_height = archetype['average_storey_height'] average_storey_height = archetype['average_storey_height']
extra_loses_due_to_thermal_bridges = archetype['extra_loses_due_thermal_bridges'] extra_loses_due_to_thermal_bridges = archetype['extra_loses_due_thermal_bridges']
infiltration_rate_for_ventilation_system_off = archetype['infiltration_rate_for_ventilation_system_off'] / cte.HOUR_TO_SECONDS infiltration_rate_for_ventilation_system_off = archetype[
infiltration_rate_for_ventilation_system_on = archetype['infiltration_rate_for_ventilation_system_on'] / cte.HOUR_TO_SECONDS 'infiltration_rate_for_ventilation_system_off'] / cte.HOUR_TO_SECONDS
infiltration_rate_for_ventilation_system_on = archetype[
'infiltration_rate_for_ventilation_system_on'] / cte.HOUR_TO_SECONDS
archetype_constructions = [] archetype_constructions = []
for archetype_construction in archetype['constructions']: for archetype_construction in archetype['constructions']:
@ -160,7 +163,9 @@ class EilatCatalog(Catalog):
extra_loses_due_to_thermal_bridges, extra_loses_due_to_thermal_bridges,
None, None,
infiltration_rate_for_ventilation_system_off, infiltration_rate_for_ventilation_system_off,
infiltration_rate_for_ventilation_system_on)) infiltration_rate_for_ventilation_system_on,
0,
0))
return _catalog_archetypes return _catalog_archetypes
def names(self, category=None): def names(self, category=None):

View File

@ -128,6 +128,12 @@ class NrcanCatalog(Catalog):
infiltration_rate_for_ventilation_system_on = ( infiltration_rate_for_ventilation_system_on = (
archetype['infiltration_rate_for_ventilation_system_on'] / cte.HOUR_TO_SECONDS archetype['infiltration_rate_for_ventilation_system_on'] / cte.HOUR_TO_SECONDS
) )
infiltration_rate_area_for_ventilation_system_off = (
archetype['infiltration_rate_area_for_ventilation_system_off'] * 1
)
infiltration_rate_area_for_ventilation_system_on = (
archetype['infiltration_rate_area_for_ventilation_system_on'] * 1
)
archetype_constructions = [] archetype_constructions = []
for archetype_construction in archetype['constructions']: for archetype_construction in archetype['constructions']:
@ -153,7 +159,6 @@ class NrcanCatalog(Catalog):
_window) _window)
archetype_constructions.append(_construction) archetype_constructions.append(_construction)
break break
_catalog_archetypes.append(Archetype(archetype_id, _catalog_archetypes.append(Archetype(archetype_id,
name, name,
function, function,
@ -165,7 +170,10 @@ class NrcanCatalog(Catalog):
extra_loses_due_to_thermal_bridges, extra_loses_due_to_thermal_bridges,
None, None,
infiltration_rate_for_ventilation_system_off, infiltration_rate_for_ventilation_system_off,
infiltration_rate_for_ventilation_system_on)) infiltration_rate_for_ventilation_system_on,
infiltration_rate_area_for_ventilation_system_off,
infiltration_rate_area_for_ventilation_system_on
))
return _catalog_archetypes return _catalog_archetypes
def names(self, category=None): def names(self, category=None):

View File

@ -162,7 +162,9 @@ class NrelCatalog(Catalog):
extra_loses_due_to_thermal_bridges, extra_loses_due_to_thermal_bridges,
indirect_heated_ratio, indirect_heated_ratio,
infiltration_rate_for_ventilation_system_off, infiltration_rate_for_ventilation_system_off,
infiltration_rate_for_ventilation_system_on)) infiltration_rate_for_ventilation_system_on,
0,
0))
return _catalog_archetypes return _catalog_archetypes
def names(self, category=None): def names(self, category=None):

View File

@ -0,0 +1,242 @@
"""
Palma construction catalog
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Cecilia Pérez Pérez cperez@irec.cat
"""
import json
from pathlib import Path
from hub.catalog_factories.catalog import Catalog
from hub.catalog_factories.data_models.construction.content import Content
from hub.catalog_factories.construction.construction_helper import ConstructionHelper
from hub.catalog_factories.data_models.construction.construction import Construction
from hub.catalog_factories.data_models.construction.archetype import Archetype
from hub.catalog_factories.data_models.construction.window import Window
from hub.catalog_factories.data_models.construction.material import Material
from hub.catalog_factories.data_models.construction.layer import Layer
import hub.helpers.constants as cte
class PalmaCatalog(Catalog):
"""
Palma catalog class
"""
def __init__(self, path):
_path_archetypes = Path(path / 'palma_archetypes.json').resolve()
_path_constructions = (path / 'palma_constructions.json').resolve()
with open(_path_archetypes, 'r', encoding='utf-8') as file:
self._archetypes = json.load(file)
with open(_path_constructions, 'r', encoding='utf-8') as file:
self._constructions = json.load(file)
self._catalog_windows = self._load_windows()
self._catalog_materials = self._load_materials()
self._catalog_constructions = self._load_constructions()
self._catalog_archetypes = self._load_archetypes()
# store the full catalog data model in self._content
self._content = Content(self._catalog_archetypes,
self._catalog_constructions,
self._catalog_materials,
self._catalog_windows)
def _load_windows(self):
_catalog_windows = []
windows = self._constructions['transparent_surfaces']
for window in windows:
name = list(window.keys())[0]
window_id = name
g_value = window[name]['shgc']
window_type = window[name]['type']
frame_ratio = window[name]['frame_ratio']
overall_u_value = window[name]['u_value']
_catalog_windows.append(Window(window_id, frame_ratio, g_value, overall_u_value, name, window_type))
return _catalog_windows
def _load_materials(self):
_catalog_materials = []
materials = self._constructions['materials']
for material in materials:
name = list(material.keys())[0]
material_id = name
no_mass = material[name]['no_mass']
thermal_resistance = None
conductivity = None
density = None
specific_heat = None
solar_absorptance = None
thermal_absorptance = None
visible_absorptance = None
if no_mass:
thermal_resistance = material[name]['thermal_resistance']
else:
solar_absorptance = material[name]['solar_absorptance']
thermal_absorptance = str(1 - float(material[name]['thermal_emittance']))
visible_absorptance = material[name]['visible_absorptance']
conductivity = material[name]['conductivity']
density = material[name]['density']
specific_heat = material[name]['specific_heat']
_material = Material(material_id,
name,
solar_absorptance,
thermal_absorptance,
visible_absorptance,
no_mass,
thermal_resistance,
conductivity,
density,
specific_heat)
_catalog_materials.append(_material)
return _catalog_materials
def _load_constructions(self):
_catalog_constructions = []
constructions = self._constructions['opaque_surfaces']
for construction in constructions:
name = list(construction.keys())[0]
construction_id = name
construction_type = ConstructionHelper().nrcan_surfaces_types_to_hub_types[construction[name]['type']]
layers = []
for layer in construction[name]['layers']:
layer_id = layer
layer_name = layer
material_id = layer
thickness = construction[name]['layers'][layer]
for material in self._catalog_materials:
if str(material_id) == str(material.id):
layers.append(Layer(layer_id, layer_name, material, thickness))
break
_catalog_constructions.append(Construction(construction_id, construction_type, name, layers))
return _catalog_constructions
def _load_archetypes(self):
_catalog_archetypes = []
archetypes = self._archetypes['archetypes']
for archetype in archetypes:
archetype_id = f'{archetype["function"]}_{archetype["period_of_construction"]}_{archetype["climate_zone"]}'
function = archetype['function']
name = archetype_id
climate_zone = archetype['climate_zone']
construction_period = archetype['period_of_construction']
average_storey_height = archetype['average_storey_height']
thermal_capacity = float(archetype['thermal_capacity']) * 1000
extra_loses_due_to_thermal_bridges = archetype['extra_loses_due_thermal_bridges']
infiltration_rate_for_ventilation_system_off = archetype['infiltration_rate_for_ventilation_system_off'] / cte.HOUR_TO_SECONDS
infiltration_rate_for_ventilation_system_on = archetype['infiltration_rate_for_ventilation_system_on'] / cte.HOUR_TO_SECONDS
infiltration_rate_area_for_ventilation_system_off = (
archetype['infiltration_rate_area_for_ventilation_system_off'] * 1
)
infiltration_rate_area_for_ventilation_system_on = (
archetype['infiltration_rate_area_for_ventilation_system_on'] * 1
)
archetype_constructions = []
for archetype_construction in archetype['constructions']:
archetype_construction_type = ConstructionHelper().nrcan_surfaces_types_to_hub_types[archetype_construction]
archetype_construction_name = archetype['constructions'][archetype_construction]['opaque_surface_name']
for construction in self._catalog_constructions:
if archetype_construction_type == construction.type and construction.name == archetype_construction_name:
_construction = None
_window = None
_window_ratio = None
if 'transparent_surface_name' in archetype['constructions'][archetype_construction].keys():
_window_ratio = archetype['constructions'][archetype_construction]['transparent_ratio']
_window_id = archetype['constructions'][archetype_construction]['transparent_surface_name']
for window in self._catalog_windows:
if _window_id == window.id:
_window = window
break
_construction = Construction(construction.id,
construction.type,
construction.name,
construction.layers,
_window_ratio,
_window)
archetype_constructions.append(_construction)
break
_catalog_archetypes.append(Archetype(archetype_id,
name,
function,
climate_zone,
construction_period,
archetype_constructions,
average_storey_height,
thermal_capacity,
extra_loses_due_to_thermal_bridges,
None,
infiltration_rate_for_ventilation_system_off,
infiltration_rate_for_ventilation_system_on,
infiltration_rate_area_for_ventilation_system_off,
infiltration_rate_area_for_ventilation_system_on))
return _catalog_archetypes
def names(self, category=None):
"""
Get the catalog elements names
:parm: optional category filter
"""
if category is None:
_names = {'archetypes': [], 'constructions': [], 'materials': [], 'windows': []}
for archetype in self._content.archetypes:
_names['archetypes'].append(archetype.name)
for construction in self._content.constructions:
_names['constructions'].append(construction.name)
for material in self._content.materials:
_names['materials'].append(material.name)
for window in self._content.windows:
_names['windows'].append(window.name)
else:
_names = {category: []}
if category.lower() == 'archetypes':
for archetype in self._content.archetypes:
_names[category].append(archetype.name)
elif category.lower() == 'constructions':
for construction in self._content.constructions:
_names[category].append(construction.name)
elif category.lower() == 'materials':
for material in self._content.materials:
_names[category].append(material.name)
elif category.lower() == 'windows':
for window in self._content.windows:
_names[category].append(window.name)
else:
raise ValueError(f'Unknown category [{category}]')
return _names
def entries(self, category=None):
"""
Get the catalog elements
:parm: optional category filter
"""
if category is None:
return self._content
if category.lower() == 'archetypes':
return self._content.archetypes
if category.lower() == 'constructions':
return self._content.constructions
if category.lower() == 'materials':
return self._content.materials
if category.lower() == 'windows':
return self._content.windows
raise ValueError(f'Unknown category [{category}]')
def get_entry(self, name):
"""
Get one catalog element by names
:parm: entry name
"""
for entry in self._content.archetypes:
if entry.name.lower() == name.lower():
return entry
for entry in self._content.constructions:
if entry.name.lower() == name.lower():
return entry
for entry in self._content.materials:
if entry.name.lower() == name.lower():
return entry
for entry in self._content.windows:
if entry.name.lower() == name.lower():
return entry
raise IndexError(f"{name} doesn't exists in the catalog")

View File

@ -11,6 +11,7 @@ from typing import TypeVar
from hub.catalog_factories.construction.nrcan_catalog import NrcanCatalog from hub.catalog_factories.construction.nrcan_catalog import NrcanCatalog
from hub.catalog_factories.construction.nrel_catalog import NrelCatalog from hub.catalog_factories.construction.nrel_catalog import NrelCatalog
from hub.catalog_factories.construction.eilat_catalog import EilatCatalog from hub.catalog_factories.construction.eilat_catalog import EilatCatalog
from hub.catalog_factories.construction.palma_catalog import PalmaCatalog
from hub.helpers.utils import validate_import_export_type from hub.helpers.utils import validate_import_export_type
Catalog = TypeVar('Catalog') Catalog = TypeVar('Catalog')
@ -48,6 +49,13 @@ class ConstructionCatalogFactory:
""" """
return EilatCatalog(self._path) return EilatCatalog(self._path)
@property
def _palma(self):
"""
Retrieve Palma catalog
"""
return PalmaCatalog(self._path)
@property @property
def catalog(self) -> Catalog: def catalog(self) -> Catalog:
""" """

View File

@ -23,7 +23,10 @@ class Archetype:
extra_loses_due_to_thermal_bridges, extra_loses_due_to_thermal_bridges,
indirect_heated_ratio, indirect_heated_ratio,
infiltration_rate_for_ventilation_system_off, infiltration_rate_for_ventilation_system_off,
infiltration_rate_for_ventilation_system_on): infiltration_rate_for_ventilation_system_on,
infiltration_rate_area_for_ventilation_system_off,
infiltration_rate_area_for_ventilation_system_on
):
self._id = archetype_id self._id = archetype_id
self._name = name self._name = name
self._function = function self._function = function
@ -36,6 +39,8 @@ class Archetype:
self._indirect_heated_ratio = indirect_heated_ratio self._indirect_heated_ratio = indirect_heated_ratio
self._infiltration_rate_for_ventilation_system_off = infiltration_rate_for_ventilation_system_off self._infiltration_rate_for_ventilation_system_off = infiltration_rate_for_ventilation_system_off
self._infiltration_rate_for_ventilation_system_on = infiltration_rate_for_ventilation_system_on self._infiltration_rate_for_ventilation_system_on = infiltration_rate_for_ventilation_system_on
self._infiltration_rate_area_for_ventilation_system_off = infiltration_rate_area_for_ventilation_system_off
self._infiltration_rate_area_for_ventilation_system_on = infiltration_rate_area_for_ventilation_system_on
@property @property
def id(self): def id(self):
@ -133,6 +138,22 @@ class Archetype:
""" """
return self._infiltration_rate_for_ventilation_system_on return self._infiltration_rate_for_ventilation_system_on
@property
def infiltration_rate_area_for_ventilation_system_off(self):
"""
Get archetype infiltration rate for ventilation system off in m3/sm2
:return: float
"""
return self._infiltration_rate_area_for_ventilation_system_off
@property
def infiltration_rate_area_for_ventilation_system_on(self):
"""
Get archetype infiltration rate for ventilation system on in m3/sm2
:return: float
"""
return self._infiltration_rate_for_ventilation_system_on
def to_dictionary(self): def to_dictionary(self):
"""Class content to dictionary""" """Class content to dictionary"""
_constructions = [] _constructions = []
@ -149,6 +170,8 @@ class Archetype:
'indirect heated ratio': self.indirect_heated_ratio, 'indirect heated ratio': self.indirect_heated_ratio,
'infiltration rate for ventilation off [1/s]': self.infiltration_rate_for_ventilation_system_off, 'infiltration rate for ventilation off [1/s]': self.infiltration_rate_for_ventilation_system_off,
'infiltration rate for ventilation on [1/s]': self.infiltration_rate_for_ventilation_system_on, 'infiltration rate for ventilation on [1/s]': self.infiltration_rate_for_ventilation_system_on,
'infiltration rate area for ventilation off [m3/sm2]': self.infiltration_rate_area_for_ventilation_system_off,
'infiltration rate area for ventilation on [m3/sm2]': self.infiltration_rate_area_for_ventilation_system_on,
'constructions': _constructions 'constructions': _constructions
} }
} }

View File

@ -17,8 +17,9 @@ class PvGenerationSystem(GenerationSystem):
def __init__(self, system_id, name, system_type, model_name=None, manufacturer=None, electricity_efficiency=None, def __init__(self, system_id, name, system_type, model_name=None, manufacturer=None, electricity_efficiency=None,
nominal_electricity_output=None, nominal_ambient_temperature=None, nominal_cell_temperature=None, nominal_electricity_output=None, nominal_ambient_temperature=None, nominal_cell_temperature=None,
nominal_radiation=None, standard_test_condition_cell_temperature=None, nominal_radiation=None, standard_test_condition_cell_temperature=None,
standard_test_condition_maximum_power=None, cell_temperature_coefficient=None, width=None, height=None, standard_test_condition_maximum_power=None, standard_test_condition_radiation=None,
distribution_systems=None, energy_storage_systems=None): cell_temperature_coefficient=None, width=None, height=None, distribution_systems=None,
energy_storage_systems=None):
super().__init__(system_id=system_id, name=name, model_name=model_name, super().__init__(system_id=system_id, name=name, model_name=model_name,
manufacturer=manufacturer, fuel_type='renewable', distribution_systems=distribution_systems, manufacturer=manufacturer, fuel_type='renewable', distribution_systems=distribution_systems,
energy_storage_systems=energy_storage_systems) energy_storage_systems=energy_storage_systems)
@ -30,6 +31,7 @@ class PvGenerationSystem(GenerationSystem):
self._nominal_radiation = nominal_radiation self._nominal_radiation = nominal_radiation
self._standard_test_condition_cell_temperature = standard_test_condition_cell_temperature self._standard_test_condition_cell_temperature = standard_test_condition_cell_temperature
self._standard_test_condition_maximum_power = standard_test_condition_maximum_power self._standard_test_condition_maximum_power = standard_test_condition_maximum_power
self._standard_test_condition_radiation = standard_test_condition_radiation
self._cell_temperature_coefficient = cell_temperature_coefficient self._cell_temperature_coefficient = cell_temperature_coefficient
self._width = width self._width = width
self._height = height self._height = height
@ -98,6 +100,15 @@ class PvGenerationSystem(GenerationSystem):
""" """
return self._standard_test_condition_maximum_power return self._standard_test_condition_maximum_power
@property
def standard_test_condition_radiation(self):
"""
Get standard test condition cell temperature of PV panels in W/m2
:return: float
"""
return self._standard_test_condition_radiation
@property @property
def cell_temperature_coefficient(self): def cell_temperature_coefficient(self):
""" """
@ -143,6 +154,7 @@ class PvGenerationSystem(GenerationSystem):
'nominal radiation [W/m2]': self.nominal_radiation, 'nominal radiation [W/m2]': self.nominal_radiation,
'standard test condition cell temperature [Celsius]': self.standard_test_condition_cell_temperature, 'standard test condition cell temperature [Celsius]': self.standard_test_condition_cell_temperature,
'standard test condition maximum power [W]': self.standard_test_condition_maximum_power, 'standard test condition maximum power [W]': self.standard_test_condition_maximum_power,
'standard test condition radiation [W/m2]': self.standard_test_condition_radiation,
'cell temperature coefficient': self.cell_temperature_coefficient, 'cell temperature coefficient': self.cell_temperature_coefficient,
'width': self.width, 'width': self.width,
'height': self.height, 'height': self.height,

View File

@ -193,6 +193,7 @@ class MontrealFutureSystemCatalogue(Catalog):
nominal_radiation = pv['nominal_radiation'] nominal_radiation = pv['nominal_radiation']
standard_test_condition_cell_temperature = pv['standard_test_condition_cell_temperature'] standard_test_condition_cell_temperature = pv['standard_test_condition_cell_temperature']
standard_test_condition_maximum_power = pv['standard_test_condition_maximum_power'] standard_test_condition_maximum_power = pv['standard_test_condition_maximum_power']
standard_test_condition_radiation = pv['standard_test_condition_radiation']
cell_temperature_coefficient = pv['cell_temperature_coefficient'] cell_temperature_coefficient = pv['cell_temperature_coefficient']
width = pv['width'] width = pv['width']
height = pv['height'] height = pv['height']
@ -215,6 +216,7 @@ class MontrealFutureSystemCatalogue(Catalog):
standard_test_condition_cell_temperature= standard_test_condition_cell_temperature=
standard_test_condition_cell_temperature, standard_test_condition_cell_temperature,
standard_test_condition_maximum_power=standard_test_condition_maximum_power, standard_test_condition_maximum_power=standard_test_condition_maximum_power,
standard_test_condition_radiation=standard_test_condition_radiation,
cell_temperature_coefficient=cell_temperature_coefficient, cell_temperature_coefficient=cell_temperature_coefficient,
width=width, width=width,
height=height, height=height,

View File

@ -0,0 +1,520 @@
"""
Palma energy system catalog
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Saeed Ranjbar saeed.ranjbar@concordia.ca
"""
import xmltodict
from pathlib import Path
from hub.catalog_factories.catalog import Catalog
from hub.catalog_factories.data_models.energy_systems.distribution_system import DistributionSystem
from hub.catalog_factories.data_models.energy_systems.emission_system import EmissionSystem
from hub.catalog_factories.data_models.energy_systems.system import System
from hub.catalog_factories.data_models.energy_systems.content import Content
from hub.catalog_factories.data_models.energy_systems.non_pv_generation_system import NonPvGenerationSystem
from hub.catalog_factories.data_models.energy_systems.pv_generation_system import PvGenerationSystem
from hub.catalog_factories.data_models.energy_systems.thermal_storage_system import ThermalStorageSystem
from hub.catalog_factories.data_models.energy_systems.performance_curves import PerformanceCurves
from hub.catalog_factories.data_models.energy_systems.archetype import Archetype
from hub.catalog_factories.data_models.construction.material import Material
from hub.catalog_factories.data_models.construction.layer import Layer
class PalmaSystemCatalogue(Catalog):
"""
North america energy system catalog class
"""
def __init__(self, path):
path = str(path / 'palma_systems.xml')
with open(path, 'r', encoding='utf-8') as xml:
self._archetypes = xmltodict.parse(xml.read(),
force_list=['pv_generation_component', 'demand'])
self._storage_components = self._load_storage_components()
self._generation_components = self._load_generation_components()
self._energy_emission_components = self._load_emission_equipments()
self._distribution_components = self._load_distribution_equipments()
self._systems = self._load_systems()
self._system_archetypes = self._load_archetypes()
self._content = Content(self._system_archetypes,
self._systems,
generations=self._generation_components,
distributions=self._distribution_components)
def _load_generation_components(self):
generation_components = []
non_pv_generation_components = self._archetypes['EnergySystemCatalog']['energy_generation_components'][
'non_pv_generation_component']
if non_pv_generation_components is not None:
for non_pv in non_pv_generation_components:
system_id = non_pv['system_id']
name = non_pv['name']
system_type = non_pv['system_type']
model_name = non_pv['model_name']
manufacturer = non_pv['manufacturer']
fuel_type = non_pv['fuel_type']
distribution_systems = non_pv['distribution_systems']
energy_storage_systems = None
if non_pv['energy_storage_systems'] is not None:
storage_component = non_pv['energy_storage_systems']['storage_id']
storage_systems = self._search_storage_equipment(self._load_storage_components(), storage_component)
energy_storage_systems = storage_systems
nominal_heat_output = non_pv['nominal_heat_output']
maximum_heat_output = non_pv['maximum_heat_output']
minimum_heat_output = non_pv['minimum_heat_output']
source_medium = non_pv['source_medium']
supply_medium = non_pv['supply_medium']
heat_efficiency = non_pv['heat_efficiency']
nominal_cooling_output = non_pv['nominal_cooling_output']
maximum_cooling_output = non_pv['maximum_cooling_output']
minimum_cooling_output = non_pv['minimum_cooling_output']
cooling_efficiency = non_pv['cooling_efficiency']
electricity_efficiency = non_pv['electricity_efficiency']
source_temperature = non_pv['source_temperature']
source_mass_flow = non_pv['source_mass_flow']
nominal_electricity_output = non_pv['nominal_electricity_output']
maximum_heat_supply_temperature = non_pv['maximum_heat_supply_temperature']
minimum_heat_supply_temperature = non_pv['minimum_heat_supply_temperature']
maximum_cooling_supply_temperature = non_pv['maximum_cooling_supply_temperature']
minimum_cooling_supply_temperature = non_pv['minimum_cooling_supply_temperature']
heat_output_curve = None
heat_fuel_consumption_curve = None
heat_efficiency_curve = None
cooling_output_curve = None
cooling_fuel_consumption_curve = None
cooling_efficiency_curve = None
if non_pv['heat_output_curve'] is not None:
curve_type = non_pv['heat_output_curve']['curve_type']
dependant_variable = non_pv['heat_output_curve']['dependant_variable']
parameters = non_pv['heat_output_curve']['parameters']
coefficients = list(non_pv['heat_output_curve']['coefficients'].values())
heat_output_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
if non_pv['heat_fuel_consumption_curve'] is not None:
curve_type = non_pv['heat_fuel_consumption_curve']['curve_type']
dependant_variable = non_pv['heat_fuel_consumption_curve']['dependant_variable']
parameters = non_pv['heat_fuel_consumption_curve']['parameters']
coefficients = list(non_pv['heat_fuel_consumption_curve']['coefficients'].values())
heat_fuel_consumption_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
if non_pv['heat_efficiency_curve'] is not None:
curve_type = non_pv['heat_efficiency_curve']['curve_type']
dependant_variable = non_pv['heat_efficiency_curve']['dependant_variable']
parameters = non_pv['heat_efficiency_curve']['parameters']
coefficients = list(non_pv['heat_efficiency_curve']['coefficients'].values())
heat_efficiency_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
if non_pv['cooling_output_curve'] is not None:
curve_type = non_pv['cooling_output_curve']['curve_type']
dependant_variable = non_pv['cooling_output_curve']['dependant_variable']
parameters = non_pv['cooling_output_curve']['parameters']
coefficients = list(non_pv['cooling_output_curve']['coefficients'].values())
cooling_output_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
if non_pv['cooling_fuel_consumption_curve'] is not None:
curve_type = non_pv['cooling_fuel_consumption_curve']['curve_type']
dependant_variable = non_pv['cooling_fuel_consumption_curve']['dependant_variable']
parameters = non_pv['cooling_fuel_consumption_curve']['parameters']
coefficients = list(non_pv['cooling_fuel_consumption_curve']['coefficients'].values())
cooling_fuel_consumption_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
if non_pv['cooling_efficiency_curve'] is not None:
curve_type = non_pv['cooling_efficiency_curve']['curve_type']
dependant_variable = non_pv['cooling_efficiency_curve']['dependant_variable']
parameters = non_pv['cooling_efficiency_curve']['parameters']
coefficients = list(non_pv['cooling_efficiency_curve']['coefficients'].values())
cooling_efficiency_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
dhw = None
if non_pv['domestic_hot_water'] is not None:
if non_pv['domestic_hot_water'] == 'True':
dhw = True
else:
dhw = False
reversible = None
if non_pv['reversible'] is not None:
if non_pv['reversible'] == 'True':
reversible = True
else:
reversible = False
dual_supply = None
if non_pv['simultaneous_heat_cold'] is not None:
if non_pv['simultaneous_heat_cold'] == 'True':
dual_supply = True
else:
dual_supply = False
non_pv_component = NonPvGenerationSystem(system_id=system_id,
name=name,
system_type=system_type,
model_name=model_name,
manufacturer=manufacturer,
fuel_type=fuel_type,
nominal_heat_output=nominal_heat_output,
maximum_heat_output=maximum_heat_output,
minimum_heat_output=minimum_heat_output,
source_medium=source_medium,
supply_medium=supply_medium,
heat_efficiency=heat_efficiency,
nominal_cooling_output=nominal_cooling_output,
maximum_cooling_output=maximum_cooling_output,
minimum_cooling_output=minimum_cooling_output,
cooling_efficiency=cooling_efficiency,
electricity_efficiency=electricity_efficiency,
source_temperature=source_temperature,
source_mass_flow=source_mass_flow,
nominal_electricity_output=nominal_electricity_output,
maximum_heat_supply_temperature=maximum_heat_supply_temperature,
minimum_heat_supply_temperature=minimum_heat_supply_temperature,
maximum_cooling_supply_temperature=maximum_cooling_supply_temperature,
minimum_cooling_supply_temperature=minimum_cooling_supply_temperature,
heat_output_curve=heat_output_curve,
heat_fuel_consumption_curve=heat_fuel_consumption_curve,
heat_efficiency_curve=heat_efficiency_curve,
cooling_output_curve=cooling_output_curve,
cooling_fuel_consumption_curve=cooling_fuel_consumption_curve,
cooling_efficiency_curve=cooling_efficiency_curve,
distribution_systems=distribution_systems,
energy_storage_systems=energy_storage_systems,
domestic_hot_water=dhw,
reversible=reversible,
simultaneous_heat_cold=dual_supply)
generation_components.append(non_pv_component)
pv_generation_components = self._archetypes['EnergySystemCatalog']['energy_generation_components'][
'pv_generation_component']
if pv_generation_components is not None:
for pv in pv_generation_components:
system_id = pv['system_id']
name = pv['name']
system_type = pv['system_type']
model_name = pv['model_name']
manufacturer = pv['manufacturer']
electricity_efficiency = pv['electricity_efficiency']
nominal_electricity_output = pv['nominal_electricity_output']
nominal_ambient_temperature = pv['nominal_ambient_temperature']
nominal_cell_temperature = pv['nominal_cell_temperature']
nominal_radiation = pv['nominal_radiation']
standard_test_condition_cell_temperature = pv['standard_test_condition_cell_temperature']
standard_test_condition_maximum_power = pv['standard_test_condition_maximum_power']
standard_test_condition_radiation = pv['standard_test_condition_radiation']
cell_temperature_coefficient = pv['cell_temperature_coefficient']
width = pv['width']
height = pv['height']
distribution_systems = pv['distribution_systems']
energy_storage_systems = None
if pv['energy_storage_systems'] is not None:
storage_component = pv['energy_storage_systems']['storage_id']
storage_systems = self._search_storage_equipment(self._load_storage_components(), storage_component)
energy_storage_systems = storage_systems
pv_component = PvGenerationSystem(system_id=system_id,
name=name,
system_type=system_type,
model_name=model_name,
manufacturer=manufacturer,
electricity_efficiency=electricity_efficiency,
nominal_electricity_output=nominal_electricity_output,
nominal_ambient_temperature=nominal_ambient_temperature,
nominal_cell_temperature=nominal_cell_temperature,
nominal_radiation=nominal_radiation,
standard_test_condition_cell_temperature=
standard_test_condition_cell_temperature,
standard_test_condition_maximum_power=standard_test_condition_maximum_power,
standard_test_condition_radiation=standard_test_condition_radiation,
cell_temperature_coefficient=cell_temperature_coefficient,
width=width,
height=height,
distribution_systems=distribution_systems,
energy_storage_systems=energy_storage_systems)
generation_components.append(pv_component)
return generation_components
def _load_distribution_equipments(self):
_equipments = []
distribution_systems = self._archetypes['EnergySystemCatalog']['distribution_systems']['distribution_system']
if distribution_systems is not None:
for distribution_system in distribution_systems:
system_id = None
model_name = None
system_type = None
supply_temperature = None
distribution_consumption_fix_flow = None
distribution_consumption_variable_flow = None
heat_losses = None
generation_systems = None
energy_storage_systems = None
emission_systems = None
distribution_equipment = DistributionSystem(system_id=system_id,
model_name=model_name,
system_type=system_type,
supply_temperature=supply_temperature,
distribution_consumption_fix_flow=distribution_consumption_fix_flow,
distribution_consumption_variable_flow=
distribution_consumption_variable_flow,
heat_losses=heat_losses,
generation_systems=generation_systems,
energy_storage_systems=energy_storage_systems,
emission_systems=emission_systems
)
_equipments.append(distribution_equipment)
return _equipments
def _load_emission_equipments(self):
_equipments = []
dissipation_systems = self._archetypes['EnergySystemCatalog']['dissipation_systems']['dissipation_system']
if dissipation_systems is not None:
for dissipation_system in dissipation_systems:
system_id = None
model_name = None
system_type = None
parasitic_energy_consumption = 0
emission_system = EmissionSystem(system_id=system_id,
model_name=model_name,
system_type=system_type,
parasitic_energy_consumption=parasitic_energy_consumption)
_equipments.append(emission_system)
return _equipments
def _load_storage_components(self):
storage_components = []
thermal_storages = self._archetypes['EnergySystemCatalog']['energy_storage_components']['thermalStorages']
for tes in thermal_storages:
storage_id = tes['storage_id']
type_energy_stored = tes['type_energy_stored']
model_name = tes['model_name']
manufacturer = tes['manufacturer']
storage_type = tes['storage_type']
volume = tes['physical_characteristics']['volume']
height = tes['physical_characteristics']['height']
maximum_operating_temperature = tes['maximum_operating_temperature']
materials = self._load_materials()
insulation_material_id = tes['insulation']['material_id']
insulation_material = self._search_material(materials, insulation_material_id)
material_id = tes['physical_characteristics']['material_id']
tank_material = self._search_material(materials, material_id)
thickness = float(tes['insulation']['insulationThickness']) / 100 # from cm to m
insulation_layer = Layer(None, 'insulation', insulation_material, thickness)
thickness = float(tes['physical_characteristics']['tankThickness']) / 100 # from cm to m
tank_layer = Layer(None, 'tank', tank_material, thickness)
media = self._load_media()
media_id = tes['storage_medium']['medium_id']
medium = self._search_media(media, media_id)
layers = [insulation_layer, tank_layer]
nominal_capacity = tes['nominal_capacity']
losses_ratio = tes['losses_ratio']
heating_coil_capacity = tes['heating_coil_capacity']
storage_component = ThermalStorageSystem(storage_id=storage_id,
model_name=model_name,
type_energy_stored=type_energy_stored,
manufacturer=manufacturer,
storage_type=storage_type,
nominal_capacity=nominal_capacity,
losses_ratio=losses_ratio,
volume=volume,
height=height,
layers=layers,
maximum_operating_temperature=maximum_operating_temperature,
storage_medium=medium,
heating_coil_capacity=heating_coil_capacity)
storage_components.append(storage_component)
return storage_components
def _load_systems(self):
base_path = Path(Path(__file__).parent.parent.parent / 'data/energy_systems')
_catalog_systems = []
systems = self._archetypes['EnergySystemCatalog']['systems']['system']
for system in systems:
system_id = system['id']
name = system['name']
demands = system['demands']['demand']
generation_components = system['components']['generation_id']
generation_systems = self._search_generation_equipment(self._load_generation_components(), generation_components)
configuration_schema = None
if system['schema'] is not None:
configuration_schema = Path(base_path / system['schema'])
energy_system = System(system_id=system_id,
name=name,
demand_types=demands,
generation_systems=generation_systems,
distribution_systems=None,
configuration_schema=configuration_schema)
_catalog_systems.append(energy_system)
return _catalog_systems
def _load_archetypes(self):
_system_archetypes = []
system_clusters = self._archetypes['EnergySystemCatalog']['system_archetypes']['system_archetype']
for system_cluster in system_clusters:
name = system_cluster['name']
systems = system_cluster['systems']['system_id']
integer_system_ids = [int(item) for item in systems]
_systems = []
for system_archetype in self._systems:
if int(system_archetype.id) in integer_system_ids:
_systems.append(system_archetype)
_system_archetypes.append(Archetype(name=name, systems=_systems))
return _system_archetypes
def _load_materials(self):
materials = []
_materials = self._archetypes['EnergySystemCatalog']['materials']['material']
for _material in _materials:
material_id = _material['material_id']
name = _material['name']
conductivity = _material['conductivity']
solar_absorptance = _material['solar_absorptance']
thermal_absorptance = _material['thermal_absorptance']
density = _material['density']
specific_heat = _material['specific_heat']
no_mass = _material['no_mass']
visible_absorptance = _material['visible_absorptance']
thermal_resistance = _material['thermal_resistance']
material = Material(material_id,
name,
solar_absorptance=solar_absorptance,
thermal_absorptance=thermal_absorptance,
density=density,
conductivity=conductivity,
thermal_resistance=thermal_resistance,
visible_absorptance=visible_absorptance,
no_mass=no_mass,
specific_heat=specific_heat)
materials.append(material)
return materials
@staticmethod
def _search_material(materials, material_id):
_material = None
for material in materials:
if int(material.id) == int(material_id):
_material = material
break
if _material is None:
raise ValueError(f'Material with the id = [{material_id}] not found in catalog ')
return _material
def _load_media(self):
media = []
_media = [self._archetypes['EnergySystemCatalog']['media']['medium']]
for _medium in _media:
medium_id = _medium['medium_id']
density = _medium['density']
name = _medium['name']
conductivity = _medium['conductivity']
solar_absorptance = _medium['solar_absorptance']
thermal_absorptance = _medium['thermal_absorptance']
specific_heat = _medium['specific_heat']
no_mass = _medium['no_mass']
visible_absorptance = _medium['visible_absorptance']
thermal_resistance = _medium['thermal_resistance']
medium = Material(material_id=medium_id,
name=name,
solar_absorptance=solar_absorptance,
thermal_absorptance=thermal_absorptance,
visible_absorptance=visible_absorptance,
no_mass=no_mass,
thermal_resistance=thermal_resistance,
conductivity=conductivity,
density=density,
specific_heat=specific_heat)
media.append(medium)
return media
@staticmethod
def _search_media(media, medium_id):
_medium = None
for medium in media:
if int(medium.id) == int(medium_id):
_medium = medium
break
if _medium is None:
raise ValueError(f'media with the id = [{medium_id}] not found in catalog ')
return _medium
@staticmethod
def _search_generation_equipment(generation_systems, generation_id):
_generation_systems = []
if isinstance(generation_id, list):
integer_ids = [int(item) for item in generation_id]
for generation in generation_systems:
if int(generation.id) in integer_ids:
_generation_systems.append(generation)
else:
integer_id = int(generation_id)
for generation in generation_systems:
if int(generation.id) == integer_id:
_generation_systems.append(generation)
if len(_generation_systems) == 0:
_generation_systems = None
raise ValueError(f'The system with the following id is not found in catalog [{generation_id}]')
return _generation_systems
@staticmethod
def _search_storage_equipment(storage_systems, storage_id):
_storage_systems = []
for storage in storage_systems:
if storage.id in storage_id:
_storage_systems.append(storage)
if len(_storage_systems) == 0:
_storage_systems = None
raise ValueError(f'The system with the following id is not found in catalog [{storage_id}]')
return _storage_systems
def names(self, category=None):
"""
Get the catalog elements names
:parm: optional category filter
"""
if category is None:
_names = {'archetypes': [], 'systems': [], 'generation_equipments': [], 'storage_equipments': []}
for archetype in self._content.archetypes:
_names['archetypes'].append(archetype.name)
for system in self._content.systems:
_names['systems'].append(system.name)
for equipment in self._content.generation_equipments:
_names['generation_equipments'].append(equipment.name)
else:
_names = {category: []}
if category.lower() == 'archetypes':
for archetype in self._content.archetypes:
_names[category].append(archetype.name)
elif category.lower() == 'systems':
for system in self._content.systems:
_names[category].append(system.name)
elif category.lower() == 'generation_equipments':
for system in self._content.generation_equipments:
_names[category].append(system.name)
else:
raise ValueError(f'Unknown category [{category}]')
return _names
def entries(self, category=None):
"""
Get the catalog elements
:parm: optional category filter
"""
if category is None:
return self._content
if category.lower() == 'archetypes':
return self._content.archetypes
if category.lower() == 'systems':
return self._content.systems
if category.lower() == 'generation_equipments':
return self._content.generation_equipments
raise ValueError(f'Unknown category [{category}]')
def get_entry(self, name):
"""
Get one catalog element by names
:parm: entry name
"""
for entry in self._content.archetypes:
if entry.name.lower() == name.lower():
return entry
for entry in self._content.systems:
if entry.name.lower() == name.lower():
return entry
for entry in self._content.generation_equipments:
if entry.name.lower() == name.lower():
return entry
raise IndexError(f"{name} doesn't exists in the catalog")

View File

@ -10,6 +10,7 @@ from typing import TypeVar
from hub.catalog_factories.energy_systems.montreal_custom_catalog import MontrealCustomCatalog from hub.catalog_factories.energy_systems.montreal_custom_catalog import MontrealCustomCatalog
from hub.catalog_factories.energy_systems.montreal_future_system_catalogue import MontrealFutureSystemCatalogue from hub.catalog_factories.energy_systems.montreal_future_system_catalogue import MontrealFutureSystemCatalogue
from hub.catalog_factories.energy_systems.palma_system_catalgue import PalmaSystemCatalogue
from hub.helpers.utils import validate_import_export_type from hub.helpers.utils import validate_import_export_type
Catalog = TypeVar('Catalog') Catalog = TypeVar('Catalog')
@ -40,6 +41,13 @@ class EnergySystemsCatalogFactory:
""" """
return MontrealFutureSystemCatalogue(self._path) return MontrealFutureSystemCatalogue(self._path)
@property
def _palma(self):
"""
Retrieve Palma catalog
"""
return PalmaSystemCatalogue(self._path)
@property @property
def catalog(self) -> Catalog: def catalog(self) -> Catalog:
""" """

View File

@ -0,0 +1,227 @@
"""
Palma usage catalog
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Cecilia Pérez cperez@irec.cat
"""
import json
import urllib.request
from pathlib import Path
import xmltodict
import hub.helpers.constants as cte
from hub.catalog_factories.catalog import Catalog
from hub.catalog_factories.data_models.usages.appliances import Appliances
from hub.catalog_factories.data_models.usages.content import Content
from hub.catalog_factories.data_models.usages.lighting import Lighting
from hub.catalog_factories.data_models.usages.occupancy import Occupancy
from hub.catalog_factories.data_models.usages.domestic_hot_water import DomesticHotWater
from hub.catalog_factories.data_models.usages.schedule import Schedule
from hub.catalog_factories.data_models.usages.thermal_control import ThermalControl
from hub.catalog_factories.data_models.usages.usage import Usage
from hub.catalog_factories.usage.usage_helper import UsageHelper
class PalmaCatalog(Catalog):
"""
Palma catalog class
"""
def __init__(self, path):
self._schedules_path = Path(path / 'palma_schedules.json').resolve()
self._space_types_path = Path(path / 'palma_space_types.json').resolve()
self._space_compliance_path = Path(path / 'palma_space_compliance.json').resolve()
self._content = None
self._schedules = {}
self._load_schedules()
self._content = Content(self._load_archetypes())
@staticmethod
def _extract_schedule(raw):
nrcan_schedule_type = raw['category']
if 'Heating' in raw['name'] and 'Water' not in raw['name']:
nrcan_schedule_type = f'{nrcan_schedule_type} Heating'
elif 'Cooling' in raw['name']:
nrcan_schedule_type = f'{nrcan_schedule_type} Cooling'
if nrcan_schedule_type not in UsageHelper().nrcan_schedule_type_to_hub_schedule_type:
return None
hub_type = UsageHelper().nrcan_schedule_type_to_hub_schedule_type[nrcan_schedule_type]
data_type = UsageHelper().nrcan_data_type_to_hub_data_type[raw['units']]
time_step = UsageHelper().nrcan_time_to_hub_time[raw['type']]
# nrcan only uses daily range for the schedules
time_range = cte.DAY
day_types = UsageHelper().nrcan_day_type_to_hub_days[raw['day_types']]
return Schedule(hub_type, raw['values'], data_type, time_step, time_range, day_types)
def _load_schedules(self):
_schedule_types = []
with open(self._schedules_path, 'r') as f:
schedules_type = json.load(f)
for schedule_type in schedules_type['tables']['schedules']['table']:
schedule = PalmaCatalog._extract_schedule(schedule_type)
if schedule_type['name'] not in _schedule_types:
_schedule_types.append(schedule_type['name'])
if schedule is not None:
self._schedules[schedule_type['name']] = [schedule]
else:
if schedule is not None:
_schedules = self._schedules[schedule_type['name']]
_schedules.append(schedule)
self._schedules[schedule_type['name']] = _schedules
def _get_schedules(self, name):
schedule = None
if name in self._schedules:
schedule = self._schedules[name]
return schedule
def _load_archetypes(self):
usages = []
with open(self._space_types_path, 'r') as f:
space_types = json.load(f)['tables']['space_types']['table']
space_types = [st for st in space_types if st['space_type'] == 'WholeBuilding']
with open(self._space_compliance_path, 'r') as f:
space_types_compliance = json.load(f)['tables']['space_compliance']['table']
space_types_compliance = [st for st in space_types_compliance if st['space_type'] == 'WholeBuilding']
space_types_dictionary = {}
for space_type in space_types_compliance:
usage_type = space_type['building_type']
# people/m2
occupancy_density = space_type['occupancy_per_area_people_per_m2']
# W/m2
lighting_density = space_type['lighting_per_area_w_per_m2']
# W/m2
appliances_density = space_type['electric_equipment_per_area_w_per_m2']
# peak flow in gallons/h/m2
domestic_hot_water_peak_flow = (
space_type['service_water_heating_peak_flow_per_area'] *
cte.GALLONS_TO_QUBIC_METERS / cte.HOUR_TO_SECONDS
)
space_types_dictionary[usage_type] = {'occupancy_per_area': occupancy_density,
'lighting_per_area': lighting_density,
'electric_equipment_per_area': appliances_density,
'service_water_heating_peak_flow_per_area': domestic_hot_water_peak_flow
}
for space_type in space_types:
usage_type = space_type['building_type']
space_type_compliance = space_types_dictionary[usage_type]
occupancy_density = space_type_compliance['occupancy_per_area']
sensible_convective_internal_gain = space_type['sensible_convective_internal_gain']
sensible_radiative_internal_gain = space_type['sensible_radiative_internal_gain']
latent_internal_gain = space_type['latent_internal_gain']
lighting_density = space_type_compliance['lighting_per_area']
appliances_density = space_type_compliance['electric_equipment_per_area']
domestic_hot_water_peak_flow = space_type_compliance['service_water_heating_peak_flow_per_area']
occupancy_schedule_name = space_type['occupancy_schedule']
lighting_schedule_name = space_type['lighting_schedule']
appliance_schedule_name = space_type['electric_equipment_schedule']
hvac_schedule_name = space_type['exhaust_schedule']
if hvac_schedule_name and 'FAN' in hvac_schedule_name:
hvac_schedule_name = hvac_schedule_name.replace('FAN', 'Fan')
if not hvac_schedule_name:
hvac_schedule_name = 'default_HVAC_schedule'
heating_setpoint_schedule_name = space_type['heating_setpoint_schedule']
cooling_setpoint_schedule_name = space_type['cooling_setpoint_schedule']
domestic_hot_water_schedule_name = space_type['service_water_heating_schedule']
occupancy_schedule = self._get_schedules(occupancy_schedule_name)
lighting_schedule = self._get_schedules(lighting_schedule_name)
appliance_schedule = self._get_schedules(appliance_schedule_name)
heating_schedule = self._get_schedules(heating_setpoint_schedule_name)
cooling_schedule = self._get_schedules(cooling_setpoint_schedule_name)
hvac_availability = self._get_schedules(hvac_schedule_name)
domestic_hot_water_load_schedule = self._get_schedules(domestic_hot_water_schedule_name)
# ACH -> 1/s
mechanical_air_change = space_type['ventilation_air_changes'] / cte.HOUR_TO_SECONDS
# cfm/ft2 to m3/m2.s
ventilation_rate = space_type['ventilation_per_area'] / (cte.METERS_TO_FEET * cte.MINUTES_TO_SECONDS)
# cfm/person to m3/m2.s
ventilation_rate += space_type['ventilation_per_person'] / (
pow(cte.METERS_TO_FEET, 3) * cte.MINUTES_TO_SECONDS
) * occupancy_density
lighting_radiative_fraction = space_type['lighting_fraction_radiant']
lighting_convective_fraction = 0
if lighting_radiative_fraction is not None:
lighting_convective_fraction = 1 - lighting_radiative_fraction
lighting_latent_fraction = 0
appliances_radiative_fraction = space_type['electric_equipment_fraction_radiant']
appliances_latent_fraction = space_type['electric_equipment_fraction_latent']
appliances_convective_fraction = 0
if appliances_radiative_fraction is not None and appliances_latent_fraction is not None:
appliances_convective_fraction = 1 - appliances_radiative_fraction - appliances_latent_fraction
domestic_hot_water_service_temperature = space_type['service_water_heating_target_temperature']
occupancy = Occupancy(occupancy_density,
sensible_convective_internal_gain,
sensible_radiative_internal_gain,
latent_internal_gain,
occupancy_schedule)
lighting = Lighting(lighting_density,
lighting_convective_fraction,
lighting_radiative_fraction,
lighting_latent_fraction,
lighting_schedule)
appliances = Appliances(appliances_density,
appliances_convective_fraction,
appliances_radiative_fraction,
appliances_latent_fraction,
appliance_schedule)
thermal_control = ThermalControl(None,
None,
None,
hvac_availability,
heating_schedule,
cooling_schedule)
domestic_hot_water = DomesticHotWater(None,
domestic_hot_water_peak_flow,
domestic_hot_water_service_temperature,
domestic_hot_water_load_schedule)
hours_day = None
days_year = None
usages.append(Usage(usage_type,
hours_day,
days_year,
mechanical_air_change,
ventilation_rate,
occupancy,
lighting,
appliances,
thermal_control,
domestic_hot_water))
return usages
def names(self, category=None):
"""
Get the catalog elements names
:parm: for usage catalog category filter does nothing as there is only one category (usages)
"""
_names = {'usages': []}
for usage in self._content.usages:
_names['usages'].append(usage.name)
return _names
def entries(self, category=None):
"""
Get the catalog elements
:parm: for usage catalog category filter does nothing as there is only one category (usages)
"""
return self._content
def get_entry(self, name):
"""
Get one catalog element by names
:parm: entry name
"""
for usage in self._content.usages:
if usage.name.lower() == name.lower():
return usage
raise IndexError(f"{name} doesn't exists in the catalog")

View File

@ -11,6 +11,7 @@ from typing import TypeVar
from hub.catalog_factories.usage.comnet_catalog import ComnetCatalog from hub.catalog_factories.usage.comnet_catalog import ComnetCatalog
from hub.catalog_factories.usage.nrcan_catalog import NrcanCatalog from hub.catalog_factories.usage.nrcan_catalog import NrcanCatalog
from hub.catalog_factories.usage.eilat_catalog import EilatCatalog from hub.catalog_factories.usage.eilat_catalog import EilatCatalog
from hub.catalog_factories.usage.palma_catalog import PalmaCatalog
from hub.helpers.utils import validate_import_export_type from hub.helpers.utils import validate_import_export_type
Catalog = TypeVar('Catalog') Catalog = TypeVar('Catalog')
@ -42,6 +43,13 @@ class UsageCatalogFactory:
# nrcan retrieves the data directly from github # nrcan retrieves the data directly from github
return NrcanCatalog(self._path) return NrcanCatalog(self._path)
@property
def _palma(self):
"""
Retrieve Palma catalog
"""
return PalmaCatalog(self._path)
@property @property
def _eilat(self): def _eilat(self):
""" """

View File

@ -292,7 +292,10 @@ class Building(CityObject):
""" """
if self._storeys_above_ground is None: if self._storeys_above_ground is None:
if self.eave_height is not None and self.average_storey_height is not None: if self.eave_height is not None and self.average_storey_height is not None:
self._storeys_above_ground = int(self.eave_height / self.average_storey_height) storeys_above_ground = int(self.eave_height / self.average_storey_height)
if storeys_above_ground == 0:
storeys_above_ground += 1
self._storeys_above_ground = storeys_above_ground
return self._storeys_above_ground return self._storeys_above_ground
@storeys_above_ground.setter @storeys_above_ground.setter
@ -736,41 +739,42 @@ class Building(CityObject):
return self._distribution_systems_electrical_consumption return self._distribution_systems_electrical_consumption
for energy_system in self.energy_systems: for energy_system in self.energy_systems:
distribution_systems = energy_system.distribution_systems distribution_systems = energy_system.distribution_systems
for distribution_system in distribution_systems: if distribution_systems is not None:
emission_systems = distribution_system.emission_systems for distribution_system in distribution_systems:
parasitic_energy_consumption = 0 emission_systems = distribution_system.emission_systems
if emission_systems is not None: parasitic_energy_consumption = 0
for emission_system in emission_systems: if emission_systems is not None:
parasitic_energy_consumption += emission_system.parasitic_energy_consumption for emission_system in emission_systems:
consumption_variable_flow = distribution_system.distribution_consumption_variable_flow parasitic_energy_consumption += emission_system.parasitic_energy_consumption
for demand_type in energy_system.demand_types: consumption_variable_flow = distribution_system.distribution_consumption_variable_flow
if demand_type.lower() == cte.HEATING.lower(): for demand_type in energy_system.demand_types:
if _peak_load_type == cte.HEATING.lower(): if demand_type.lower() == cte.HEATING.lower():
_consumption_fix_flow = distribution_system.distribution_consumption_fix_flow if _peak_load_type == cte.HEATING.lower():
for heating_demand_key in self.heating_demand: _consumption_fix_flow = distribution_system.distribution_consumption_fix_flow
_consumption = [0]*len(self.heating_demand[heating_demand_key]) for heating_demand_key in self.heating_demand:
_demand = self.heating_demand[heating_demand_key] _consumption = [0]*len(self.heating_demand[heating_demand_key])
for i, _ in enumerate(_consumption): _demand = self.heating_demand[heating_demand_key]
_consumption[i] += (parasitic_energy_consumption + consumption_variable_flow) * _demand[i] for i, _ in enumerate(_consumption):
self._distribution_systems_electrical_consumption[heating_demand_key] = _consumption _consumption[i] += (parasitic_energy_consumption + consumption_variable_flow) * _demand[i]
if demand_type.lower() == cte.COOLING.lower(): self._distribution_systems_electrical_consumption[heating_demand_key] = _consumption
if _peak_load_type == cte.COOLING.lower(): if demand_type.lower() == cte.COOLING.lower():
_consumption_fix_flow = distribution_system.distribution_consumption_fix_flow if _peak_load_type == cte.COOLING.lower():
for demand_key in self.cooling_demand: _consumption_fix_flow = distribution_system.distribution_consumption_fix_flow
_consumption = self._distribution_systems_electrical_consumption[demand_key] for demand_key in self.cooling_demand:
_demand = self.cooling_demand[demand_key] _consumption = self._distribution_systems_electrical_consumption[demand_key]
for i, _ in enumerate(_consumption): _demand = self.cooling_demand[demand_key]
_consumption[i] += (parasitic_energy_consumption + consumption_variable_flow) * _demand[i] for i, _ in enumerate(_consumption):
self._distribution_systems_electrical_consumption[demand_key] = _consumption _consumption[i] += (parasitic_energy_consumption + consumption_variable_flow) * _demand[i]
self._distribution_systems_electrical_consumption[demand_key] = _consumption
for key, item in self._distribution_systems_electrical_consumption.items(): for key, item in self._distribution_systems_electrical_consumption.items():
for i in range(0, len(item)): for i in range(0, len(item)):
_working_hours_value = _working_hours[key] _working_hours_value = _working_hours[key]
if len(item) == 12: if len(item) == 12:
_working_hours_value = _working_hours[key][i] _working_hours_value = _working_hours[key][i]
self._distribution_systems_electrical_consumption[key][i] += ( self._distribution_systems_electrical_consumption[key][i] += (
_peak_load * _consumption_fix_flow * _working_hours_value * cte.WATTS_HOUR_TO_JULES _peak_load * _consumption_fix_flow * _working_hours_value * cte.WATTS_HOUR_TO_JULES
) )
return self._distribution_systems_electrical_consumption return self._distribution_systems_electrical_consumption

View File

@ -135,6 +135,8 @@ class InternalZone:
if self.thermal_archetype is None: if self.thermal_archetype is None:
return None # there are no archetype return None # there are no archetype
_number_of_storeys = int(self.volume / self.area / self.thermal_archetype.average_storey_height) _number_of_storeys = int(self.volume / self.area / self.thermal_archetype.average_storey_height)
if _number_of_storeys == 0:
_number_of_storeys = 1
_thermal_zone = ThermalZone(_thermal_boundaries, self, self.volume, self.area, _number_of_storeys) _thermal_zone = ThermalZone(_thermal_boundaries, self, self.volume, self.area, _number_of_storeys)
for thermal_boundary in _thermal_zone.thermal_boundaries: for thermal_boundary in _thermal_zone.thermal_boundaries:
thermal_boundary.thermal_zones = [_thermal_zone] thermal_boundary.thermal_zones = [_thermal_zone]

View File

@ -180,7 +180,7 @@ class Surface:
@property @property
def global_irradiance(self) -> dict: def global_irradiance(self) -> dict:
""" """
Get global irradiance on surface in J/m2 Get global irradiance on surface in W/m2
:return: dict :return: dict
""" """
return self._global_irradiance return self._global_irradiance
@ -188,7 +188,7 @@ class Surface:
@global_irradiance.setter @global_irradiance.setter
def global_irradiance(self, value): def global_irradiance(self, value):
""" """
Set global irradiance on surface in J/m2 Set global irradiance on surface in W/m2
:param value: dict :param value: dict
""" """
self._global_irradiance = value self._global_irradiance = value
@ -390,7 +390,7 @@ class Surface:
@property @property
def global_irradiance_tilted(self) -> dict: def global_irradiance_tilted(self) -> dict:
""" """
Get global irradiance on a tilted surface in J/m2 Get global irradiance on a tilted surface in W/m2
:return: dict :return: dict
""" """
return self._global_irradiance_tilted return self._global_irradiance_tilted
@ -398,7 +398,7 @@ class Surface:
@global_irradiance_tilted.setter @global_irradiance_tilted.setter
def global_irradiance_tilted(self, value): def global_irradiance_tilted(self, value):
""" """
Set global irradiance on a tilted surface in J/m2 Set global irradiance on a tilted surface in W/m2
:param value: dict :param value: dict
""" """
self._global_irradiance_tilted = value self._global_irradiance_tilted = value

View File

@ -20,6 +20,8 @@ class ThermalArchetype:
self._indirect_heated_ratio = None self._indirect_heated_ratio = None
self._infiltration_rate_for_ventilation_system_off = None self._infiltration_rate_for_ventilation_system_off = None
self._infiltration_rate_for_ventilation_system_on = None self._infiltration_rate_for_ventilation_system_on = None
self._infiltration_rate_area_for_ventilation_system_off=None
self._infiltration_rate_area_for_ventilation_system_on=None
@property @property
def constructions(self) -> [Construction]: def constructions(self) -> [Construction]:
@ -132,3 +134,35 @@ class ThermalArchetype:
:param value: float :param value: float
""" """
self._infiltration_rate_for_ventilation_system_on = value self._infiltration_rate_for_ventilation_system_on = value
@property
def infiltration_rate_area_for_ventilation_system_off(self):
"""
Get infiltration rate for ventilation system off in l/s/m2
:return: float
"""
return self._infiltration_rate_for_ventilation_system_off
@infiltration_rate_area_for_ventilation_system_off.setter
def infiltration_rate_area_for_ventilation_system_off(self, value):
"""
Set infiltration rate for ventilation system off in l/s/m2
:param value: float
"""
self._infiltration_rate_for_ventilation_system_off = value
@property
def infiltration_rate_area_for_ventilation_system_on(self):
"""
Get infiltration rate for ventilation system on in l/s/m2
:return: float
"""
return self._infiltration_rate_for_ventilation_system_on
@infiltration_rate_area_for_ventilation_system_on.setter
def infiltration_rate_area_for_ventilation_system_on(self, value):
"""
Set infiltration rate for ventilation system on in l/s/m2
:param value: float
"""
self._infiltration_rate_for_ventilation_system_on = value

View File

@ -44,6 +44,8 @@ class ThermalZone:
self._indirectly_heated_area_ratio = None self._indirectly_heated_area_ratio = None
self._infiltration_rate_system_on = None self._infiltration_rate_system_on = None
self._infiltration_rate_system_off = None self._infiltration_rate_system_off = None
self._infiltration_rate_area_system_on = None
self._infiltration_rate_area_system_off = None
self._volume = volume self._volume = volume
self._ordinate_number = None self._ordinate_number = None
self._view_factors_matrix = None self._view_factors_matrix = None
@ -166,6 +168,24 @@ class ThermalZone:
self._infiltration_rate_system_off = self._parent_internal_zone.thermal_archetype.infiltration_rate_for_ventilation_system_off self._infiltration_rate_system_off = self._parent_internal_zone.thermal_archetype.infiltration_rate_for_ventilation_system_off
return self._infiltration_rate_system_off return self._infiltration_rate_system_off
@property
def infiltration_rate_area_system_on(self):
"""
Get thermal zone infiltration rate system on in air changes per second (1/s)
:return: None or float
"""
self._infiltration_rate_area_system_on = self._parent_internal_zone.thermal_archetype.infiltration_rate_area_for_ventilation_system_on
return self._infiltration_rate_area_system_on
@property
def infiltration_rate_area_system_off(self):
"""
Get thermal zone infiltration rate system off in air changes per second (1/s)
:return: None or float
"""
self._infiltration_rate_area_system_off = self._parent_internal_zone.thermal_archetype.infiltration_rate_area_for_ventilation_system_off
return self._infiltration_rate_area_system_off
@property @property
def volume(self): def volume(self):
""" """

View File

@ -22,10 +22,11 @@ class PvGenerationSystem(GenerationSystem):
self._nominal_radiation = None self._nominal_radiation = None
self._standard_test_condition_cell_temperature = None self._standard_test_condition_cell_temperature = None
self._standard_test_condition_maximum_power = None self._standard_test_condition_maximum_power = None
self._standard_test_condition_radiation = None
self._cell_temperature_coefficient = None self._cell_temperature_coefficient = None
self._width = None self._width = None
self._height = None self._height = None
self._electricity_power = None self._electricity_power_output = {}
self._tilt_angle = None self._tilt_angle = None
self._surface_azimuth = None self._surface_azimuth = None
self._solar_altitude_angle = None self._solar_altitude_angle = None
@ -143,6 +144,22 @@ class PvGenerationSystem(GenerationSystem):
""" """
self._standard_test_condition_maximum_power = value self._standard_test_condition_maximum_power = value
@property
def standard_test_condition_radiation(self):
"""
Get standard test condition radiation in W/m2
:return: float
"""
return self._standard_test_condition_radiation
@standard_test_condition_radiation.setter
def standard_test_condition_radiation(self, value):
"""
Set standard test condition radiation in W/m2
:param value: float
"""
self._standard_test_condition_radiation = value
@property @property
def cell_temperature_coefficient(self): def cell_temperature_coefficient(self):
""" """
@ -192,20 +209,20 @@ class PvGenerationSystem(GenerationSystem):
self._height = value self._height = value
@property @property
def electricity_power(self): def electricity_power_output(self):
""" """
Get electricity_power in W Get electricity_power in W
:return: float :return: float
""" """
return self._electricity_power return self._electricity_power_output
@electricity_power.setter @electricity_power_output.setter
def electricity_power(self, value): def electricity_power_output(self, value):
""" """
Set electricity_power in W Set electricity_power in W
:param value: float :param value: float
""" """
self._electricity_power = value self._electricity_power_output = value
@property @property
def tilt_angle(self): def tilt_angle(self):

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,774 @@
{
"archetypes": [
{
"function": "Large multifamily building",
"period_of_construction": "2021_2050",
"climate_zone": "B3",
"average_storey_height": 3.57,
"thermal_capacity": 83.018,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.0005,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT",
"transparent_surface_name": "PA1_PA2_2021_2050_WIN1",
"transparent_ratio": {
"north": "60",
"east": "5",
"south": "60",
"west": "5"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_ROOF",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOOR"
},
"GroundWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT"
},
"GroundRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOORINT"
}
}
},
{
"function": "Medium multifamily building",
"period_of_construction": "2021_2050",
"climate_zone": "B3",
"average_storey_height": 3.57,
"thermal_capacity": 83.018,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.0005,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT",
"transparent_surface_name": "PA1_PA2_2021_2050_WIN1",
"transparent_ratio": {
"north": "60",
"east": "5",
"south": "60",
"west": "5"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_ROOF",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOOR"
},
"GroundWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT"
},
"GroundRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOORINT"
}
}
},
{
"function": "Small multifamily building",
"period_of_construction": "2021_2050",
"climate_zone": "B3",
"average_storey_height": 3.57,
"thermal_capacity": 83.018,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.0005,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT",
"transparent_surface_name": "PA1_PA2_2021_2050_WIN1",
"transparent_ratio": {
"north": "60",
"east": "5",
"south": "60",
"west": "5"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_ROOF",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOOR"
},
"GroundWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT"
},
"GroundRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOORINT"
}
}
},
{
"function": "Single-family building",
"period_of_construction": "2021_2050",
"climate_zone": "B3",
"average_storey_height": 3.57,
"thermal_capacity": 83.018,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.0005,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT",
"transparent_surface_name": "PA1_PA2_2021_2050_WIN1",
"transparent_ratio": {
"north": "60",
"east": "5",
"south": "60",
"west": "5"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_ROOF",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOOR"
},
"GroundWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT"
},
"GroundRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOORINT"
}
}
},
{
"function": "Large multifamily building",
"period_of_construction": "1961_1980",
"climate_zone": "B3",
"average_storey_height": 3.57,
"thermal_capacity": 3000,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.0045,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_1961_1980_FACEXT1",
"transparent_surface_name": "PA1_PA2_1961_1980_WIN1",
"transparent_ratio": {
"north": "60",
"east": "60",
"south": "60",
"west": "60"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_1961_1980_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_1961_1980_FLOOR1"
},
"GroundWall": {
"opaque_surface_name": "PA1_PA2_1961_1980_FACEXT1"
},
"GroundRoofCeiling": {
"opaque_surface_name": "PA1_PA2_1961_1980_FLOOR4"
}
}
},
{
"function": "Large multifamily building",
"period_of_construction": "1981_2007",
"climate_zone": "B3",
"average_storey_height": 3.2,
"thermal_capacity": 3179,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.003,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "E_1981_2007_FACEXT1",
"transparent_surface_name": "E_1981_2007_WIN1",
"transparent_ratio": {
"north": "45",
"east": "45",
"south": "45",
"west": "45"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "E_1981_2007_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "E_1981_2007_FLOORGR1"
}
}
},
{
"function": "Medium multifamily building",
"period_of_construction": "1800_1900",
"climate_zone": "B3",
"average_storey_height": 4.39,
"thermal_capacity": 3330,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.006,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "A_B1900_FACEXT1",
"transparent_surface_name": "A_B1900_WIN2",
"transparent_ratio": {
"north": "20",
"east": "20",
"south": "20",
"west": "20"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "A_B1900_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "A_B1900_FLOORGR1"
}
}
},
{
"function": "Medium multifamily building",
"period_of_construction": "1901_1940",
"climate_zone": "B3",
"average_storey_height": 3.65,
"thermal_capacity": 3420,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.006,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "B_1901_1940_FACEXT1",
"transparent_surface_name": "B_1901_1940_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "B_1901_1940_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "B_1901_1940_FLOORGR1"
}
}
},
{
"function": "Medium multifamily building",
"period_of_construction": "1941_1960",
"climate_zone": "B3",
"average_storey_height": 3.6,
"thermal_capacity": 3000,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.0055,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": " C_1941_1960_FACEXT1",
"transparent_surface_name": "C_1941_1960_WIN1",
"transparent_ratio": {
"north": "30",
"east": "30",
"south": "30",
"west": "30"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "C_1941_1960_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "C_1941_1960_FLOORGR1"
}
}
},
{
"function": "Medium multifamily building",
"period_of_construction": "1961_1980",
"climate_zone": "B3",
"average_storey_height": 4.5,
"thermal_capacity": 3540,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.0045,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_1961_1980_FACEXT1",
"transparent_surface_name": "PA1_PA2_1961_1980_WIN1",
"transparent_ratio": {
"north": "55",
"east": "55",
"south": "55",
"west": "55"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_1961_1980_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_1961_1980_FLOOR1"
}
}
},
{
"function": "Medium multifamily building",
"period_of_construction": "1981_2007",
"climate_zone": "B3",
"average_storey_height": 3.2,
"thermal_capacity": 3179,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.003,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "E_1981_2007_FACEXT1",
"transparent_surface_name": "E_1981_2007_WIN1",
"transparent_ratio": {
"north": "45",
"east": "45",
"south": "45",
"west": "45"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "E_1981_2007_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "E_1981_2007_FLOORGR1"
}
}
},
{
"function": "Medium multifamily building",
"period_of_construction": "2008_2014",
"climate_zone": "B3",
"average_storey_height": 2.75,
"thermal_capacity": 3290,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.0015,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "F_2008_2014_FACEXT1",
"transparent_surface_name": "F_2008_2014_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "F_2008_2014_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "F_2008_2014_FLOORGR1"
}
}
},
{
"function": "Small multifamily building",
"period_of_construction": "1800_1980",
"climate_zone": "B3",
"average_storey_height": 3.8,
"thermal_capacity": 3527.9,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.006,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA3_PA4_1901_1940_FACEXT1",
"transparent_surface_name": "PA3_PA4_1901_1940_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA3_PA4_1901_1940_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA3_PA4_1901_1940_FLOORGR1"
}
}
},
{
"function": "Small multifamily building",
"period_of_construction": "1981_2007",
"climate_zone": "B3",
"average_storey_height": 3.2,
"thermal_capacity": 3179,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.003,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "E_1981_2007_FACEXT1",
"transparent_surface_name": "E_1981_2007_WIN1",
"transparent_ratio": {
"north": "45",
"east": "45",
"south": "45",
"west": "45"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "E_1981_2007_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "E_1981_2007_FLOORGR1"
}
}
},
{
"function": "Small multifamily building",
"period_of_construction": "2008_2014",
"climate_zone": "B3",
"average_storey_height": 2.75,
"thermal_capacity": 3290,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.0015,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "F_2008_2014_FACEXT1",
"transparent_surface_name": "F_2008_2014_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "F_2008_2014_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "F_2008_2014_FLOORGR1"
}
}
},
{
"function": "Small multifamily building",
"period_of_construction": "2015_2019",
"climate_zone": "B3",
"average_storey_height": 2.75,
"thermal_capacity": 3290,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.0005,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "G_2015_2019_FACEXT1",
"transparent_surface_name": "G_2015_2019_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "G_2015_2019_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "G_2015_2019_FLOORGR1"
}
}
},
{
"function": "Single-family building",
"period_of_construction": "1800_1980",
"climate_zone": "B3",
"average_storey_height": 3.68,
"thermal_capacity": 4400,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.006,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA3_PA4_1901_1940_FACEXT1",
"transparent_surface_name": "PA3_PA4_1901_1940_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA3_PA4_1901_1940_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA3_PA4_1901_1940_FLOORGR1"
}
}
},
{
"function": "Single-family building",
"period_of_construction": "1981_2007",
"climate_zone": "B3",
"average_storey_height": 3.2,
"thermal_capacity": 3179,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.003,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "E_1981_2007_FACEXT1",
"transparent_surface_name": "E_1981_2007_WIN1",
"transparent_ratio": {
"north": "45",
"east": "45",
"south": "45",
"west": "45"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "E_1981_2007_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "E_1981_2007_FLOORGR1"
}
}
},
{
"function": "Single-family building",
"period_of_construction": "2008_2014",
"climate_zone": "B3",
"average_storey_height": 3.75,
"thermal_capacity": 3200,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.0015,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "F_2008_2014_FACEXT1",
"transparent_surface_name": "F_2008_2014_WIN1",
"transparent_ratio": {
"north": "60",
"east": "60",
"south": "60",
"west": "60"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "F_2008_2014_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "F_2008_2014_FLOORGR1"
}
}
},
{
"function": "Single-family building",
"period_of_construction": "2015_2019",
"climate_zone": "B3",
"average_storey_height": 3.75,
"thermal_capacity": 3200,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.0005,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "G_2015_2019_FACEXT1",
"transparent_surface_name": "G_2015_2019_WIN1",
"transparent_ratio": {
"north": "60",
"east": "60",
"south": "60",
"west": "60"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "G_2015_2019_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "G_2015_2019_FLOORGR1"
}
}
}
]
}

View File

@ -0,0 +1,774 @@
{
"archetypes": [
{
"function": "Large multifamily building",
"period_of_construction": "2021_2050",
"climate_zone": "B3",
"average_storey_height": 3.57,
"thermal_capacity": 83.018,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT",
"transparent_surface_name": "PA1_PA2_2021_2050_WIN1",
"transparent_ratio": {
"north": "60",
"east": "5",
"south": "60",
"west": "5"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_ROOF",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOOR"
},
"GroundWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT"
},
"GroundRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOORINT"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Medium multifamily building",
"period_of_construction": "2021_2050",
"climate_zone": "B3",
"average_storey_height": 3.57,
"thermal_capacity": 83.018,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT",
"transparent_surface_name": "PA1_PA2_2021_2050_WIN1",
"transparent_ratio": {
"north": "60",
"east": "5",
"south": "60",
"west": "5"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_ROOF",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOOR"
},
"GroundWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT"
},
"GroundRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOORINT"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Small multifamily building",
"period_of_construction": "2021_2050",
"climate_zone": "B3",
"average_storey_height": 3.57,
"thermal_capacity": 83.018,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT",
"transparent_surface_name": "PA1_PA2_2021_2050_WIN1",
"transparent_ratio": {
"north": "60",
"east": "5",
"south": "60",
"west": "5"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_ROOF",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOOR"
},
"GroundWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT"
},
"GroundRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOORINT"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Single-family building",
"period_of_construction": "2021_2050",
"climate_zone": "B3",
"average_storey_height": 3.57,
"thermal_capacity": 83.018,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT",
"transparent_surface_name": "PA1_PA2_2021_2050_WIN1",
"transparent_ratio": {
"north": "60",
"east": "5",
"south": "60",
"west": "5"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_ROOF",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOOR"
},
"GroundWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT"
},
"GroundRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOORINT"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Large multifamily building",
"period_of_construction": "1961_1980",
"climate_zone": "B3",
"average_storey_height": 3.57,
"thermal_capacity": 3000,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_1961_1980_FACEXT1",
"transparent_surface_name": "PA1_PA2_1961_1980_WIN1",
"transparent_ratio": {
"north": "60",
"east": "60",
"south": "60",
"west": "60"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_1961_1980_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_1961_1980_FLOOR1"
},
"GroundWall": {
"opaque_surface_name": "PA1_PA2_1961_1980_FACEXT1"
},
"GroundRoofCeiling": {
"opaque_surface_name": "PA1_PA2_1961_1980_FLOOR4"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Large multifamily building",
"period_of_construction": "1981_2007",
"climate_zone": "B3",
"average_storey_height": 3.2,
"thermal_capacity": 3179,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "E_1981_2007_FACEXT1",
"transparent_surface_name": "E_1981_2007_WIN1",
"transparent_ratio": {
"north": "45",
"east": "45",
"south": "45",
"west": "45"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "E_1981_2007_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "E_1981_2007_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Medium multifamily building",
"period_of_construction": "1800_1900",
"climate_zone": "B3",
"average_storey_height": 4.39,
"thermal_capacity": 3330,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "A_B1900_FACEXT1",
"transparent_surface_name": "A_B1900_WIN2",
"transparent_ratio": {
"north": "20",
"east": "20",
"south": "20",
"west": "20"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "A_B1900_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "A_B1900_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Medium multifamily building",
"period_of_construction": "1901_1940",
"climate_zone": "B3",
"average_storey_height": 3.65,
"thermal_capacity": 3420,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "B_1901_1940_FACEXT1",
"transparent_surface_name": "B_1901_1940_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "B_1901_1940_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "B_1901_1940_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Medium multifamily building",
"period_of_construction": "1941_1960",
"climate_zone": "B3",
"average_storey_height": 3.6,
"thermal_capacity": 3000,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": " C_1941_1960_FACEXT1",
"transparent_surface_name": "C_1941_1960_WIN1",
"transparent_ratio": {
"north": "30",
"east": "30",
"south": "30",
"west": "30"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "C_1941_1960_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "C_1941_1960_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Medium multifamily building",
"period_of_construction": "1961_1980",
"climate_zone": "B3",
"average_storey_height": 4.5,
"thermal_capacity": 3540,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_1961_1980_FACEXT1",
"transparent_surface_name": "PA1_PA2_1961_1980_WIN1",
"transparent_ratio": {
"north": "55",
"east": "55",
"south": "55",
"west": "55"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_1961_1980_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_1961_1980_FLOOR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Medium multifamily building",
"period_of_construction": "1981_2007",
"climate_zone": "B3",
"average_storey_height": 3.2,
"thermal_capacity": 3179,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "E_1981_2007_FACEXT1",
"transparent_surface_name": "E_1981_2007_WIN1",
"transparent_ratio": {
"north": "45",
"east": "45",
"south": "45",
"west": "45"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "E_1981_2007_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "E_1981_2007_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Medium multifamily building",
"period_of_construction": "2008_2014",
"climate_zone": "B3",
"average_storey_height": 2.75,
"thermal_capacity": 3290,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "F_2008_2014_FACEXT1",
"transparent_surface_name": "F_2008_2014_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "F_2008_2014_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "F_2008_2014_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Small multifamily building",
"period_of_construction": "1800_1980",
"climate_zone": "B3",
"average_storey_height": 3.8,
"thermal_capacity": 3527.9,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA3_PA4_1901_1940_FACEXT1",
"transparent_surface_name": "PA3_PA4_1901_1940_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA3_PA4_1901_1940_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA3_PA4_1901_1940_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Small multifamily building",
"period_of_construction": "1981_2007",
"climate_zone": "B3",
"average_storey_height": 3.2,
"thermal_capacity": 3179,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "E_1981_2007_FACEXT1",
"transparent_surface_name": "E_1981_2007_WIN1",
"transparent_ratio": {
"north": "45",
"east": "45",
"south": "45",
"west": "45"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "E_1981_2007_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "E_1981_2007_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Small multifamily building",
"period_of_construction": "2008_2014",
"climate_zone": "B3",
"average_storey_height": 2.75,
"thermal_capacity": 3290,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "F_2008_2014_FACEXT1",
"transparent_surface_name": "F_2008_2014_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "F_2008_2014_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "F_2008_2014_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Small multifamily building",
"period_of_construction": "2015_2019",
"climate_zone": "B3",
"average_storey_height": 2.75,
"thermal_capacity": 3290,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "G_2015_2019_FACEXT1",
"transparent_surface_name": "G_2015_2019_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "G_2015_2019_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "G_2015_2019_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Single-family building",
"period_of_construction": "1800_1980",
"climate_zone": "B3",
"average_storey_height": 3.68,
"thermal_capacity": 4400,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA3_PA4_1901_1940_FACEXT1",
"transparent_surface_name": "PA3_PA4_1901_1940_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA3_PA4_1901_1940_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA3_PA4_1901_1940_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Single-family building",
"period_of_construction": "1981_2007",
"climate_zone": "B3",
"average_storey_height": 3.2,
"thermal_capacity": 3179,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "E_1981_2007_FACEXT1",
"transparent_surface_name": "E_1981_2007_WIN1",
"transparent_ratio": {
"north": "45",
"east": "45",
"south": "45",
"west": "45"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "E_1981_2007_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "E_1981_2007_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Single-family building",
"period_of_construction": "2008_2014",
"climate_zone": "B3",
"average_storey_height": 3.75,
"thermal_capacity": 3200,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "F_2008_2014_FACEXT1",
"transparent_surface_name": "F_2008_2014_WIN1",
"transparent_ratio": {
"north": "60",
"east": "60",
"south": "60",
"west": "60"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "F_2008_2014_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "F_2008_2014_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Single-family building",
"period_of_construction": "2015_2019",
"climate_zone": "B3",
"average_storey_height": 3.75,
"thermal_capacity": 3200,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "G_2015_2019_FACEXT1",
"transparent_surface_name": "G_2015_2019_WIN1",
"transparent_ratio": {
"north": "60",
"east": "60",
"south": "60",
"west": "60"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "G_2015_2019_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "G_2015_2019_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
}
]
}

File diff suppressed because it is too large Load Diff

View File

@ -457,6 +457,7 @@
<nominal_cell_temperature/> <nominal_cell_temperature/>
<nominal_radiation/> <nominal_radiation/>
<standard_test_condition_cell_temperature/> <standard_test_condition_cell_temperature/>
<standard_test_condition_radiation/>
<standard_test_condition_maximum_power/> <standard_test_condition_maximum_power/>
<cell_temperature_coefficient/> <cell_temperature_coefficient/>
<width>2.01</width> <width>2.01</width>
@ -1035,6 +1036,7 @@
<nominal_cell_temperature/> <nominal_cell_temperature/>
<nominal_radiation/> <nominal_radiation/>
<standard_test_condition_cell_temperature/> <standard_test_condition_cell_temperature/>
<standard_test_condition_radiation/>
<standard_test_condition_maximum_power/> <standard_test_condition_maximum_power/>
<cell_temperature_coefficient/> <cell_temperature_coefficient/>
<width>1.0</width> <width>1.0</width>

View File

@ -0,0 +1,809 @@
<?xml version="1.0" encoding="UTF-8"?>
<EnergySystemCatalog>
<schemas_path>./schemas/</schemas_path>
<media>
<medium>
<medium_id>1</medium_id>
<name>Water</name>
<solar_absorptance/>
<thermal_absorptance/>
<visible_absorptance/>
<no_mass/>
<thermal_resistance/>
<density>981.0</density>
<specific_heat>4180.0</specific_heat>
<conductivity>0.6</conductivity>
</medium>
</media>
<energy_generation_components>
<non_pv_generation_component>
<system_id>1</system_id>
<name>Natural-Gas Boiler</name>
<system_type>boiler</system_type>
<model_name/>
<manufacturer/>
<nominal_heat_output/>
<minimum_heat_output/>
<maximum_heat_output/>
<heat_efficiency>0.7</heat_efficiency>
<reversible>False</reversible>
<fuel_type>natural gas</fuel_type>
<source_medium/>
<supply_medium/>
<nominal_cooling_output/>
<minimum_cooling_output/>
<maximum_cooling_output/>
<cooling_efficiency/>
<electricity_efficiency/>
<source_temperature/>
<source_mass_flow/>
<nominal_electricity_output/>
<maximum_heat_supply_temperature/>
<minimum_heat_supply_temperature/>
<maximum_cooling_supply_temperature/>
<minimum_cooling_supply_temperature/>
<heat_output_curve/>
<heat_fuel_consumption_curve/>
<heat_efficiency_curve/>
<cooling_output_curve/>
<cooling_fuel_consumption_curve/>
<cooling_efficiency_curve/>
<distribution_systems/>
<energy_storage_systems/>
<domestic_hot_water>True</domestic_hot_water>
<heat_supply_temperature/>
<cooling_supply_temperature/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</non_pv_generation_component>
<non_pv_generation_component>
<system_id>2</system_id>
<name>Joule</name>
<system_type>joule</system_type>
<model_name/>
<manufacturer/>
<nominal_heat_output/>
<minimum_heat_output/>
<maximum_heat_output/>
<heat_efficiency>1</heat_efficiency>
<reversible>False</reversible>
<fuel_type>electricity</fuel_type>
<source_medium/>
<supply_medium/>
<nominal_cooling_output/>
<minimum_cooling_output/>
<maximum_cooling_output/>
<cooling_efficiency/>
<electricity_efficiency/>
<source_temperature/>
<source_mass_flow/>
<nominal_electricity_output/>
<maximum_heat_supply_temperature/>
<minimum_heat_supply_temperature/>
<maximum_cooling_supply_temperature/>
<minimum_cooling_supply_temperature/>
<heat_output_curve/>
<heat_fuel_consumption_curve/>
<heat_efficiency_curve/>
<cooling_output_curve/>
<cooling_fuel_consumption_curve/>
<cooling_efficiency_curve/>
<distribution_systems/>
<energy_storage_systems/>
<domestic_hot_water>True</domestic_hot_water>
<heat_supply_temperature/>
<cooling_supply_temperature/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</non_pv_generation_component>
<non_pv_generation_component>
<system_id>3</system_id>
<name>Heat Pump</name>
<system_type>heat pump</system_type>
<model_name/>
<manufacturer/>
<nominal_heat_output/>
<minimum_heat_output/>
<maximum_heat_output/>
<heat_efficiency>2</heat_efficiency>
<reversible>True</reversible>
<fuel_type>electricity</fuel_type>
<source_medium>Air</source_medium>
<supply_medium>Water</supply_medium>
<nominal_cooling_output/>
<minimum_cooling_output/>
<maximum_cooling_output/>
<cooling_efficiency>2</cooling_efficiency>
<electricity_efficiency/>
<source_temperature/>
<source_mass_flow/>
<nominal_electricity_output/>
<maximum_heat_supply_temperature/>
<minimum_heat_supply_temperature/>
<maximum_cooling_supply_temperature/>
<minimum_cooling_supply_temperature/>
<heat_output_curve/>
<heat_fuel_consumption_curve/>
<heat_efficiency_curve/>
<cooling_output_curve/>
<cooling_fuel_consumption_curve/>
<cooling_efficiency_curve/>
<distribution_systems/>
<energy_storage_systems/>
<domestic_hot_water>False</domestic_hot_water>
<heat_supply_temperature/>
<cooling_supply_temperature/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</non_pv_generation_component>
<non_pv_generation_component>
<system_id>4</system_id>
<name>Butane Heater</name>
<system_type>butane heater</system_type>
<model_name/>
<manufacturer/>
<nominal_heat_output/>
<minimum_heat_output/>
<maximum_heat_output/>
<heat_efficiency>0.7</heat_efficiency>
<reversible>False</reversible>
<fuel_type>butane</fuel_type>
<source_medium/>
<supply_medium/>
<nominal_cooling_output/>
<minimum_cooling_output/>
<maximum_cooling_output/>
<cooling_efficiency/>
<electricity_efficiency/>
<source_temperature/>
<source_mass_flow/>
<nominal_electricity_output/>
<maximum_heat_supply_temperature/>
<minimum_heat_supply_temperature/>
<maximum_cooling_supply_temperature/>
<minimum_cooling_supply_temperature/>
<heat_output_curve/>
<heat_fuel_consumption_curve/>
<heat_efficiency_curve/>
<cooling_output_curve/>
<cooling_fuel_consumption_curve/>
<cooling_efficiency_curve/>
<distribution_systems/>
<energy_storage_systems/>
<domestic_hot_water>True</domestic_hot_water>
<heat_supply_temperature/>
<cooling_supply_temperature/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</non_pv_generation_component>
<non_pv_generation_component>
<system_id>5</system_id>
<name>Split</name>
<system_type>split</system_type>
<model_name/>
<manufacturer/>
<nominal_heat_output/>
<minimum_heat_output/>
<maximum_heat_output/>
<heat_efficiency/>
<reversible>False</reversible>
<fuel_type>electricity</fuel_type>
<source_medium/>
<supply_medium/>
<nominal_cooling_output/>
<minimum_cooling_output/>
<maximum_cooling_output/>
<cooling_efficiency>2</cooling_efficiency>
<electricity_efficiency/>
<source_temperature/>
<source_mass_flow/>
<nominal_electricity_output/>
<maximum_heat_supply_temperature/>
<minimum_heat_supply_temperature/>
<maximum_cooling_supply_temperature/>
<minimum_cooling_supply_temperature/>
<heat_output_curve/>
<heat_fuel_consumption_curve/>
<heat_efficiency_curve/>
<cooling_output_curve/>
<cooling_fuel_consumption_curve/>
<cooling_efficiency_curve/>
<distribution_systems/>
<energy_storage_systems/>
<domestic_hot_water>False</domestic_hot_water>
<heat_supply_temperature/>
<cooling_supply_temperature/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</non_pv_generation_component>
<non_pv_generation_component>
<system_id>6</system_id>
<name>Domestic Hot Water Heat Pump</name>
<system_type>heat pump</system_type>
<model_name/>
<manufacturer/>
<nominal_heat_output/>
<minimum_heat_output/>
<maximum_heat_output/>
<heat_efficiency>3</heat_efficiency>
<reversible>False</reversible>
<fuel_type>electricity</fuel_type>
<source_medium>Air</source_medium>
<supply_medium>Water</supply_medium>
<nominal_cooling_output/>
<minimum_cooling_output/>
<maximum_cooling_output/>
<cooling_efficiency/>
<electricity_efficiency/>
<source_temperature/>
<source_mass_flow/>
<nominal_electricity_output/>
<maximum_heat_supply_temperature/>
<minimum_heat_supply_temperature/>
<maximum_cooling_supply_temperature/>
<minimum_cooling_supply_temperature/>
<heat_output_curve/>
<heat_fuel_consumption_curve/>
<heat_efficiency_curve/>
<cooling_output_curve/>
<cooling_fuel_consumption_curve/>
<cooling_efficiency_curve/>
<distribution_systems/>
<energy_storage_systems/>
<domestic_hot_water>True</domestic_hot_water>
<heat_supply_temperature/>
<cooling_supply_temperature/>
<simultaneous_heat_cold/>
</non_pv_generation_component>
<pv_generation_component>
<system_id>7</system_id>
<name>template Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<model_name/>
<manufacturer/>
<nominal_electricity_output/>
<electricity_efficiency>0.2</electricity_efficiency>
<nominal_ambient_temperature>20</nominal_ambient_temperature>
<nominal_cell_temperature>45</nominal_cell_temperature>
<nominal_radiation>800</nominal_radiation>
<standard_test_condition_cell_temperature>25</standard_test_condition_cell_temperature>
<standard_test_condition_radiation>1000</standard_test_condition_radiation>
<standard_test_condition_maximum_power>500</standard_test_condition_maximum_power>
<cell_temperature_coefficient/>
<width>2.0</width>
<height>1.0</height>
<distribution_systems/>
<energy_storage_systems/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</pv_generation_component>
<pv_generation_component>
<system_id>8</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<model_name>RE400CAA Pure 2</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>305</nominal_electricity_output>
<electricity_efficiency>0.206</electricity_efficiency>
<nominal_ambient_temperature>20</nominal_ambient_temperature>
<nominal_cell_temperature>44</nominal_cell_temperature>
<nominal_radiation>800</nominal_radiation>
<standard_test_condition_cell_temperature>25</standard_test_condition_cell_temperature>
<standard_test_condition_radiation>1000</standard_test_condition_radiation>
<standard_test_condition_maximum_power>400</standard_test_condition_maximum_power>
<cell_temperature_coefficient>0.24</cell_temperature_coefficient>
<width>1.86</width>
<height>1.04</height>
<distribution_systems/>
<energy_storage_systems/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</pv_generation_component>
<pv_generation_component>
<system_id>9</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<model_name>RE410CAA Pure 2</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>312</nominal_electricity_output>
<electricity_efficiency>0.211</electricity_efficiency>
<nominal_ambient_temperature>20</nominal_ambient_temperature>
<nominal_cell_temperature>44</nominal_cell_temperature>
<nominal_radiation>800</nominal_radiation>
<standard_test_condition_cell_temperature>25</standard_test_condition_cell_temperature>
<standard_test_condition_radiation>1000</standard_test_condition_radiation>
<standard_test_condition_maximum_power>410</standard_test_condition_maximum_power>
<cell_temperature_coefficient>0.24</cell_temperature_coefficient>
<width>1.86</width>
<height>1.04</height>
<distribution_systems/>
<energy_storage_systems/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</pv_generation_component>
<pv_generation_component>
<system_id>10</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<model_name>RE420CAA Pure 2</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>320</nominal_electricity_output>
<electricity_efficiency>0.217</electricity_efficiency>
<nominal_ambient_temperature>20</nominal_ambient_temperature>
<nominal_cell_temperature>44</nominal_cell_temperature>
<nominal_radiation>800</nominal_radiation>
<standard_test_condition_cell_temperature>25</standard_test_condition_cell_temperature>
<standard_test_condition_radiation>1000</standard_test_condition_radiation>
<standard_test_condition_maximum_power>420</standard_test_condition_maximum_power>
<cell_temperature_coefficient>0.24</cell_temperature_coefficient>
<width>1.86</width>
<height>1.04</height>
<distribution_systems/>
<energy_storage_systems/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</pv_generation_component>
<pv_generation_component>
<system_id>11</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<model_name>RE430CAA Pure 2</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>327</nominal_electricity_output>
<electricity_efficiency>0.222</electricity_efficiency>
<nominal_ambient_temperature>20</nominal_ambient_temperature>
<nominal_cell_temperature>44</nominal_cell_temperature>
<nominal_radiation>800</nominal_radiation>
<standard_test_condition_cell_temperature>25</standard_test_condition_cell_temperature>
<standard_test_condition_radiation>1000</standard_test_condition_radiation>
<standard_test_condition_maximum_power>430</standard_test_condition_maximum_power>
<cell_temperature_coefficient>0.24</cell_temperature_coefficient>
<width>1.86</width>
<height>1.04</height>
<distribution_systems/>
<energy_storage_systems/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</pv_generation_component>
<pv_generation_component>
<system_id>12</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<model_name>REC600AA Pro M</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>457</nominal_electricity_output>
<electricity_efficiency>0.211</electricity_efficiency>
<nominal_ambient_temperature>20</nominal_ambient_temperature>
<nominal_cell_temperature>44</nominal_cell_temperature>
<nominal_radiation>800</nominal_radiation>
<standard_test_condition_cell_temperature>25</standard_test_condition_cell_temperature>
<standard_test_condition_radiation>1000</standard_test_condition_radiation>
<standard_test_condition_maximum_power>600</standard_test_condition_maximum_power>
<cell_temperature_coefficient>0.24</cell_temperature_coefficient>
<width>2.17</width>
<height>1.3</height>
<distribution_systems/>
<energy_storage_systems/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</pv_generation_component>
<pv_generation_component>
<system_id>13</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<model_name>REC610AA Pro M</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>464</nominal_electricity_output>
<electricity_efficiency>0.215</electricity_efficiency>
<nominal_ambient_temperature>20</nominal_ambient_temperature>
<nominal_cell_temperature>44</nominal_cell_temperature>
<nominal_radiation>800</nominal_radiation>
<standard_test_condition_cell_temperature>25</standard_test_condition_cell_temperature>
<standard_test_condition_radiation>1000</standard_test_condition_radiation>
<standard_test_condition_maximum_power>610</standard_test_condition_maximum_power>
<cell_temperature_coefficient>0.24</cell_temperature_coefficient>
<width>2.17</width>
<height>1.3</height>
<distribution_systems/>
<energy_storage_systems/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</pv_generation_component>
<pv_generation_component>
<system_id>14</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<model_name>REC620AA Pro M</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>472</nominal_electricity_output>
<electricity_efficiency>0.218</electricity_efficiency>
<nominal_ambient_temperature>20</nominal_ambient_temperature>
<nominal_cell_temperature>44</nominal_cell_temperature>
<nominal_radiation>800</nominal_radiation>
<standard_test_condition_cell_temperature>25</standard_test_condition_cell_temperature>
<standard_test_condition_radiation>1000</standard_test_condition_radiation>
<standard_test_condition_maximum_power>620</standard_test_condition_maximum_power>
<cell_temperature_coefficient>0.24</cell_temperature_coefficient>
<width>2.17</width>
<height>1.3</height>
<distribution_systems/>
<energy_storage_systems/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</pv_generation_component>
<pv_generation_component>
<system_id>15</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<model_name>REC630AA Pro M</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>480</nominal_electricity_output>
<electricity_efficiency>0.222</electricity_efficiency>
<nominal_ambient_temperature>20</nominal_ambient_temperature>
<nominal_cell_temperature>44</nominal_cell_temperature>
<nominal_radiation>800</nominal_radiation>
<standard_test_condition_cell_temperature>25</standard_test_condition_cell_temperature>
<standard_test_condition_radiation>1000</standard_test_condition_radiation>
<standard_test_condition_maximum_power>630</standard_test_condition_maximum_power>
<cell_temperature_coefficient>0.24</cell_temperature_coefficient>
<width>2.17</width>
<height>1.3</height>
<distribution_systems/>
<energy_storage_systems/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</pv_generation_component>
<pv_generation_component>
<system_id>16</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<model_name>REC640AA Pro M</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>487</nominal_electricity_output>
<electricity_efficiency>0.215</electricity_efficiency>
<nominal_ambient_temperature>20</nominal_ambient_temperature>
<nominal_cell_temperature>44</nominal_cell_temperature>
<nominal_radiation>800</nominal_radiation>
<standard_test_condition_cell_temperature>25</standard_test_condition_cell_temperature>
<standard_test_condition_radiation>1000</standard_test_condition_radiation>
<standard_test_condition_maximum_power>640</standard_test_condition_maximum_power>
<cell_temperature_coefficient>0.24</cell_temperature_coefficient>
<width>2.17</width>
<height>1.3</height>
<distribution_systems/>
<energy_storage_systems/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</pv_generation_component>
</energy_generation_components>
<energy_storage_components>
<thermalStorages>
<storage_id>6</storage_id>
<name>template Hot Water Storage Tank</name>
<type_energy_stored>thermal</type_energy_stored>
<model_name/>
<manufacturer/>
<maximum_operating_temperature>95.0</maximum_operating_temperature>
<insulation>
<material_id>1</material_id>
<insulationThickness>90.0</insulationThickness>
</insulation>
<physical_characteristics>
<material_id>2</material_id>
<tankThickness>0</tankThickness>
<height>1.5</height>
<tankMaterial>Steel</tankMaterial>
<volume/>
</physical_characteristics>
<storage_medium>
<medium_id>1</medium_id>
</storage_medium>
<storage_type>sensible</storage_type>
<nominal_capacity/>
<losses_ratio/>
<heating_coil_capacity/>
</thermalStorages>
<thermalStorages>
<storage_id>7</storage_id>
<name>template Hot Water Storage Tank with Heating Coil</name>
<type_energy_stored>thermal</type_energy_stored>
<model_name/>
<manufacturer/>
<maximum_operating_temperature>95.0</maximum_operating_temperature>
<insulation>
<material_id>1</material_id>
<insulationThickness>90.0</insulationThickness>
</insulation>
<physical_characteristics>
<material_id>2</material_id>
<tankThickness>0</tankThickness>
<height>1.5</height>
<tankMaterial>Steel</tankMaterial>
<volume/>
</physical_characteristics>
<storage_medium>
<medium_id>1</medium_id>
</storage_medium>
<storage_type>sensible</storage_type>
<nominal_capacity/>
<losses_ratio/>
<heating_coil_capacity>5000</heating_coil_capacity>
</thermalStorages>
</energy_storage_components>
<materials>
<material>
<material_id>1</material_id>
<name>Polyurethane</name>
<solar_absorptance/>
<thermal_absorptance/>
<visible_absorptance/>
<no_mass/>
<thermal_resistance/>
<density/>
<specific_heat/>
<conductivity>0.028</conductivity>
</material>
<material>
<material_id>2</material_id>
<name>Steel</name>
<solar_absorptance/>
<thermal_absorptance/>
<visible_absorptance/>
<no_mass/>
<thermal_resistance/>
<density/>
<specific_heat/>
<conductivity>18</conductivity>
</material>
</materials>
<distribution_systems>
<distribution_system/>
</distribution_systems>
<dissipation_systems>
<dissipation_system/>
</dissipation_systems>
<systems>
<system>
<id>1</id>
<name>Central gas system</name>
<schema/>
<demands>
<demand>heating</demand>
<demand>domestic_hot_water</demand>
</demands>
<components>
<generation_id>1</generation_id>
</components>
</system>
<system>
<id>2</id>
<name>Central Joule system</name>
<schema/>
<demands>
<demand>heating</demand>
<demand>domestic_hot_water</demand>
</demands>
<components>
<generation_id>2</generation_id>
</components>
</system>
<system>
<id>3</id>
<name>Central butane system</name>
<schema/>
<demands>
<demand>heating</demand>
<demand>domestic_hot_water</demand>
</demands>
<components>
<generation_id>4</generation_id>
</components>
</system>
<system>
<id>4</id>
<name>Single zone split system</name>
<schema/>
<demands>
<demand>cooling</demand>
</demands>
<components>
<generation_id>5</generation_id>
</components>
</system>
<system>
<id>5</id>
<name>4 pipe heat pump system</name>
<schema/>
<demands>
<demand>heating</demand>
<demand>cooling</demand>
</demands>
<components>
<generation_id>3</generation_id>
</components>
</system>
<system>
<id>6</id>
<name>PV</name>
<schema/>
<demands>
<demand>electricity</demand>
</demands>
<components>
<generation_id>7</generation_id>
</components>
</system>
<system>
<id>7</id>
<name>Gas heating</name>
<schema/>
<demands>
<demand>heating</demand>
</demands>
<components>
<generation_id>1</generation_id>
</components>
</system>
<system>
<id>8</id>
<name>Electrical heating</name>
<schema/>
<demands>
<demand>heating</demand>
</demands>
<components>
<generation_id>2</generation_id>
</components>
</system>
<system>
<id>9</id>
<name>Butane heating</name>
<schema/>
<demands>
<demand>heating</demand>
</demands>
<components>
<generation_id>4</generation_id>
</components>
</system>
<system>
<id>10</id>
<name>Gas hot water system</name>
<schema/>
<demands>
<demand>domestic_hot_water</demand>
</demands>
<components>
<generation_id>1</generation_id>
</components>
</system>
<system>
<id>11</id>
<name>Electrical hot water system</name>
<schema/>
<demands>
<demand>domestic_hot_water</demand>
</demands>
<components>
<generation_id>2</generation_id>
</components>
</system>
<system>
<id>12</id>
<name>Butane hot water system</name>
<schema/>
<demands>
<demand>domestic_hot_water</demand>
</demands>
<components>
<generation_id>4</generation_id>
</components>
</system>
<system>
<id>13</id>
<name>Heat Pump hot water system</name>
<schema/>
<demands>
<demand>domestic_hot_water</demand>
</demands>
<components>
<generation_id>6</generation_id>
</components>
</system>
</systems>
<system_archetypes>
<system_archetype id="1">
<name>Gas boiler for heating and hot water heater with split cooling</name>
<systems>
<system_id>1</system_id>
<system_id>4</system_id>
</systems>
</system_archetype>
<system_archetype id="2">
<name>Joule heater for heating and hot water heater with split cooling</name>
<systems>
<system_id>2</system_id>
<system_id>4</system_id>
</systems>
</system_archetype>
<system_archetype id="3">
<name>Butane heater for heating and hot water heater with split cooling</name>
<systems>
<system_id>3</system_id>
<system_id>4</system_id>
</systems>
</system_archetype>
<system_archetype id="4">
<name>Gas heating</name>
<systems>
<system_id>1</system_id>
</systems>
</system_archetype>
<system_archetype id="5">
<name>Electrical joule heating</name>
<systems>
<system_id>2</system_id>
</systems>
</system_archetype>
<system_archetype id="6">
<name>Butane heating</name>
<systems>
<system_id>3</system_id>
</systems>
</system_archetype>
<system_archetype id="7">
<name>Heat pump with gas water heater</name>
<systems>
<system_id>5</system_id>
<system_id>7</system_id>
</systems>
</system_archetype>
<system_archetype id="8">
<name>Heat pump with joule water heater</name>
<systems>
<system_id>5</system_id>
<system_id>8</system_id>
</systems>
</system_archetype>
<system_archetype id="9">
<name>Heat pump with butane water heater</name>
<systems>
<system_id>5</system_id>
<system_id>9</system_id>
</systems>
</system_archetype>
<system_archetype id="10">
<name>Heat pump with gas water heater and rooftop PV</name>
<systems>
<system_id>5</system_id>
<system_id>7</system_id>
<system_id>6</system_id>
</systems>
</system_archetype>
<system_archetype id="11">
<name>Heat pump with joule water heater and rooftop PV</name>
<systems>
<system_id>5</system_id>
<system_id>8</system_id>
<system_id>6</system_id>
</systems>
</system_archetype>
<system_archetype id="12">
<name>Rooftop PV</name>
<systems>
<system_id>6</system_id>
</systems>
</system_archetype>
<system_archetype id="13">
<name>Joule heater with split cooling and gas hot water</name>
<systems>
<system_id>4</system_id>
<system_id>8</system_id>
<system_id>10</system_id>
</systems>
</system_archetype>
<system_archetype id="14">
<name>Joule heater with split cooling and butane hot water</name>
<systems>
<system_id>4</system_id>
<system_id>8</system_id>
<system_id>12</system_id>
</systems>
</system_archetype>
<system_archetype id="15">
<name>PV and heat pump</name>
<systems>
<system_id>5</system_id>
<system_id>6</system_id>
<system_id>13</system_id>
</systems>
</system_archetype>
</system_archetypes>
</EnergySystemCatalog>

View File

@ -0,0 +1,904 @@
{
"tables": {
"schedules": {
"data_type": "table",
"refs": [
"DBHE CTE Tabla b-Anejo D"
],
"table": [
{
"name": "DBHE-CTE-Occupancy-sensible",
"category": "Occupancy",
"units": "FRACTION",
"day_types": "Default|Wkdy",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
1,
1,
1,
1,
1,
1,
0.25,
0.25,
0.25,
0.25,
0.25,
0.25,
0.25,
0.25,
0.5,
0.5,
0.5,
0.5,
0.5,
0.5,
0.5,
0.5,
0.5,
1
]
},
{
"name": "DBHE-CTE-Occupancy-sensible",
"category": "Occupancy",
"units": "FRACTION",
"day_types": "Sat",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1
]
},
{
"name": "DBHE-CTE-Occupancy-sensible",
"category": "Occupancy",
"units": "FRACTION",
"day_types": "Sun|Hol",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1
]
},
{
"name": "DBHE-CTE-Occupancy-latent",
"category": "Occupancy",
"units": "FRACTION",
"day_types": "Default|Wkdy",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
1,
1,
1,
1,
1,
1,
0.25,
0.25,
0.25,
0.25,
0.25,
0.25,
0.25,
0.25,
0.5,
0.5,
0.5,
0.5,
0.5,
0.5,
0.5,
0.5,
0.5,
1
]
},
{
"name": "DBHE-CTE-Occupancy-latent",
"category": "Occupancy",
"units": "FRACTION",
"day_types": "Sat",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1
]
},
{
"name": "DBHE-CTE-Occupancy-latent",
"category": "Occupancy",
"units": "FRACTION",
"day_types": "Sun|Hol",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1
]
},
{
"name": "DBHE-CTE-Lighting",
"category": "Lighting",
"units": "FRACTION",
"day_types": "Default|Wkdy",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.5,
1,
1,
1,
1,
1,
0.5
]
},
{
"name": "DBHE-CTE-Lighting",
"category": "Lighting",
"units": "FRACTION",
"day_types": "Sat",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.5,
1,
1,
1,
1,
1,
0.5
]
},
{
"name": "DBHE-CTE-Lighting",
"category": "Lighting",
"units": "FRACTION",
"day_types": "Sun|Hol",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.5,
1,
1,
1,
1,
1,
0.5
]
},
{
"name": "DBHE-CTE-Equipment",
"category": "Equipment",
"units": "FRACTION",
"day_types": "Default|Wkdy",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.5,
1,
1,
1,
1,
1,
0.5
]
},
{
"name": "DBHE-CTE-Equipment",
"category": "Equipment",
"units": "FRACTION",
"day_types": "Sat",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.5,
1,
1,
1,
1,
1,
0.5
]
},
{
"name": "DBHE-CTE-Equipment",
"category": "Equipment",
"units": "FRACTION",
"day_types": "Sun|Hol",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.5,
1,
1,
1,
1,
1,
0.5
]
},
{
"name": "DBHE-CTE-Thermostat Setpoint-Heating",
"category": "Thermostat Setpoint",
"units": "TEMPERATURE",
"day_types": "Default|Wkdy",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
17.0,
17.0,
17.0,
17.0,
17.0,
17.0,
17.0,
21.0,
21.0,
21.0,
21.0,
21.0,
21.0,
21.0,
21.0,
21.0,
21.0,
21.0,
21.0,
21.0,
21.0,
20.0,
17.0,
17.0
]
},
{
"name": "DBHE-CTE-Thermostat Setpoint-Heating",
"category": "Thermostat Setpoint",
"units": "TEMPERATURE",
"day_types": "Sat",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
22.0,
18.0,
18.0,
18.0,
18.0,
18.0,
18.0,
20.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0
]
},
{
"name": "DBHE-CTE-Thermostat Setpoint-Heating",
"category": "Thermostat Setpoint",
"units": "TEMPERATURE",
"day_types": "Sun|Hol",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
22.0,
18.0,
18.0,
18.0,
18.0,
18.0,
18.0,
20.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0
]
},
{
"name": "DBHE-CTE-Thermostat Setpoint-Cooling",
"category": "Thermostat Setpoint",
"units": "TEMPERATURE",
"day_types": "Default|Wkdy",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
28.0,
28.0,
28.0,
28.0,
28.0,
28.0,
28.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
28.0,
28.0
]
},
{
"name": "DBHE-CTE-Thermostat Setpoint-Cooling",
"category": "Thermostat Setpoint",
"units": "TEMPERATURE",
"day_types": "Sat",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
28.0,
28.0,
28.0,
28.0,
28.0,
28.0,
28.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
28.0,
28.0
]
},
{
"name": "DBHE-CTE-Thermostat Setpoint-Cooling",
"category": "Thermostat Setpoint",
"units": "TEMPERATURE",
"day_types": "Sun|Hol",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
28.0,
28.0,
28.0,
28.0,
28.0,
28.0,
28.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
28.0,
28.0
]
},
{
"name": "Always On",
"category": "Unknown",
"units": null,
"day_types": "Default",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Constant",
"notes": null,
"values": [
1.0
]
},
{
"name": "default_HVAC_schedule",
"category": "Fan",
"units": "ON_OFF",
"day_types": "Default|Wkdy",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0
]
},
{
"name": "default_HVAC_schedule",
"category": "Fan",
"units": "ON_OFF",
"day_types": "Sat",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0
]
},
{
"name": "default_HVAC_schedule",
"category": "Fan",
"units": "ON_OFF",
"day_types": "Sun|Hol",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0
]
},
{
"name": "DBHE-CTE-Service Water Heating",
"category": "Service Water Heating",
"units": "FRACTION",
"day_types": "Default|Wkdy",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
0.01,
0.00,
0.00,
0.00,
0.00,
0.01,
0.03,
0.1,
0.07,
0.07,
0.06,
0.06,
0.05,
0.05,
0.04,
0.03,
0.04,
0.04,
0.05,
0.07,
0.06,
0.06,
0.05,
0.05
]
},
{
"name": "DBHE-CTE-Service Water Heating",
"category": "Service Water Heating",
"units": "FRACTION",
"day_types": "Sat",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
0.01,
0.00,
0.00,
0.00,
0.00,
0.01,
0.03,
0.1,
0.07,
0.07,
0.06,
0.06,
0.05,
0.05,
0.04,
0.03,
0.04,
0.04,
0.05,
0.07,
0.06,
0.06,
0.05,
0.05
]
},
{
"name": "DBHE-CTE-Service Water Heating",
"category": "Service Water Heating",
"units": "FRACTION",
"day_types": "Sun|Hol",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
0.01,
0.00,
0.00,
0.00,
0.00,
0.01,
0.03,
0.1,
0.07,
0.07,
0.06,
0.06,
0.05,
0.05,
0.04,
0.03,
0.04,
0.04,
0.05,
0.07,
0.06,
0.06,
0.05,
0.05
]
}
]
}}}

View File

@ -0,0 +1,30 @@
{
"tables": {
"space_compliance": {
"data_type": "table",
"refs": {
"lighting_per_area_w_per_m2": "DBHE-CTE Tabla b-Anejo D",
"occupancy_per_area_people_per_m2": "DBHE CTE Tabla b-Anejo D",
"occupancy_schedule": "DBHE-CTE Tabla b-Anejo D",
"electric_equipment_per_area_w_per_m2": "DBHE CTE Tabla b-Anejo D"
},
"tolerance": {
"lighting_per_area_w_per_m2": 1,
"occupancy_per_area_people_per_m2": 3,
"occupancy_schedule": null,
"electric_equipment_per_area_w_per_m2": 1
},
"table": [
{
"template": "DBHE-CTE",
"building_type": "residential",
"space_type": "WholeBuilding",
"lighting_per_area_w_per_m2": 4.4,
"occupancy_per_area_people_per_m2": 0.014333333,
"occupancy_schedule": "DBHE-CTE-Occupancy",
"electric_equipment_per_area_w_per_m2": 4.4,
"service_water_heating_peak_flow_per_area": 0.02272990107962068
}]
}
}
}

View File

@ -0,0 +1,97 @@
{
"tables": {
"space_types": {
"data_type": "table",
"refs": [
"assumption"
],
"table": [
{
"building_type": "residential",
"space_type": "WholeBuilding",
"rgb": "255_255_255",
"lighting_standard": "DBHE-CTE",
"lighting_primary_space_type": "residential",
"lighting_secondary_space_type": "WholeBuilding",
"lighting_per_area": 4.4,
"lighting_per_person": null,
"additional_lighting_per_area": null,
"rel_absence_occ": 0.0,
"personal_control": 0.0,
"occ_sense": 0.0,
"lighting_fraction_to_return_air": 0.0,
"lighting_fraction_radiant": 0.5,
"lighting_fraction_visible": 0.2,
"lighting_fraction_replaceable": null,
"lpd_fractionlinear_fluorescent": 1.0,
"lpd_fractioncompact_fluorescent": null,
"lpd_fractionhigh_bay": null,
"lpd_fractionspecialty_lighting": null,
"lpd_fractionexit_lighting": null,
"lighting_schedule": "DBHE-CTE-Lighting",
"compact_fluorescent_lighting_schedule": null,
"high_bay_lighting_schedule": null,
"specialty_lighting_schedule": null,
"exit_lighting_schedule": null,
"target_illuminance_setpoint": 125,
"target_illuminance_setpoint_ref": null,
"psa_nongeometry_fraction": null,
"ssa_nongeometry_fraction": null,
"ventilation_standard": null,
"ventilation_primary_space_type": "residential",
"ventilation_secondary_space_type": "WholeBuilding",
"ventilation_per_area": 0,
"ventilation_per_person": 0,
"ventilation_air_changes": 0.4,
"minimum_total_air_changes": null,
"occupancy_per_area": 2.15,
"occupancy_schedule": "DBHE-CTE-Occupancy-sensible",
"occupancy_activity_schedule": null,
"infiltration_per_exterior_area": 0.4,
"infiltration_per_exterior_wall_area": null,
"infiltration_air_changes": null,
"infiltration_schedule": "Always On",
"infiltration_schedule_perimeter": null,
"gas_equipment_per_area": null,
"gas_equipment_fraction_latent": null,
"gas_equipment_fraction_radiant": null,
"gas_equipment_fraction_lost": null,
"gas_equipment_schedule": null,
"electric_equipment_per_area": 4.4,
"electric_equipment_fraction_latent": 0.0,
"electric_equipment_fraction_radiant": 0.5,
"electric_equipment_fraction_lost": 0.0,
"electric_equipment_schedule": "DBHE-CTE-Equipment",
"additional_electric_equipment_schedule": null,
"additional_gas_equipment_schedule": null,
"heating_setpoint_schedule": "DBHE-CTE-Thermostat Setpoint-Heating",
"cooling_setpoint_schedule": "DBHE-CTE-Thermostat Setpoint-Cooling",
"service_water_heating_peak_flow_rate": null,
"service_water_heating_area": null,
"service_water_heating_peak_flow_per_area": 0.009385225,
"service_water_heating_target_temperature": 60.0,
"service_water_heating_fraction_sensible": null,
"service_water_heating_fraction_latent": null,
"service_water_heating_schedule": "DBHE-CTE-Service Water Heating",
"exhaust_per_area": null,
"exhaust_fan_efficiency": null,
"exhaust_fan_power": null,
"exhaust_fan_pressure_rise": null,
"exhaust_fan_maximum_flow_rate": null,
"exhaust_schedule": null,
"balanced_exhaust_fraction_schedule": null,
"is_residential": null,
"necb_hvac_system_selection_type": "residential",
"necb_schedule_type": "G",
"notes": null,
"ventilation_occupancy_rate_people_per_1000ft2": 10,
"ventilation_occupancy_standard": null,
"ventilation_standard_space_type": null,
"sensible_convective_internal_gain": 0.86,
"sensible_radiative_internal_gain": 1.29,
"latent_internal_gain": 1.36
}
]
}
}
}

View File

@ -7,6 +7,9 @@ Code contributors: Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concord
Oriol Gavalda Torrellas oriol.gavalda@concordia.ca Oriol Gavalda Torrellas oriol.gavalda@concordia.ca
""" """
import copy import copy
import datetime
import glob
import os
from pathlib import Path from pathlib import Path
from geomeppy import IDF from geomeppy import IDF
import hub.helpers.constants as cte import hub.helpers.constants as cte
@ -275,11 +278,12 @@ class Idf:
_kwargs[f'Field_{counter + 2}'] = 'Until: 24:00,0.0' _kwargs[f'Field_{counter + 2}'] = 'Until: 24:00,0.0'
self._idf.newidfobject(self._COMPACT_SCHEDULE, **_kwargs) self._idf.newidfobject(self._COMPACT_SCHEDULE, **_kwargs)
def _write_schedules_file(self, usage, schedule): def _write_schedules_file(self, schedule, usage):
file_name = str((Path(self._output_path) / f'{schedule.type} schedules {usage}.csv').resolve()) file_name = str((Path(self._output_path) / f'{schedule.type} schedules {usage.replace("/","_")}.csv').resolve())
with open(file_name, 'w', encoding='utf8') as file: if not Path(file_name).exists():
for value in schedule.values: with open(file_name, 'w', encoding='utf8') as file:
file.write(f'{str(value)},\n') for value in schedule.values:
file.write(f'{str(value)},\n')
return Path(file_name).name return Path(file_name).name
def _add_file_schedule(self, usage, schedule, file_name): def _add_file_schedule(self, usage, schedule, file_name):
@ -304,7 +308,7 @@ class Idf:
for schedule in self._idf.idfobjects[self._FILE_SCHEDULE]: for schedule in self._idf.idfobjects[self._FILE_SCHEDULE]:
if schedule.Name == f'{schedule_type} schedules {usage}': if schedule.Name == f'{schedule_type} schedules {usage}':
return return
file_name = self._write_schedules_file(usage, new_schedules[0]) file_name = self._write_schedules_file(new_schedules[0], usage)
self._add_file_schedule(usage, new_schedules[0], file_name) self._add_file_schedule(usage, new_schedules[0], file_name)
return return
@ -321,12 +325,13 @@ class Idf:
if construction.Name == vegetation_name: if construction.Name == vegetation_name:
return return
else: else:
if construction.Name == thermal_boundary.construction_name: if construction.Name == f'{thermal_boundary.construction_name} {thermal_boundary.parent_surface.type}':
return return
if thermal_boundary.layers is None: if thermal_boundary.layers is None:
for material in self._idf.idfobjects[self._MATERIAL]: for material in self._idf.idfobjects[self._MATERIAL]:
if material.Name == "DefaultMaterial": if material.Name == "DefaultMaterial":
return return
self._idf.set_default_constructions() self._idf.set_default_constructions()
return return
for layer in thermal_boundary.layers: for layer in thermal_boundary.layers:
@ -340,7 +345,8 @@ class Idf:
for i in range(0, len(layers) - 1): for i in range(0, len(layers) - 1):
_kwargs[f'Layer_{i + 2}'] = layers[i].material_name _kwargs[f'Layer_{i + 2}'] = layers[i].material_name
else: else:
_kwargs = {'Name': thermal_boundary.construction_name, 'Outside_Layer': layers[0].material_name} _kwargs = {'Name': f'{thermal_boundary.construction_name} {thermal_boundary.parent_surface.type}',
'Outside_Layer': layers[0].material_name}
for i in range(1, len(layers) - 1): for i in range(1, len(layers) - 1):
_kwargs[f'Layer_{i + 1}'] = layers[i].material_name _kwargs[f'Layer_{i + 1}'] = layers[i].material_name
self._idf.newidfobject(self._CONSTRUCTION, **_kwargs) self._idf.newidfobject(self._CONSTRUCTION, **_kwargs)
@ -387,9 +393,9 @@ class Idf:
thermostat = self._add_thermostat(thermal_zone) thermostat = self._add_thermostat(thermal_zone)
self._idf.newidfobject(self._IDEAL_LOAD_AIR_SYSTEM, self._idf.newidfobject(self._IDEAL_LOAD_AIR_SYSTEM,
Zone_Name=zone_name, Zone_Name=zone_name,
System_Availability_Schedule_Name=f'HVAC AVAIL SCHEDULES {thermal_zone.usage_name}', System_Availability_Schedule_Name=f'Thermostat_availability schedules {thermal_zone.usage_name}',
Heating_Availability_Schedule_Name=f'HVAC AVAIL SCHEDULES {thermal_zone.usage_name}', Heating_Availability_Schedule_Name=f'Thermostat_availability schedules {thermal_zone.usage_name}',
Cooling_Availability_Schedule_Name=f'HVAC AVAIL SCHEDULES {thermal_zone.usage_name}', Cooling_Availability_Schedule_Name=f'Thermostat_availability schedules {thermal_zone.usage_name}',
Template_Thermostat_Name=thermostat.Name) Template_Thermostat_Name=thermostat.Name)
def _add_occupancy(self, thermal_zone, zone_name): def _add_occupancy(self, thermal_zone, zone_name):
@ -449,7 +455,7 @@ class Idf:
) )
def _add_infiltration(self, thermal_zone, zone_name): def _add_infiltration(self, thermal_zone, zone_name):
schedule = f'Infiltration schedules {thermal_zone.usage_name}' schedule = f'INF_CONST schedules {thermal_zone.usage_name}'
_infiltration = thermal_zone.infiltration_rate_system_off * cte.HOUR_TO_SECONDS _infiltration = thermal_zone.infiltration_rate_system_off * cte.HOUR_TO_SECONDS
self._idf.newidfobject(self._INFILTRATION, self._idf.newidfobject(self._INFILTRATION,
Name=f'{zone_name}_infiltration', Name=f'{zone_name}_infiltration',
@ -459,6 +465,17 @@ class Idf:
Air_Changes_per_Hour=_infiltration Air_Changes_per_Hour=_infiltration
) )
def _add_infiltration_surface(self, thermal_zone, zone_name):
schedule = f'INF_CONST schedules {thermal_zone.usage_name}'
_infiltration = thermal_zone.infiltration_rate_area_system_off*1
self._idf.newidfobject(self._INFILTRATION,
Name=f'{zone_name}_infiltration',
Zone_or_ZoneList_or_Space_or_SpaceList_Name=zone_name,
Schedule_Name=schedule,
Design_Flow_Rate_Calculation_Method='Flow/ExteriorWallArea',
Flow_Rate_per_Exterior_Surface_Area=_infiltration
)
def _add_ventilation(self, thermal_zone, zone_name): def _add_ventilation(self, thermal_zone, zone_name):
schedule = f'Ventilation schedules {thermal_zone.usage_name}' schedule = f'Ventilation schedules {thermal_zone.usage_name}'
_air_change = thermal_zone.mechanical_air_change * cte.HOUR_TO_SECONDS _air_change = thermal_zone.mechanical_air_change * cte.HOUR_TO_SECONDS
@ -470,7 +487,7 @@ class Idf:
Air_Changes_per_Hour=_air_change Air_Changes_per_Hour=_air_change
) )
def _add_dhw(self, thermal_zone, zone_name): def _add_dhw(self, thermal_zone, zone_name, usage):
peak_flow_rate = thermal_zone.domestic_hot_water.peak_flow * thermal_zone.total_floor_area peak_flow_rate = thermal_zone.domestic_hot_water.peak_flow * thermal_zone.total_floor_area
self._idf.newidfobject(self._DHW, self._idf.newidfobject(self._DHW,
Name=f'DHW {zone_name}', Name=f'DHW {zone_name}',
@ -478,7 +495,7 @@ class Idf:
Flow_Rate_Fraction_Schedule_Name=f'DHW_prof schedules {thermal_zone.usage_name}', Flow_Rate_Fraction_Schedule_Name=f'DHW_prof schedules {thermal_zone.usage_name}',
Target_Temperature_Schedule_Name=f'DHW_temp schedules {thermal_zone.usage_name}', Target_Temperature_Schedule_Name=f'DHW_temp schedules {thermal_zone.usage_name}',
Hot_Water_Supply_Temperature_Schedule_Name=f'DHW_temp schedules {thermal_zone.usage_name}', Hot_Water_Supply_Temperature_Schedule_Name=f'DHW_temp schedules {thermal_zone.usage_name}',
Cold_Water_Supply_Temperature_Schedule_Name=f'cold_temp schedules {zone_name}', Cold_Water_Supply_Temperature_Schedule_Name=f'cold_temp schedules {usage}',
EndUse_Subcategory=f'DHW {zone_name}', EndUse_Subcategory=f'DHW {zone_name}',
Zone_Name=zone_name Zone_Name=zone_name
) )
@ -512,19 +529,25 @@ class Idf:
self._rename_building(self._city.name) self._rename_building(self._city.name)
self._lod = self._city.level_of_detail.geometry self._lod = self._city.level_of_detail.geometry
for building in self._city.buildings: for building in self._city.buildings:
is_target = building.name in self._target_buildings or building.name in self._adjacent_buildings
for internal_zone in building.internal_zones: for internal_zone in building.internal_zones:
if internal_zone.thermal_zones_from_internal_zones is None: if internal_zone.thermal_zones_from_internal_zones is None:
self._target_buildings.remove(building.name) self._target_buildings.remoidf_surface_typeve(building.name)
is_target = False
continue continue
for thermal_zone in internal_zone.thermal_zones_from_internal_zones: for thermal_zone in internal_zone.thermal_zones_from_internal_zones:
for thermal_boundary in thermal_zone.thermal_boundaries: for thermal_boundary in thermal_zone.thermal_boundaries:
self._add_construction(thermal_boundary) self._add_construction(thermal_boundary)
if thermal_boundary.parent_surface.vegetation is not None: if thermal_boundary.parent_surface.vegetation is not None:
self._add_vegetation_material(thermal_boundary.parent_surface.vegetation) self._add_vegetation_material(thermal_boundary.parent_surface.vegetation)
for thermal_opening in thermal_boundary.thermal_openings: for thermal_opening in thermal_boundary.thermal_openings:
self._add_window_construction_and_material(thermal_opening) self._add_window_construction_and_material(thermal_opening)
usage = thermal_zone.usage_name
if building.name in self._target_buildings or building.name in self._adjacent_buildings: if is_target:
start = datetime.datetime.now()
service_temperature = thermal_zone.domestic_hot_water.service_temperature
usage = thermal_zone.usage_name
_new_schedules = self._create_infiltration_schedules(thermal_zone) _new_schedules = self._create_infiltration_schedules(thermal_zone)
self._add_schedules(usage, 'Infiltration', _new_schedules) self._add_schedules(usage, 'Infiltration', _new_schedules)
_new_schedules = self._create_ventilation_schedules(thermal_zone) _new_schedules = self._create_ventilation_schedules(thermal_zone)
@ -536,12 +559,14 @@ class Idf:
self._add_schedules(usage, 'Lighting', thermal_zone.lighting.schedules) self._add_schedules(usage, 'Lighting', thermal_zone.lighting.schedules)
self._add_schedules(usage, 'Appliance', thermal_zone.appliances.schedules) self._add_schedules(usage, 'Appliance', thermal_zone.appliances.schedules)
self._add_schedules(usage, 'DHW_prof', thermal_zone.domestic_hot_water.schedules) self._add_schedules(usage, 'DHW_prof', thermal_zone.domestic_hot_water.schedules)
_new_schedules = self._create_yearly_values_schedules('cold_temp', _new_schedules = self._create_yearly_values_schedules('cold_temp', building.cold_water_temperature[cte.HOUR])
building.cold_water_temperature[cte.HOUR]) self._add_schedules(usage, 'cold_temp', _new_schedules)
self._add_schedules(building.name, 'cold_temp', _new_schedules) _new_schedules = self._create_constant_value_schedules('DHW_temp', service_temperature)
value = thermal_zone.domestic_hot_water.service_temperature
_new_schedules = self._create_constant_value_schedules('DHW_temp', value)
self._add_schedules(usage, 'DHW_temp', _new_schedules) self._add_schedules(usage, 'DHW_temp', _new_schedules)
_new_schedules = self._create_constant_value_schedules('INF_CONST', 1)
self._add_schedules(usage, 'INF_CONST', _new_schedules)
_new_schedules = self._create_constant_value_schedules('Thermostat_availability', 1)
self._add_schedules(usage, 'Thermostat_availability', _new_schedules)
_occ = thermal_zone.occupancy _occ = thermal_zone.occupancy
if _occ.occupancy_density == 0: if _occ.occupancy_density == 0:
_total_heat = 0 _total_heat = 0
@ -552,16 +577,18 @@ class Idf:
self._add_schedules(usage, 'Activity Level', _new_schedules) self._add_schedules(usage, 'Activity Level', _new_schedules)
self._add_zone(thermal_zone, building.name) self._add_zone(thermal_zone, building.name)
self._add_heating_system(thermal_zone, building.name) self._add_heating_system(thermal_zone, building.name)
self._add_infiltration(thermal_zone, building.name) self._add_infiltration_surface(thermal_zone, building.name)
self._add_ventilation(thermal_zone, building.name) self._add_ventilation(thermal_zone, building.name)
self._add_occupancy(thermal_zone, building.name) self._add_occupancy(thermal_zone, building.name)
self._add_lighting(thermal_zone, building.name) self._add_lighting(thermal_zone, building.name)
self._add_appliances(thermal_zone, building.name) self._add_appliances(thermal_zone, building.name)
self._add_dhw(thermal_zone, building.name) self._add_dhw(thermal_zone, building.name, usage)
if self._export_type == "Surfaces": if self._export_type == "Surfaces":
if building.name in self._target_buildings or building.name in self._adjacent_buildings: if is_target:
if building.thermal_zones_from_internal_zones is not None: if building.thermal_zones_from_internal_zones is not None:
start = datetime.datetime.now()
self._add_surfaces(building, building.name) self._add_surfaces(building, building.name)
print(f'add surfaces {datetime.datetime.now() - start}')
else: else:
self._add_pure_geometry(building, building.name) self._add_pure_geometry(building, building.name)
else: else:
@ -599,6 +626,18 @@ class Idf:
Reporting_Frequency="Hourly", Reporting_Frequency="Hourly",
) )
self._idf.newidfobject(
"OUTPUT:VARIABLE",
Variable_Name="Zone Air Temperature",
Reporting_Frequency="Hourly",
)
self._idf.newidfobject(
"OUTPUT:VARIABLE",
Variable_Name="Zone Air Relative Humidity",
Reporting_Frequency="Hourly",
)
# post-process to erase windows associated to adiabatic walls # post-process to erase windows associated to adiabatic walls
windows_list = [] windows_list = []
for window in self._idf.idfobjects[self._WINDOW]: for window in self._idf.idfobjects[self._WINDOW]:
@ -717,7 +756,7 @@ class Idf:
if boundary.parent_surface.vegetation is not None: if boundary.parent_surface.vegetation is not None:
construction_name = f'{boundary.construction_name}_{boundary.parent_surface.vegetation.name}' construction_name = f'{boundary.construction_name}_{boundary.parent_surface.vegetation.name}'
else: else:
construction_name = boundary.construction_name construction_name = f'{boundary.construction_name} {boundary.parent_surface.type}'
_kwargs['Construction_Name'] = construction_name _kwargs['Construction_Name'] = construction_name
surface = self._idf.newidfobject(self._SURFACE, **_kwargs) surface = self._idf.newidfobject(self._SURFACE, **_kwargs)

View File

@ -20,9 +20,10 @@ class EnergyBuildingsExportsFactory:
""" """
Energy Buildings exports factory class Energy Buildings exports factory class
""" """
def __init__(self, handler, city, path, custom_insel_block='d18599', target_buildings=None): def __init__(self, handler, city, path, custom_insel_block='d18599', target_buildings=None, weather_file=None):
self._city = city self._city = city
self._export_type = '_' + handler.lower() self._export_type = '_' + handler.lower()
self._weather_file = weather_file
validate_import_export_type(EnergyBuildingsExportsFactory, handler) validate_import_export_type(EnergyBuildingsExportsFactory, handler)
if isinstance(path, str): if isinstance(path, str):
path = Path(path) path = Path(path)
@ -53,12 +54,13 @@ class EnergyBuildingsExportsFactory:
""" """
idf_data_path = (Path(__file__).parent / './building_energy/idf_files/').resolve() idf_data_path = (Path(__file__).parent / './building_energy/idf_files/').resolve()
url = wh().epw_file(self._city.region_code) url = wh().epw_file(self._city.region_code)
weather_path = (Path(__file__).parent.parent / f'data/weather/epw/{url.rsplit("/", 1)[1]}').resolve() if self._weather_file is None:
if not weather_path.exists(): self._weather_file = (Path(__file__).parent.parent / f'data/weather/epw/{url.rsplit("/", 1)[1]}').resolve()
with open(weather_path, 'wb') as epw_file: if not self._weather_file.exists():
with open(self._weather_file, 'wb') as epw_file:
epw_file.write(requests.get(url, allow_redirects=True).content) epw_file.write(requests.get(url, allow_redirects=True).content)
return Idf(self._city, self._path, (idf_data_path / 'Minimal.idf'), (idf_data_path / 'Energy+.idd'), weather_path, return Idf(self._city, self._path, (idf_data_path / 'Minimal.idf'), (idf_data_path / 'Energy+.idd'),
target_buildings=self._target_buildings) self._weather_file, target_buildings=self._target_buildings)
@property @property
def _insel_monthly_energy_balance(self): def _insel_monthly_energy_balance(self):

View File

@ -66,8 +66,8 @@ class SimplifiedRadiosityAlgorithm:
else: else:
i = (total_days + day - 1) * 24 + hour - 1 i = (total_days + day - 1) * 24 + hour - 1
representative_building = self._city.buildings[0] representative_building = self._city.buildings[0]
_global = representative_building.diffuse[cte.HOUR][i] / cte.WATTS_HOUR_TO_JULES _global = representative_building.diffuse[cte.HOUR][i]
_beam = representative_building.direct_normal[cte.HOUR][i] / cte.WATTS_HOUR_TO_JULES _beam = representative_building.direct_normal[cte.HOUR][i]
content += f'{day} {month} {hour} {_global} {_beam}\n' content += f'{day} {month} {hour} {_global} {_beam}\n'
with open(file, 'w', encoding='utf-8') as file: with open(file, 'w', encoding='utf-8') as file:
file.write(content) file.write(content)

View File

@ -24,6 +24,8 @@ BTU_H_TO_WATTS = 0.29307107
KILO_WATTS_HOUR_TO_JULES = 3600000 KILO_WATTS_HOUR_TO_JULES = 3600000
WATTS_HOUR_TO_JULES = 3600 WATTS_HOUR_TO_JULES = 3600
GALLONS_TO_QUBIC_METERS = 0.0037854117954011185 GALLONS_TO_QUBIC_METERS = 0.0037854117954011185
INFILTRATION_75PA_TO_4PA = (4/75)**0.65
# time # time
SECOND = 'second' SECOND = 'second'
@ -293,6 +295,7 @@ GAS = 'Gas'
DIESEL = 'Diesel' DIESEL = 'Diesel'
COAL = 'Coal' COAL = 'Coal'
BIOMASS = 'Biomass' BIOMASS = 'Biomass'
BUTANE = 'Butane'
AIR = 'Air' AIR = 'Air'
WATER = 'Water' WATER = 'Water'
GEOTHERMAL = 'Geothermal' GEOTHERMAL = 'Geothermal'
@ -305,6 +308,9 @@ HEAT_PUMP = 'Heat Pump'
BASEBOARD = 'Baseboard' BASEBOARD = 'Baseboard'
ELECTRICITY_GENERATOR = 'Electricity generator' ELECTRICITY_GENERATOR = 'Electricity generator'
CHILLER = 'Chiller' CHILLER = 'Chiller'
SPLIT = 'Split'
JOULE = 'Joule'
BUTANE_HEATER = 'Butane Heater'
SENSIBLE = 'sensible' SENSIBLE = 'sensible'
LATENT = 'Latent' LATENT = 'Latent'
LITHIUMION = 'Lithium Ion' LITHIUMION = 'Lithium Ion'

View File

@ -0,0 +1,30 @@
"""
Dictionaries module for hub function to Palma construction function
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Cecilia Pérez cperez@irec.cat
"""
import hub.helpers.constants as cte
class HubFunctionToPalmaConstructionFunction:
"""
Hub function to Palma construction function class
"""
def __init__(self):
self._dictionary = {
cte.RESIDENTIAL: 'V',
cte.SINGLE_FAMILY_HOUSE: 'Single-family building',
cte.HIGH_RISE_APARTMENT: 'Large multifamily building',
cte.MID_RISE_APARTMENT: 'Medium multifamily building',
cte.MULTI_FAMILY_HOUSE: 'Small multifamily building'
}
@property
def dictionary(self) -> dict:
"""
Get the dictionary
:return: {}
"""
return self._dictionary

View File

@ -0,0 +1,51 @@
"""
Dictionaries module for hub usage to Palma usage
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Cecilia Pérez cperez@irec.cat
"""
"""
Codification of uses from cadastre:
U: store-parking. Residential Use
S: store-parking. Industrial Use
V: Residential
I: Industrial
O: Offices
C: Comercial
K: Sportive center
T: Shows
G: Leisure and Hostelry
Y: Health and charity
E: Culture
R: Religion
M: Urbanization work, gardening and undeveloped land
P: Singular building
B: Farm warehouse
J: Farm Industry
Z: Farm-related
"""
import hub.helpers.constants as cte
class HubUsageToPalmaUsage:
"""
Hub usage to Palma usage class
"""
def __init__(self):
self._dictionary = {
cte.RESIDENTIAL: 'residential',
cte.SINGLE_FAMILY_HOUSE: 'residential',
cte.HIGH_RISE_APARTMENT: 'residential',
cte.MID_RISE_APARTMENT: 'residential',
cte.MULTI_FAMILY_HOUSE: 'residential'
}
@property
def dictionary(self) -> dict:
"""
Get the dictionary
:return: {}
"""
return self._dictionary

View File

@ -12,12 +12,16 @@ class MontrealCustomFuelToHubFuel:
""" """
Montreal custom fuel to hub fuel class Montreal custom fuel to hub fuel class
""" """
def __init__(self): def __init__(self):
self._dictionary = { self._dictionary = {
'gas': cte.GAS, 'gas': cte.GAS,
'electricity': cte.ELECTRICITY, 'natural gas': cte.GAS,
'renewable': cte.RENEWABLE 'electricity': cte.ELECTRICITY,
} 'renewable': cte.RENEWABLE,
'butane': cte.BUTANE,
'diesel': cte.DIESEL
}
@property @property
def dictionary(self) -> dict: def dictionary(self) -> dict:

View File

@ -18,8 +18,12 @@ class MontrealGenerationSystemToHubEnergyGenerationSystem:
'furnace': cte.BASEBOARD, 'furnace': cte.BASEBOARD,
'cooler': cte.CHILLER, 'cooler': cte.CHILLER,
'electricity generator': cte.ELECTRICITY_GENERATOR, 'electricity generator': cte.ELECTRICITY_GENERATOR,
'PV system': cte.PHOTOVOLTAIC, 'Photovoltaic': cte.PHOTOVOLTAIC,
'heat pump': cte.HEAT_PUMP 'heat pump': cte.HEAT_PUMP,
'joule': cte.JOULE,
'split': cte.SPLIT,
'butane heater': cte.BUTANE_HEATER
} }
@property @property

View File

@ -0,0 +1,31 @@
"""
Dictionaries module for Palma function to hub function
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Cecilia Pérez cperez@irec.cat
"""
import hub.helpers.constants as cte
class PalmaFunctionToHubFunction:
"""
Palma function to hub function class
"""
def __init__(self):
self._dictionary = {'Residential': cte.RESIDENTIAL,
'Single-family building': cte.SINGLE_FAMILY_HOUSE,
'Large multifamily building': cte.HIGH_RISE_APARTMENT,
'Medium multifamily building': cte.MID_RISE_APARTMENT,
'Small multifamily building': cte.MULTI_FAMILY_HOUSE,
'V': cte.RESIDENTIAL
}
@property
def dictionary(self) -> dict:
"""
Get the dictionary
:return: {}
"""
return self._dictionary

View File

@ -26,6 +26,9 @@ from hub.helpers.data.north_america_demand_type_to_hub_energy_demand_type import
from hub.helpers.data.north_america_system_to_hub_energy_generation_system import NorthAmericaSystemToHubEnergyGenerationSystem from hub.helpers.data.north_america_system_to_hub_energy_generation_system import NorthAmericaSystemToHubEnergyGenerationSystem
from hub.helpers.data.north_america_custom_fuel_to_hub_fuel import NorthAmericaCustomFuelToHubFuel from hub.helpers.data.north_america_custom_fuel_to_hub_fuel import NorthAmericaCustomFuelToHubFuel
from hub.helpers.data.north_america_storage_system_to_hub_storage import NorthAmericaStorageSystemToHubEnergyStorage from hub.helpers.data.north_america_storage_system_to_hub_storage import NorthAmericaStorageSystemToHubEnergyStorage
from hub.helpers.data.palma_function_to_hub_function import PalmaFunctionToHubFunction
from hub.helpers.data.hub_usage_to_palma_usage import HubUsageToPalmaUsage
from hub.helpers.data.hub_function_to_palma_construction_function import HubFunctionToPalmaConstructionFunction
class Dictionaries: class Dictionaries:
@ -65,6 +68,14 @@ class Dictionaries:
""" """
return HubUsageToEilatUsage().dictionary return HubUsageToEilatUsage().dictionary
@property
def hub_usage_to_palma_usage(self) -> dict:
"""
Hub usage to Palma usage, transformation dictionary
:return: dict
"""
return HubUsageToPalmaUsage().dictionary
@property @property
def hub_function_to_nrcan_construction_function(self) -> dict: def hub_function_to_nrcan_construction_function(self) -> dict:
""" """
@ -88,6 +99,13 @@ class Dictionaries:
:return: dict :return: dict
""" """
return HubFunctionToNrelConstructionFunction().dictionary return HubFunctionToNrelConstructionFunction().dictionary
@property
def hub_function_to_palma_construction_function(self) -> dict:
"""
Get hub function to Palma construction function, transformation dictionary
:return: dict
"""
return HubFunctionToPalmaConstructionFunction().dictionary
@property @property
def pluto_function_to_hub_function(self) -> dict: def pluto_function_to_hub_function(self) -> dict:
@ -105,6 +123,14 @@ class Dictionaries:
""" """
return HftFunctionToHubFunction().dictionary return HftFunctionToHubFunction().dictionary
@property
def palma_function_to_hub_function(self) -> dict:
"""
Get Palma function to hub function, transformation dictionary
:return: dict
"""
return PalmaFunctionToHubFunction().dictionary
@property @property
def montreal_function_to_hub_function(self) -> dict: def montreal_function_to_hub_function(self) -> dict:
""" """

View File

@ -65,6 +65,10 @@ class ConstructionHelper:
'Eilat': 'BWh' 'Eilat': 'BWh'
} }
_reference_city_to_palma_climate_zone ={
'Palma': 'B3'
}
@staticmethod @staticmethod
def yoc_to_nrel_standard(year_of_construction): def yoc_to_nrel_standard(year_of_construction):
""" """
@ -107,3 +111,13 @@ class ConstructionHelper:
:return: str :return: str
""" """
return ConstructionHelper._reference_city_to_israel_climate_zone[reference_city] return ConstructionHelper._reference_city_to_israel_climate_zone[reference_city]
@staticmethod
def city_to_palma_climate_zone(reference_city):
"""
City name to Palma climate zone
:param reference_city: str
:return: str
"""
return ConstructionHelper._reference_city_to_palma_climate_zone[reference_city]

View File

@ -3,6 +3,7 @@ NrcanPhysicsParameters import the construction and material information defined
SPDX - License - Identifier: LGPL - 3.0 - or -later SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group Copyright © 2022 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
Project Collaborator Saeed Ranjbar saeed.ranjbar@concordia.ca
""" """
import logging import logging
@ -32,10 +33,21 @@ class NrcanPhysicsParameters:
city = self._city city = self._city
nrcan_catalog = ConstructionCatalogFactory('nrcan').catalog nrcan_catalog = ConstructionCatalogFactory('nrcan').catalog
for building in city.buildings: for building in city.buildings:
if building.function not in Dictionaries().hub_function_to_nrcan_construction_function: main_function = None
logging.error('Building %s has an unknown building function %s', building.name, building.function) functions = building.function.split('_')
if len(functions) > 1:
maximum_percentage = 0
for function in functions:
percentage_and_function = function.split('-')
if float(percentage_and_function[0]) > maximum_percentage:
maximum_percentage = float(percentage_and_function[0])
main_function = percentage_and_function[-1]
else:
main_function = functions[-1]
if main_function not in Dictionaries().hub_function_to_nrcan_construction_function:
logging.error('Building %s has an unknown building function %s', building.name, main_function)
continue continue
function = Dictionaries().hub_function_to_nrcan_construction_function[building.function] function = Dictionaries().hub_function_to_nrcan_construction_function[main_function]
try: try:
archetype = self._search_archetype(nrcan_catalog, function, building.year_of_construction, self._climate_zone) archetype = self._search_archetype(nrcan_catalog, function, building.year_of_construction, self._climate_zone)
@ -67,6 +79,8 @@ class NrcanPhysicsParameters:
thermal_archetype.indirect_heated_ratio = 0 thermal_archetype.indirect_heated_ratio = 0
thermal_archetype.infiltration_rate_for_ventilation_system_on = catalog_archetype.infiltration_rate_for_ventilation_system_on thermal_archetype.infiltration_rate_for_ventilation_system_on = catalog_archetype.infiltration_rate_for_ventilation_system_on
thermal_archetype.infiltration_rate_for_ventilation_system_off = catalog_archetype.infiltration_rate_for_ventilation_system_off thermal_archetype.infiltration_rate_for_ventilation_system_off = catalog_archetype.infiltration_rate_for_ventilation_system_off
thermal_archetype.infiltration_rate_area_for_ventilation_system_on = catalog_archetype.infiltration_rate_area_for_ventilation_system_on
thermal_archetype.infiltration_rate_area_for_ventilation_system_off = catalog_archetype.infiltration_rate_area_for_ventilation_system_off
_constructions = [] _constructions = []
for catalog_construction in catalog_archetype.constructions: for catalog_construction in catalog_archetype.constructions:
construction = Construction() construction = Construction()

View File

@ -0,0 +1,107 @@
"""
PalmaPhysicsParameters import the construction and material information defined by Palma
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Cecilia Pérez Pérez cperez@irec.cat
"""
import logging
from hub.catalog_factories.construction_catalog_factory import ConstructionCatalogFactory
from hub.city_model_structure.building_demand.thermal_archetype import ThermalArchetype
from hub.city_model_structure.building_demand.construction import Construction
from hub.city_model_structure.building_demand.layer import Layer
from hub.helpers.dictionaries import Dictionaries
from hub.imports.construction.helpers.construction_helper import ConstructionHelper
class PalmaPhysicsParameters:
"""
PalmaPhysicsParameters class
"""
def __init__(self, city, divide_in_storeys=False):
self._city = city
self._divide_in_storeys = divide_in_storeys
self._climate_zone = ConstructionHelper.city_to_palma_climate_zone(city.climate_reference_city)
def enrich_buildings(self):
"""
Returns the city with the construction parameters assigned to the buildings
"""
city = self._city
palma_catalog = ConstructionCatalogFactory('palma').catalog
for building in city.buildings:
if building.function not in Dictionaries().hub_function_to_palma_construction_function:
logging.error('Building %s has an unknown building function %s', building.name, building.function)
continue
function = Dictionaries().hub_function_to_palma_construction_function[building.function]
try:
archetype = self._search_archetype(palma_catalog, function, building.year_of_construction, self._climate_zone)
except KeyError:
logging.error('Building %s has unknown construction archetype for building function: %s '
'[%s], building year of construction: %s and climate zone %s', building.name, function,
building.function, building.year_of_construction, self._climate_zone)
continue
thermal_archetype = ThermalArchetype()
self._assign_values(thermal_archetype, archetype)
for internal_zone in building.internal_zones:
internal_zone.thermal_archetype = thermal_archetype
@staticmethod
def _search_archetype(nrcan_catalog, function, year_of_construction, climate_zone):
nrcan_archetypes = nrcan_catalog.entries('archetypes')
for building_archetype in nrcan_archetypes:
construction_period_limits = building_archetype.construction_period.split('_')
if int(construction_period_limits[0]) <= int(year_of_construction) <= int(construction_period_limits[1]):
if str(function) == str(building_archetype.function) and climate_zone == str(building_archetype.climate_zone):
return building_archetype
raise KeyError('archetype not found')
@staticmethod
def _assign_values(thermal_archetype, catalog_archetype):
thermal_archetype.average_storey_height = catalog_archetype.average_storey_height
thermal_archetype.extra_loses_due_to_thermal_bridges = catalog_archetype.extra_loses_due_to_thermal_bridges
thermal_archetype.thermal_capacity = catalog_archetype.thermal_capacity
thermal_archetype.indirect_heated_ratio = 0
thermal_archetype.infiltration_rate_for_ventilation_system_on = catalog_archetype.infiltration_rate_for_ventilation_system_on
thermal_archetype.infiltration_rate_for_ventilation_system_off = catalog_archetype.infiltration_rate_for_ventilation_system_off
thermal_archetype.infiltration_rate_area_for_ventilation_system_on = catalog_archetype.infiltration_rate_area_for_ventilation_system_on
thermal_archetype.infiltration_rate_area_for_ventilation_system_off = catalog_archetype.infiltration_rate_area_for_ventilation_system_off
_constructions = []
for catalog_construction in catalog_archetype.constructions:
construction = Construction()
construction.type = catalog_construction.type
construction.name = catalog_construction.name
if catalog_construction.window_ratio is not None:
for _orientation in catalog_construction.window_ratio:
if catalog_construction.window_ratio[_orientation] is None:
catalog_construction.window_ratio[_orientation] = 0
construction.window_ratio = catalog_construction.window_ratio
_layers = []
for layer_archetype in catalog_construction.layers:
layer = Layer()
layer.thickness = layer_archetype.thickness
archetype_material = layer_archetype.material
layer.material_name = archetype_material.name
layer.no_mass = archetype_material.no_mass
if archetype_material.no_mass:
layer.thermal_resistance = archetype_material.thermal_resistance
else:
layer.density = archetype_material.density
layer.conductivity = archetype_material.conductivity
layer.specific_heat = archetype_material.specific_heat
layer.solar_absorptance = archetype_material.solar_absorptance
layer.thermal_absorptance = archetype_material.thermal_absorptance
layer.visible_absorptance = archetype_material.visible_absorptance
_layers.append(layer)
construction.layers = _layers
if catalog_construction.window is not None:
window_archetype = catalog_construction.window
construction.window_type = window_archetype.name
construction.window_frame_ratio = window_archetype.frame_ratio
construction.window_g_value = window_archetype.g_value
construction.window_overall_u_value = window_archetype.overall_u_value
_constructions.append(construction)
thermal_archetype.constructions = _constructions

View File

@ -10,6 +10,7 @@ from hub.helpers.utils import validate_import_export_type
from hub.imports.construction.nrcan_physics_parameters import NrcanPhysicsParameters from hub.imports.construction.nrcan_physics_parameters import NrcanPhysicsParameters
from hub.imports.construction.nrel_physics_parameters import NrelPhysicsParameters from hub.imports.construction.nrel_physics_parameters import NrelPhysicsParameters
from hub.imports.construction.eilat_physics_parameters import EilatPhysicsParameters from hub.imports.construction.eilat_physics_parameters import EilatPhysicsParameters
from hub.imports.construction.palma_physics_parameters import PalmaPhysicsParameters
class ConstructionFactory: class ConstructionFactory:
@ -48,6 +49,15 @@ class ConstructionFactory:
for building in self._city.buildings: for building in self._city.buildings:
building.level_of_detail.construction = 2 building.level_of_detail.construction = 2
def _palma(self):
"""
Enrich the city by using Palma information
"""
PalmaPhysicsParameters(self._city).enrich_buildings()
self._city.level_of_detail.construction = 2
for building in self._city.buildings:
building.level_of_detail.construction = 2
def enrich(self): def enrich(self):
""" """
Enrich the city given to the class using the class given handler Enrich the city given to the class using the class given handler

View File

@ -85,7 +85,7 @@ class MontrealCustomEnergySystemParameters:
for archetype_generation_system in archetype_system.generation_systems: for archetype_generation_system in archetype_system.generation_systems:
if archetype_generation_system.system_type == 'Photovoltaic': if archetype_generation_system.system_type == 'Photovoltaic':
_generation_system = PvGenerationSystem() _generation_system = PvGenerationSystem()
_type = 'PV system' _type = 'Photovoltaic'
_generation_system.system_type = Dictionaries().montreal_generation_system_to_hub_energy_generation_system[ _generation_system.system_type = Dictionaries().montreal_generation_system_to_hub_energy_generation_system[
_type] _type]
_fuel_type = Dictionaries().montreal_custom_fuel_to_hub_fuel[archetype_generation_system.fuel_type] _fuel_type = Dictionaries().montreal_custom_fuel_to_hub_fuel[archetype_generation_system.fuel_type]

View File

@ -92,7 +92,7 @@ class MontrealFutureEnergySystemParameters:
_generation_system.name = archetype_generation_system.name _generation_system.name = archetype_generation_system.name
_generation_system.model_name = archetype_generation_system.model_name _generation_system.model_name = archetype_generation_system.model_name
_generation_system.manufacturer = archetype_generation_system.manufacturer _generation_system.manufacturer = archetype_generation_system.manufacturer
_type = 'PV system' _type = archetype_generation_system.system_type
_generation_system.system_type = Dictionaries().montreal_generation_system_to_hub_energy_generation_system[_type] _generation_system.system_type = Dictionaries().montreal_generation_system_to_hub_energy_generation_system[_type]
_fuel_type = Dictionaries().montreal_custom_fuel_to_hub_fuel[archetype_generation_system.fuel_type] _fuel_type = Dictionaries().montreal_custom_fuel_to_hub_fuel[archetype_generation_system.fuel_type]
_generation_system.fuel_type = _fuel_type _generation_system.fuel_type = _fuel_type
@ -119,7 +119,7 @@ class MontrealFutureEnergySystemParameters:
_generation_system.manufacturer = archetype_generation_system.manufacturer _generation_system.manufacturer = archetype_generation_system.manufacturer
_type = archetype_generation_system.system_type _type = archetype_generation_system.system_type
_generation_system.system_type = Dictionaries().montreal_generation_system_to_hub_energy_generation_system[_type] _generation_system.system_type = Dictionaries().montreal_generation_system_to_hub_energy_generation_system[_type]
_fuel_type = Dictionaries().north_america_custom_fuel_to_hub_fuel[archetype_generation_system.fuel_type] _fuel_type = Dictionaries().montreal_custom_fuel_to_hub_fuel[archetype_generation_system.fuel_type]
_generation_system.fuel_type = _fuel_type _generation_system.fuel_type = _fuel_type
_generation_system.nominal_heat_output = archetype_generation_system.nominal_heat_output _generation_system.nominal_heat_output = archetype_generation_system.nominal_heat_output
_generation_system.nominal_cooling_output = archetype_generation_system.nominal_cooling_output _generation_system.nominal_cooling_output = archetype_generation_system.nominal_cooling_output

View File

@ -0,0 +1,216 @@
"""
Montreal future system importer
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Saeed Ranjbar saeed.ranjbar@concordia.ca
"""
import logging
import copy
from hub.catalog_factories.energy_systems_catalog_factory import EnergySystemsCatalogFactory
from hub.city_model_structure.energy_systems.energy_system import EnergySystem
from hub.city_model_structure.energy_systems.distribution_system import DistributionSystem
from hub.city_model_structure.energy_systems.non_pv_generation_system import NonPvGenerationSystem
from hub.city_model_structure.energy_systems.pv_generation_system import PvGenerationSystem
from hub.city_model_structure.energy_systems.electrical_storage_system import ElectricalStorageSystem
from hub.city_model_structure.energy_systems.thermal_storage_system import ThermalStorageSystem
from hub.city_model_structure.energy_systems.emission_system import EmissionSystem
from hub.helpers.dictionaries import Dictionaries
class PalmaEnergySystemParameters:
"""
MontrealCustomEnergySystemParameters class
"""
def __init__(self, city):
self._city = city
def enrich_buildings(self):
"""
Returns the city with the system parameters assigned to the buildings
:return:
"""
city = self._city
montreal_custom_catalog = EnergySystemsCatalogFactory('palma').catalog
if city.generic_energy_systems is None:
_generic_energy_systems = {}
else:
_generic_energy_systems = city.generic_energy_systems
for building in city.buildings:
archetype_name = building.energy_systems_archetype_name
try:
archetype = self._search_archetypes(montreal_custom_catalog, archetype_name)
except KeyError:
logging.error('Building %s has unknown energy system archetype for system name %s', building.name,
archetype_name)
continue
if archetype.name not in _generic_energy_systems:
_generic_energy_systems = self._create_generic_systems_list(archetype, _generic_energy_systems)
city.generic_energy_systems = _generic_energy_systems
self._assign_energy_systems_to_buildings(city)
@staticmethod
def _search_archetypes(catalog, name):
archetypes = catalog.entries('archetypes')
for building_archetype in archetypes:
if str(name) == str(building_archetype.name):
return building_archetype
raise KeyError('archetype not found')
def _create_generic_systems_list(self, archetype, _generic_energy_systems):
building_systems = []
for archetype_system in archetype.systems:
energy_system = EnergySystem()
_hub_demand_types = []
for demand_type in archetype_system.demand_types:
_hub_demand_types.append(Dictionaries().montreal_demand_type_to_hub_energy_demand_type[demand_type])
energy_system.name = archetype_system.name
energy_system.demand_types = _hub_demand_types
energy_system.configuration_schema = archetype_system.configuration_schema
energy_system.generation_systems = self._create_generation_systems(archetype_system)
if energy_system.distribution_systems is not None:
energy_system.distribution_systems = self._create_distribution_systems(archetype_system)
building_systems.append(energy_system)
_generic_energy_systems[archetype.name] = building_systems
return _generic_energy_systems
def _create_generation_systems(self, archetype_system):
_generation_systems = []
archetype_generation_systems = archetype_system.generation_systems
if archetype_generation_systems is not None:
for archetype_generation_system in archetype_system.generation_systems:
if archetype_generation_system.system_type == 'Photovoltaic':
_generation_system = PvGenerationSystem()
_generation_system.name = archetype_generation_system.name
_generation_system.model_name = archetype_generation_system.model_name
_generation_system.manufacturer = archetype_generation_system.manufacturer
_type = archetype_generation_system.system_type
_generation_system.system_type = Dictionaries().montreal_generation_system_to_hub_energy_generation_system[_type]
_fuel_type = Dictionaries().montreal_custom_fuel_to_hub_fuel[archetype_generation_system.fuel_type]
_generation_system.fuel_type = _fuel_type
_generation_system.electricity_efficiency = archetype_generation_system.electricity_efficiency
_generation_system.nominal_electricity_output = archetype_generation_system.nominal_electricity_output
_generation_system.nominal_ambient_temperature = archetype_generation_system.nominal_ambient_temperature
_generation_system.nominal_cell_temperature = archetype_generation_system.nominal_cell_temperature
_generation_system.nominal_radiation = archetype_generation_system.nominal_radiation
_generation_system.standard_test_condition_cell_temperature = archetype_generation_system.standard_test_condition_cell_temperature
_generation_system.standard_test_condition_maximum_power = archetype_generation_system.standard_test_condition_maximum_power
_generation_system.standard_test_condition_radiation = archetype_generation_system.standard_test_condition_radiation
_generation_system.cell_temperature_coefficient = archetype_generation_system.cell_temperature_coefficient
_generation_system.width = archetype_generation_system.width
_generation_system.height = archetype_generation_system.height
_generation_system.tilt_angle = self._city.latitude
_generic_storage_system = None
if archetype_generation_system.energy_storage_systems is not None:
_storage_systems = []
for storage_system in archetype_generation_system.energy_storage_systems:
if storage_system.type_energy_stored == 'electrical':
_generic_storage_system = ElectricalStorageSystem()
_generic_storage_system.type_energy_stored = 'electrical'
_storage_systems.append(_generic_storage_system)
_generation_system.energy_storage_systems = _storage_systems
else:
_generation_system = NonPvGenerationSystem()
_generation_system.name = archetype_generation_system.name
_generation_system.model_name = archetype_generation_system.model_name
_generation_system.manufacturer = archetype_generation_system.manufacturer
_type = archetype_generation_system.system_type
_generation_system.system_type = Dictionaries().montreal_generation_system_to_hub_energy_generation_system[_type]
_fuel_type = Dictionaries().montreal_custom_fuel_to_hub_fuel[archetype_generation_system.fuel_type]
_generation_system.fuel_type = _fuel_type
_generation_system.nominal_heat_output = archetype_generation_system.nominal_heat_output
_generation_system.nominal_cooling_output = archetype_generation_system.nominal_cooling_output
_generation_system.maximum_heat_output = archetype_generation_system.maximum_heat_output
_generation_system.minimum_heat_output = archetype_generation_system.minimum_heat_output
_generation_system.maximum_cooling_output = archetype_generation_system.maximum_cooling_output
_generation_system.minimum_cooling_output = archetype_generation_system.minimum_cooling_output
_generation_system.source_temperature = archetype_generation_system.source_temperature
_generation_system.source_mass_flow = archetype_generation_system.source_mass_flow
_generation_system.supply_medium = archetype_generation_system.supply_medium
_generation_system.maximum_heat_supply_temperature = archetype_generation_system.maximum_heat_supply_temperature
_generation_system.maximum_cooling_supply_temperature = archetype_generation_system.maximum_cooling_supply_temperature
_generation_system.minimum_heat_supply_temperature = archetype_generation_system.minimum_heat_supply_temperature
_generation_system.minimum_cooling_supply_temperature = archetype_generation_system.minimum_cooling_supply_temperature
_generation_system.heat_output_curve = archetype_generation_system.heat_output_curve
_generation_system.heat_fuel_consumption_curve = archetype_generation_system.heat_fuel_consumption_curve
_generation_system.heat_efficiency_curve = archetype_generation_system.heat_efficiency_curve
_generation_system.cooling_output_curve = archetype_generation_system.cooling_output_curve
_generation_system.cooling_fuel_consumption_curve = archetype_generation_system.cooling_fuel_consumption_curve
_generation_system.cooling_efficiency_curve = archetype_generation_system.cooling_efficiency_curve
_generation_system.domestic_hot_water = archetype_generation_system.domestic_hot_water
_generation_system.nominal_electricity_output = archetype_generation_system.nominal_electricity_output
_generation_system.source_medium = archetype_generation_system.source_medium
_generation_system.heat_efficiency = archetype_generation_system.heat_efficiency
_generation_system.cooling_efficiency = archetype_generation_system.cooling_efficiency
_generation_system.electricity_efficiency = archetype_generation_system.electricity_efficiency
_generation_system.reversibility = archetype_generation_system.reversibility
_generic_storage_system = None
if archetype_generation_system.energy_storage_systems is not None:
_storage_systems = []
for storage_system in archetype_generation_system.energy_storage_systems:
if storage_system.type_energy_stored == 'electrical':
_generic_storage_system = ElectricalStorageSystem()
_generic_storage_system.type_energy_stored = 'electrical'
else:
_generic_storage_system = ThermalStorageSystem()
_generic_storage_system.type_energy_stored = storage_system.type_energy_stored
_generic_storage_system.height = storage_system.height
_generic_storage_system.layers = storage_system.layers
_generic_storage_system.storage_medium = storage_system.storage_medium
_generic_storage_system.heating_coil_capacity = storage_system.heating_coil_capacity
_storage_systems.append(_generic_storage_system)
_generation_system.energy_storage_systems = _storage_systems
if archetype_generation_system.domestic_hot_water:
_generation_system.domestic_hot_water = True
if archetype_generation_system.reversibility:
_generation_system.reversibility = True
if archetype_generation_system.simultaneous_heat_cold:
_generation_system.simultaneous_heat_cold = True
_generation_systems.append(_generation_system)
return _generation_systems
@staticmethod
def _create_distribution_systems(archetype_system):
_distribution_systems = []
archetype_distribution_systems = archetype_system.distribution_systems
if archetype_distribution_systems is not None:
for archetype_distribution_system in archetype_system.distribution_systems:
_distribution_system = DistributionSystem()
_distribution_system.type = archetype_distribution_system.type
_distribution_system.distribution_consumption_fix_flow = \
archetype_distribution_system.distribution_consumption_fix_flow
_distribution_system.distribution_consumption_variable_flow = \
archetype_distribution_system.distribution_consumption_variable_flow
_distribution_system.heat_losses = archetype_distribution_system.heat_losses
_generic_emission_system = None
if archetype_distribution_system.emission_systems is not None:
_emission_systems = []
for emission_system in archetype_distribution_system.emission_systems:
_generic_emission_system = EmissionSystem()
_generic_emission_system.parasitic_energy_consumption = emission_system.parasitic_energy_consumption
_emission_systems.append(_generic_emission_system)
_distribution_system.emission_systems = _emission_systems
_distribution_systems.append(_distribution_system)
return _distribution_systems
@staticmethod
def _assign_energy_systems_to_buildings(city):
for building in city.buildings:
_building_energy_systems = []
energy_systems_cluster_name = building.energy_systems_archetype_name
if str(energy_systems_cluster_name) == 'nan':
break
_generic_building_energy_systems = city.generic_energy_systems[energy_systems_cluster_name]
for _generic_building_energy_system in _generic_building_energy_systems:
_building_energy_systems.append(copy.deepcopy(_generic_building_energy_system))
building.energy_systems = _building_energy_systems

View File

@ -11,6 +11,7 @@ from hub.helpers.utils import validate_import_export_type
from hub.imports.energy_systems.montreal_custom_energy_system_parameters import MontrealCustomEnergySystemParameters from hub.imports.energy_systems.montreal_custom_energy_system_parameters import MontrealCustomEnergySystemParameters
from hub.imports.energy_systems.north_america_custom_energy_system_parameters import NorthAmericaCustomEnergySystemParameters from hub.imports.energy_systems.north_america_custom_energy_system_parameters import NorthAmericaCustomEnergySystemParameters
from hub.imports.energy_systems.montreal_future_energy_systems_parameters import MontrealFutureEnergySystemParameters from hub.imports.energy_systems.montreal_future_energy_systems_parameters import MontrealFutureEnergySystemParameters
from hub.imports.energy_systems.palma_energy_systems_parameters import PalmaEnergySystemParameters
class EnergySystemsFactory: class EnergySystemsFactory:
""" """
@ -52,6 +53,15 @@ class EnergySystemsFactory:
for building in self._city.buildings: for building in self._city.buildings:
building.level_of_detail.energy_systems = 2 building.level_of_detail.energy_systems = 2
def _palma(self):
"""
Enrich the city by using north america custom energy systems catalog information
"""
PalmaEnergySystemParameters(self._city).enrich_buildings()
self._city.level_of_detail.energy_systems = 2
for building in self._city.buildings:
building.level_of_detail.energy_systems = 2
def enrich(self): def enrich(self):
""" """
Enrich the city given to the class using the class given handler Enrich the city given to the class using the class given handler

View File

@ -127,6 +127,27 @@ class Geojson:
function = None function = None
if self._function_field is not None: if self._function_field is not None:
function = str(feature['properties'][self._function_field]) function = str(feature['properties'][self._function_field])
if function == 'Mixed use' or function == 'mixed use':
function_parts = []
if 'usages' in feature['properties']:
usages = feature['properties']['usages']
for usage in usages:
if self._function_to_hub is not None and usage['usage'] in self._function_to_hub:
function_parts.append(f"{usage['percentage']}-{self._function_to_hub[usage['usage']]}")
else:
function_parts.append(f"{usage['percentage']}-{usage['usage']}")
else:
for key, value in feature['properties'].items():
if key.startswith("mixed_type_") and not key.endswith("_percentage"):
type_key = key
percentage_key = f"{key}_percentage"
if percentage_key in feature['properties']:
if self._function_to_hub is not None and feature['properties'][type_key] in self._function_to_hub:
usage_function = self._function_to_hub[feature['properties'][type_key]]
function_parts.append(f"{feature['properties'][percentage_key]}-{usage_function}")
else:
function_parts.append(f"{feature['properties'][percentage_key]}-{feature['properties'][type_key]}")
function = "_".join(function_parts)
if self._function_to_hub is not None: if self._function_to_hub is not None:
# use the transformation dictionary to retrieve the proper function # use the transformation dictionary to retrieve the proper function
if function in self._function_to_hub: if function in self._function_to_hub:
@ -135,6 +156,8 @@ class Geojson:
building_aliases = [] building_aliases = []
if 'id' in feature: if 'id' in feature:
building_name = feature['id'] building_name = feature['id']
elif 'id' in feature['properties']:
building_name = feature['properties']['id']
else: else:
building_name = uuid.uuid4() building_name = uuid.uuid4()
if self._aliases_field is not None: if self._aliases_field is not None:

View File

@ -24,7 +24,7 @@ class EnergyPlusMultipleBuildings:
csv_output = list(csv.DictReader(csv_file)) csv_output = list(csv.DictReader(csv_file))
for building in self._city.buildings: for building in self._city.buildings:
building_name = building.name building_name = building.name.upper()
buildings_energy_demands[f'Building {building_name} Heating Demand (J)'] = [ buildings_energy_demands[f'Building {building_name} Heating Demand (J)'] = [
float( float(
row[f"{building_name} IDEAL LOADS AIR SYSTEM:Zone Ideal Loads Supply Air Total Heating Energy [J](Hourly)"]) row[f"{building_name} IDEAL LOADS AIR SYSTEM:Zone Ideal Loads Supply Air Total Heating Energy [J](Hourly)"])
@ -36,7 +36,7 @@ class EnergyPlusMultipleBuildings:
for row in csv_output for row in csv_output
] ]
buildings_energy_demands[f'Building {building_name} DHW Demand (W)'] = [ buildings_energy_demands[f'Building {building_name} DHW Demand (W)'] = [
float(row[f"DHW {building.name}:Water Use Equipment Heating Rate [W](Hourly)"]) float(row[f"DHW {building_name}:Water Use Equipment Heating Rate [W](Hourly)"])
for row in csv_output for row in csv_output
] ]
buildings_energy_demands[f'Building {building_name} Appliances (W)'] = [ buildings_energy_demands[f'Building {building_name} Appliances (W)'] = [
@ -58,14 +58,15 @@ class EnergyPlusMultipleBuildings:
if energy_plus_output_file_path.is_file(): if energy_plus_output_file_path.is_file():
building_energy_demands = self._building_energy_demands(energy_plus_output_file_path) building_energy_demands = self._building_energy_demands(energy_plus_output_file_path)
for building in self._city.buildings: for building in self._city.buildings:
building.heating_demand[cte.HOUR] = building_energy_demands[f'Building {building.name} Heating Demand (J)'] building_name = building.name.upper()
building.cooling_demand[cte.HOUR] = building_energy_demands[f'Building {building.name} Cooling Demand (J)'] building.heating_demand[cte.HOUR] = building_energy_demands[f'Building {building_name} Heating Demand (J)']
building.cooling_demand[cte.HOUR] = building_energy_demands[f'Building {building_name} Cooling Demand (J)']
building.domestic_hot_water_heat_demand[cte.HOUR] = \ building.domestic_hot_water_heat_demand[cte.HOUR] = \
[x * cte.WATTS_HOUR_TO_JULES for x in building_energy_demands[f'Building {building.name} DHW Demand (W)']] [x * cte.WATTS_HOUR_TO_JULES for x in building_energy_demands[f'Building {building_name} DHW Demand (W)']]
building.appliances_electrical_demand[cte.HOUR] = \ building.appliances_electrical_demand[cte.HOUR] = \
[x * cte.WATTS_HOUR_TO_JULES for x in building_energy_demands[f'Building {building.name} Appliances (W)']] [x * cte.WATTS_HOUR_TO_JULES for x in building_energy_demands[f'Building {building_name} Appliances (W)']]
building.lighting_electrical_demand[cte.HOUR] = \ building.lighting_electrical_demand[cte.HOUR] = \
[x * cte.WATTS_HOUR_TO_JULES for x in building_energy_demands[f'Building {building.name} Lighting (W)']] [x * cte.WATTS_HOUR_TO_JULES for x in building_energy_demands[f'Building {building_name} Lighting (W)']]
building.heating_demand[cte.MONTH] = MonthlyValues.get_total_month(building.heating_demand[cte.HOUR]) building.heating_demand[cte.MONTH] = MonthlyValues.get_total_month(building.heating_demand[cte.HOUR])
building.cooling_demand[cte.MONTH] = MonthlyValues.get_total_month(building.cooling_demand[cte.HOUR]) building.cooling_demand[cte.MONTH] = MonthlyValues.get_total_month(building.cooling_demand[cte.HOUR])
building.domestic_hot_water_heat_demand[cte.MONTH] = ( building.domestic_hot_water_heat_demand[cte.MONTH] = (

View File

@ -34,7 +34,7 @@ class SimplifiedRadiosityAlgorithm:
for key in self._results: for key in self._results:
_irradiance = {} _irradiance = {}
header_name = key.split(':') header_name = key.split(':')
result = [x * cte.WATTS_HOUR_TO_JULES for x in self._results[key]] result = [x for x in self._results[key]]
city_object_name = header_name[1] city_object_name = header_name[1]
building = self._city.city_object(city_object_name) building = self._city.city_object(city_object_name)
surface_id = header_name[2] surface_id = header_name[2]

View File

@ -3,6 +3,7 @@ ComnetUsageParameters extracts the usage properties from Comnet catalog and assi
SPDX - License - Identifier: LGPL - 3.0 - or -later SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group Copyright © 2022 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
Project Collaborator Saeed Ranjbar saeed.ranjbar@concordia.ca
""" """
import copy import copy
import logging import logging
@ -18,6 +19,8 @@ from hub.city_model_structure.building_demand.domestic_hot_water import Domestic
from hub.city_model_structure.attributes.schedule import Schedule from hub.city_model_structure.attributes.schedule import Schedule
from hub.city_model_structure.building_demand.internal_gain import InternalGain from hub.city_model_structure.building_demand.internal_gain import InternalGain
from hub.catalog_factories.usage_catalog_factory import UsageCatalogFactory from hub.catalog_factories.usage_catalog_factory import UsageCatalogFactory
from hub.catalog_factories.construction_catalog_factory import ConstructionCatalogFactory
from hub.imports.construction.helpers.construction_helper import ConstructionHelper
class ComnetUsageParameters: class ComnetUsageParameters:
@ -35,29 +38,62 @@ class ComnetUsageParameters:
city = self._city city = self._city
comnet_catalog = UsageCatalogFactory('comnet').catalog comnet_catalog = UsageCatalogFactory('comnet').catalog
for building in city.buildings: for building in city.buildings:
usage_name = Dictionaries().hub_usage_to_comnet_usage[building.function] usages = []
try: comnet_archetype_usages = []
archetype_usage = self._search_archetypes(comnet_catalog, usage_name) building_functions = building.function.split('_')
except KeyError: for function in building_functions:
logging.error('Building %s has unknown usage archetype for usage %s', building.name, usage_name) usages.append(function.split('-'))
continue for usage in usages:
comnet_usage_name = Dictionaries().hub_usage_to_comnet_usage[usage[-1]]
for internal_zone in building.internal_zones: try:
if internal_zone.area is None: comnet_archetype_usage = self._search_archetypes(comnet_catalog, comnet_usage_name)
raise TypeError('Internal zone area not defined, ACH cannot be calculated') comnet_archetype_usages.append(comnet_archetype_usage)
if internal_zone.volume is None: except KeyError:
raise TypeError('Internal zone volume not defined, ACH cannot be calculated') logging.error('Building %s has unknown usage archetype for usage %s', building.name, comnet_usage_name)
if internal_zone.area <= 0: continue
raise TypeError('Internal zone area is zero, ACH cannot be calculated') for (i, internal_zone) in enumerate(building.internal_zones):
volume_per_area = internal_zone.volume / internal_zone.area internal_zone_usages = []
usage = Usage() if len(building.internal_zones) > 1:
usage.name = usage_name volume_per_area = 0
self._assign_values(usage, archetype_usage, volume_per_area, building.cold_water_temperature) if internal_zone.area is None:
usage.percentage = 1 logging.error('Building %s has internal zone area not defined, ACH cannot be calculated for usage %s',
self._calculate_reduced_values_from_extended_library(usage, archetype_usage) building.name, usages[i][-1])
continue
internal_zone.usages = [usage] if internal_zone.volume is None:
logging.error('Building %s has internal zone volume not defined, ACH cannot be calculated for usage %s',
building.name, usages[i][-1])
continue
if internal_zone.area <= 0:
logging.error('Building %s has internal zone area equal to 0, ACH cannot be calculated for usage %s',
building.name, usages[i][-1])
continue
volume_per_area += internal_zone.volume / internal_zone.area
usage = Usage()
usage.name = usages[i][-1]
self._assign_values(usage, comnet_archetype_usages[i], volume_per_area, building.cold_water_temperature)
usage.percentage = 1
self._calculate_reduced_values_from_extended_library(usage, comnet_archetype_usages[i])
internal_zone_usages.append(usage)
else:
storeys_above_ground = building.storeys_above_ground
if storeys_above_ground is None:
logging.error('Building %s no number of storeys assigned, ACH cannot be calculated for usage %s. '
'NRCAN construction data for the year %s is used to calculated number of storeys above '
'ground', building.name, usages, building.year_of_construction)
storeys_above_ground = self.average_storey_height_calculator(self._city, building)
volume_per_area = building.volume / building.floor_area / storeys_above_ground
for (j, mixed_usage) in enumerate(usages):
usage = Usage()
usage.name = mixed_usage[-1]
if len(usages) > 1:
usage.percentage = float(mixed_usage[0]) / 100
else:
usage.percentage = 1
self._assign_values(usage, comnet_archetype_usages[j], volume_per_area, building.cold_water_temperature)
self._calculate_reduced_values_from_extended_library(usage, comnet_archetype_usages[j])
internal_zone_usages.append(usage)
internal_zone.usages = internal_zone_usages
@staticmethod @staticmethod
def _search_archetypes(comnet_catalog, usage_name): def _search_archetypes(comnet_catalog, usage_name):
comnet_archetypes = comnet_catalog.entries('archetypes').usages comnet_archetypes = comnet_catalog.entries('archetypes').usages
@ -229,3 +265,37 @@ class ComnetUsageParameters:
_mean_internal_gain.schedules = _schedules _mean_internal_gain.schedules = _schedules
return [_mean_internal_gain] return [_mean_internal_gain]
@staticmethod
def average_storey_height_calculator(city, building):
climate_zone = ConstructionHelper.city_to_nrcan_climate_zone(city.climate_reference_city)
nrcan_catalog = ConstructionCatalogFactory('nrcan').catalog
main_function = None
functions = building.function.split('_')
if len(functions) > 1:
maximum_percentage = 0
for function in functions:
percentage_and_function = function.split('-')
if float(percentage_and_function[0]) > maximum_percentage:
maximum_percentage = float(percentage_and_function[0])
main_function = percentage_and_function[-1]
else:
main_function = functions[-1]
if main_function not in Dictionaries().hub_function_to_nrcan_construction_function:
logging.error('Building %s has an unknown building function %s', building.name, main_function)
function = Dictionaries().hub_function_to_nrcan_construction_function[main_function]
construction_archetype = None
average_storey_height = None
nrcan_archetypes = nrcan_catalog.entries('archetypes')
for building_archetype in nrcan_archetypes:
construction_period_limits = building_archetype.construction_period.split('_')
if int(construction_period_limits[0]) <= int(building.year_of_construction) <= int(construction_period_limits[1]):
if str(function) == str(building_archetype.function) and climate_zone == str(building_archetype.climate_zone):
construction_archetype = building_archetype
average_storey_height = building_archetype.average_storey_height
if construction_archetype is None:
logging.error('Building %s has unknown construction archetype for building function: %s '
'[%s], building year of construction: %s and climate zone %s', building.name, function,
building.function, building.year_of_construction, climate_zone)
return average_storey_height

View File

@ -3,11 +3,13 @@ NrcanUsageParameters extracts the usage properties from NRCAN catalog and assign
SPDX - License - Identifier: LGPL - 3.0 - or -later SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group Copyright © 2022 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
Project Collaborator Saeed Ranjbar saeed.ranjbar@concordia.ca
""" """
import logging import logging
import hub.helpers.constants as cte import hub.helpers.constants as cte
from hub.catalog_factories.construction_catalog_factory import ConstructionCatalogFactory
from hub.helpers.dictionaries import Dictionaries from hub.helpers.dictionaries import Dictionaries
from hub.city_model_structure.building_demand.usage import Usage from hub.city_model_structure.building_demand.usage import Usage
from hub.city_model_structure.building_demand.lighting import Lighting from hub.city_model_structure.building_demand.lighting import Lighting
@ -16,6 +18,7 @@ from hub.city_model_structure.building_demand.appliances import Appliances
from hub.city_model_structure.building_demand.thermal_control import ThermalControl from hub.city_model_structure.building_demand.thermal_control import ThermalControl
from hub.city_model_structure.building_demand.domestic_hot_water import DomesticHotWater from hub.city_model_structure.building_demand.domestic_hot_water import DomesticHotWater
from hub.catalog_factories.usage_catalog_factory import UsageCatalogFactory from hub.catalog_factories.usage_catalog_factory import UsageCatalogFactory
from hub.imports.construction.helpers.construction_helper import ConstructionHelper
class NrcanUsageParameters: class NrcanUsageParameters:
@ -33,53 +36,75 @@ class NrcanUsageParameters:
city = self._city city = self._city
nrcan_catalog = UsageCatalogFactory('nrcan').catalog nrcan_catalog = UsageCatalogFactory('nrcan').catalog
comnet_catalog = UsageCatalogFactory('comnet').catalog comnet_catalog = UsageCatalogFactory('comnet').catalog
for building in city.buildings: for building in city.buildings:
usage_name = Dictionaries().hub_usage_to_nrcan_usage[building.function] usages = []
try: nrcan_archetype_usages = []
archetype_usage = self._search_archetypes(nrcan_catalog, usage_name) comnet_archetype_usages = []
except KeyError: building_functions = building.function.split('_')
logging.error('Building %s has unknown usage archetype for usage %s', building.name, usage_name) for function in building_functions:
continue usages.append(function.split('-'))
for usage in usages:
usage_name = Dictionaries().hub_usage_to_nrcan_usage[usage[-1]]
try:
archetype_usage = self._search_archetypes(nrcan_catalog, usage_name)
nrcan_archetype_usages.append(archetype_usage)
except KeyError:
logging.error('Building %s has unknown usage archetype for usage %s', building.name, usage_name)
continue
comnet_usage_name = Dictionaries().hub_usage_to_comnet_usage[usage[-1]]
try:
comnet_archetype_usage = self._search_archetypes(comnet_catalog, comnet_usage_name)
comnet_archetype_usages.append(comnet_archetype_usage)
except KeyError:
logging.error('Building %s has unknown usage archetype for usage %s', building.name, comnet_usage_name)
continue
comnet_usage_name = Dictionaries().hub_usage_to_comnet_usage[building.function] for (i, internal_zone) in enumerate(building.internal_zones):
try: internal_zone_usages = []
comnet_archetype_usage = self._search_archetypes(comnet_catalog, comnet_usage_name)
except KeyError:
logging.error('Building %s has unknown usage archetype for usage %s', building.name, comnet_usage_name)
continue
for internal_zone in building.internal_zones:
if len(building.internal_zones) > 1: if len(building.internal_zones) > 1:
volume_per_area = 0 volume_per_area = 0
if internal_zone.area is None: if internal_zone.area is None:
logging.error('Building %s has internal zone area not defined, ACH cannot be calculated for usage %s', logging.error('Building %s has internal zone area not defined, ACH cannot be calculated for usage %s',
building.name, usage_name) building.name, usages[i][-1])
continue continue
if internal_zone.volume is None: if internal_zone.volume is None:
logging.error('Building %s has internal zone volume not defined, ACH cannot be calculated for usage %s', logging.error('Building %s has internal zone volume not defined, ACH cannot be calculated for usage %s',
building.name, usage_name) building.name, usages[i][-1])
continue continue
if internal_zone.area <= 0: if internal_zone.area <= 0:
logging.error('Building %s has internal zone area equal to 0, ACH cannot be calculated for usage %s', logging.error('Building %s has internal zone area equal to 0, ACH cannot be calculated for usage %s',
building.name, usage_name) building.name, usages[i][-1])
continue continue
volume_per_area += internal_zone.volume / internal_zone.area volume_per_area += internal_zone.volume / internal_zone.area
usage = Usage()
usage.name = usages[i][-1]
self._assign_values(usage, nrcan_archetype_usages[i], volume_per_area, building.cold_water_temperature)
self._assign_comnet_extra_values(usage, comnet_archetype_usages[i], nrcan_archetype_usages[i].occupancy.occupancy_density)
usage.percentage = 1
self._calculate_reduced_values_from_extended_library(usage, nrcan_archetype_usages[i])
internal_zone_usages.append(usage)
else: else:
if building.storeys_above_ground is None: storeys_above_ground = building.storeys_above_ground
logging.error('Building %s no number of storeys assigned, ACH cannot be calculated for usage %s', if storeys_above_ground is None:
building.name, usage_name) logging.error('Building %s no number of storeys assigned, ACH cannot be calculated for usage %s. '
'NRCAN construction data for the year %s is used to calculated number of storeys above '
'ground', building.name, usages, building.year_of_construction)
storeys_above_ground = self.average_storey_height_calculator(self._city, building)
continue continue
volume_per_area = building.volume / building.floor_area / building.storeys_above_ground volume_per_area = building.volume / building.floor_area / storeys_above_ground
for (j, mixed_usage) in enumerate(usages):
usage = Usage()
usage.name = mixed_usage[-1]
if len(usages) > 1:
usage.percentage = float(mixed_usage[0]) / 100
else:
usage.percentage = 1
self._assign_values(usage, nrcan_archetype_usages[j], volume_per_area, building.cold_water_temperature)
self._assign_comnet_extra_values(usage, comnet_archetype_usages[j], nrcan_archetype_usages[j].occupancy.occupancy_density)
self._calculate_reduced_values_from_extended_library(usage, nrcan_archetype_usages[j])
internal_zone_usages.append(usage)
usage = Usage() internal_zone.usages = internal_zone_usages
usage.name = usage_name
self._assign_values(usage, archetype_usage, volume_per_area, building.cold_water_temperature)
self._assign_comnet_extra_values(usage, comnet_archetype_usage, archetype_usage.occupancy.occupancy_density)
usage.percentage = 1
self._calculate_reduced_values_from_extended_library(usage, archetype_usage)
internal_zone.usages = [usage]
@staticmethod @staticmethod
def _search_archetypes(catalog, usage_name): def _search_archetypes(catalog, usage_name):
@ -197,3 +222,39 @@ class NrcanUsageParameters:
usage.thermal_control.mean_heating_set_point = max_heating_setpoint usage.thermal_control.mean_heating_set_point = max_heating_setpoint
usage.thermal_control.heating_set_back = min_heating_setpoint usage.thermal_control.heating_set_back = min_heating_setpoint
usage.thermal_control.mean_cooling_set_point = min_cooling_setpoint usage.thermal_control.mean_cooling_set_point = min_cooling_setpoint
@staticmethod
def average_storey_height_calculator(city, building):
climate_zone = ConstructionHelper.city_to_nrcan_climate_zone(city.climate_reference_city)
nrcan_catalog = ConstructionCatalogFactory('nrcan').catalog
main_function = None
functions = building.function.split('_')
if len(functions) > 1:
maximum_percentage = 0
for function in functions:
percentage_and_function = function.split('-')
if float(percentage_and_function[0]) > maximum_percentage:
maximum_percentage = float(percentage_and_function[0])
main_function = percentage_and_function[-1]
else:
main_function = functions[-1]
if main_function not in Dictionaries().hub_function_to_nrcan_construction_function:
logging.error('Building %s has an unknown building function %s', building.name, main_function)
function = Dictionaries().hub_function_to_nrcan_construction_function[main_function]
construction_archetype = None
average_storey_height = None
nrcan_archetypes = nrcan_catalog.entries('archetypes')
for building_archetype in nrcan_archetypes:
construction_period_limits = building_archetype.construction_period.split('_')
if int(construction_period_limits[0]) <= int(building.year_of_construction) <= int(construction_period_limits[1]):
if str(function) == str(building_archetype.function) and climate_zone == str(building_archetype.climate_zone):
construction_archetype = building_archetype
average_storey_height = building_archetype.average_storey_height
if construction_archetype is None:
logging.error('Building %s has unknown construction archetype for building function: %s '
'[%s], building year of construction: %s and climate zone %s', building.name, function,
building.function, building.year_of_construction, climate_zone)
return average_storey_height

View File

@ -0,0 +1,174 @@
"""
PalmaUsageParameters extracts the usage properties from Palma catalog and assigns to each building
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Cecilia Pérez cperez@irec.cat
"""
import logging
import hub.helpers.constants as cte
from hub.helpers.dictionaries import Dictionaries
from hub.city_model_structure.building_demand.usage import Usage
from hub.city_model_structure.building_demand.lighting import Lighting
from hub.city_model_structure.building_demand.occupancy import Occupancy
from hub.city_model_structure.building_demand.appliances import Appliances
from hub.city_model_structure.building_demand.thermal_control import ThermalControl
from hub.city_model_structure.building_demand.domestic_hot_water import DomesticHotWater
from hub.catalog_factories.usage_catalog_factory import UsageCatalogFactory
class PalmaUsageParameters:
"""
PalmaUsageParameters class
"""
def __init__(self, city):
self._city = city
def enrich_buildings(self):
"""
Returns the city with the usage parameters assigned to the buildings
:return:
"""
city = self._city
palma_catalog = UsageCatalogFactory('palma').catalog
for building in city.buildings:
palma_usage_name = Dictionaries().hub_usage_to_palma_usage[building.function]
try:
archetype_usage = self._search_archetypes(palma_catalog, palma_usage_name)
except KeyError:
logging.error('Building %s has unknown usage archetype for usage %s', building.name, palma_usage_name)
continue
for internal_zone in building.internal_zones:
if len(building.internal_zones) > 1:
volume_per_area = 0
if internal_zone.area is None:
logging.error('Building %s has internal zone area not defined, ACH cannot be calculated for usage %s',
building.name, palma_usage_name)
continue
if internal_zone.volume is None:
logging.error('Building %s has internal zone volume not defined, ACH cannot be calculated for usage %s',
building.name, palma_usage_name)
continue
if internal_zone.area <= 0:
logging.error('Building %s has internal zone area equal to 0, ACH cannot be calculated for usage %s',
building.name, palma_usage_name)
continue
volume_per_area += internal_zone.volume / internal_zone.area
else:
if building.storeys_above_ground is None:
logging.error('Building %s no number of storeys assigned, ACH cannot be calculated for usage %s',
building.name, palma_usage_name)
continue
volume_per_area = building.volume / building.floor_area / building.storeys_above_ground
usage = Usage()
usage.name = palma_usage_name
self._assign_values(usage, archetype_usage, volume_per_area, building.cold_water_temperature)
usage.percentage = 1
self._calculate_reduced_values_from_extended_library(usage, archetype_usage)
internal_zone.usages = [usage]
@staticmethod
def _search_archetypes(palma_catalog, usage_name):
archetypes = palma_catalog.entries('archetypes').usages
for building_archetype in archetypes:
if str(usage_name) == str(building_archetype.name):
return building_archetype
raise KeyError('archetype not found')
@staticmethod
def _assign_values(usage, archetype, volume_per_area, cold_water_temperature):
if archetype.mechanical_air_change > 0:
# 1/s
usage.mechanical_air_change = archetype.mechanical_air_change
elif archetype.ventilation_rate > 0:
# m3/m2.s to 1/s
usage.mechanical_air_change = archetype.ventilation_rate / volume_per_area
else:
usage.mechanical_air_change = 0
_occupancy = Occupancy()
_occupancy.occupancy_density = archetype.occupancy.occupancy_density
_occupancy.sensible_radiative_internal_gain = archetype.occupancy.sensible_radiative_internal_gain
_occupancy.latent_internal_gain = archetype.occupancy.latent_internal_gain
_occupancy.sensible_convective_internal_gain = archetype.occupancy.sensible_convective_internal_gain
_occupancy.occupancy_schedules = archetype.occupancy.schedules
usage.occupancy = _occupancy
_lighting = Lighting()
_lighting.density = archetype.lighting.density
_lighting.convective_fraction = archetype.lighting.convective_fraction
_lighting.radiative_fraction = archetype.lighting.radiative_fraction
_lighting.latent_fraction = archetype.lighting.latent_fraction
_lighting.schedules = archetype.lighting.schedules
usage.lighting = _lighting
_appliances = Appliances()
_appliances.density = archetype.appliances.density
_appliances.convective_fraction = archetype.appliances.convective_fraction
_appliances.radiative_fraction = archetype.appliances.radiative_fraction
_appliances.latent_fraction = archetype.appliances.latent_fraction
_appliances.schedules = archetype.appliances.schedules
usage.appliances = _appliances
_control = ThermalControl()
_control.cooling_set_point_schedules = archetype.thermal_control.cooling_set_point_schedules
_control.heating_set_point_schedules = archetype.thermal_control.heating_set_point_schedules
_control.hvac_availability_schedules = archetype.thermal_control.hvac_availability_schedules
usage.thermal_control = _control
_domestic_hot_water = DomesticHotWater()
_domestic_hot_water.peak_flow = archetype.domestic_hot_water.peak_flow
_domestic_hot_water.service_temperature = archetype.domestic_hot_water.service_temperature
density = None
if len(cold_water_temperature) > 0:
cold_temperature = cold_water_temperature[cte.YEAR][0]
density = (
archetype.domestic_hot_water.peak_flow * cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY *
(archetype.domestic_hot_water.service_temperature - cold_temperature)
)
_domestic_hot_water.density = density
_domestic_hot_water.schedules = archetype.domestic_hot_water.schedules
usage.domestic_hot_water = _domestic_hot_water
@staticmethod
def _calculate_reduced_values_from_extended_library(usage, archetype):
number_of_days_per_type = {'WD': 251, 'Sat': 52, 'Sun': 62}
total = 0
for schedule in archetype.thermal_control.hvac_availability_schedules:
if schedule.day_types[0] == cte.SATURDAY:
for value in schedule.values:
total += value * number_of_days_per_type['Sat']
elif schedule.day_types[0] == cte.SUNDAY:
for value in schedule.values:
total += value * number_of_days_per_type['Sun']
else:
for value in schedule.values:
total += value * number_of_days_per_type['WD']
usage.hours_day = total / 365
usage.days_year = 365
max_heating_setpoint = cte.MIN_FLOAT
min_heating_setpoint = cte.MAX_FLOAT
for schedule in archetype.thermal_control.heating_set_point_schedules:
if schedule.values is None:
max_heating_setpoint = None
min_heating_setpoint = None
break
if max(schedule.values) > max_heating_setpoint:
max_heating_setpoint = max(schedule.values)
if min(schedule.values) < min_heating_setpoint:
min_heating_setpoint = min(schedule.values)
min_cooling_setpoint = cte.MAX_FLOAT
for schedule in archetype.thermal_control.cooling_set_point_schedules:
if schedule.values is None:
min_cooling_setpoint = None
break
if min(schedule.values) < min_cooling_setpoint:
min_cooling_setpoint = min(schedule.values)
usage.thermal_control.mean_heating_set_point = max_heating_setpoint
usage.thermal_control.heating_set_back = min_heating_setpoint
usage.thermal_control.mean_cooling_set_point = min_cooling_setpoint

View File

@ -10,6 +10,7 @@ from hub.helpers.utils import validate_import_export_type
from hub.imports.usage.comnet_usage_parameters import ComnetUsageParameters from hub.imports.usage.comnet_usage_parameters import ComnetUsageParameters
from hub.imports.usage.nrcan_usage_parameters import NrcanUsageParameters from hub.imports.usage.nrcan_usage_parameters import NrcanUsageParameters
from hub.imports.usage.eilat_usage_parameters import EilatUsageParameters from hub.imports.usage.eilat_usage_parameters import EilatUsageParameters
from hub.imports.usage.palma_usage_parameters import PalmaUsageParameters
class UsageFactory: class UsageFactory:
@ -48,6 +49,15 @@ class UsageFactory:
for building in self._city.buildings: for building in self._city.buildings:
building.level_of_detail.usage = 2 building.level_of_detail.usage = 2
def _palma(self):
"""
Enrich the city with Palma usage library
"""
PalmaUsageParameters(self._city).enrich_buildings()
self._city.level_of_detail.usage = 2
for building in self._city.buildings:
building.level_of_detail.usage = 2
def enrich(self): def enrich(self):
""" """
Enrich the city given to the class using the usage factory given handler Enrich the city given to the class using the usage factory given handler

View File

View File

@ -110,12 +110,9 @@ class EpwWeatherParameters:
# new_value = pd.DataFrame(self._weather_values[['dry_bulb_temperature_c']].to_numpy(), columns=['epw']) # new_value = pd.DataFrame(self._weather_values[['dry_bulb_temperature_c']].to_numpy(), columns=['epw'])
# number_invalid_records = new_value[new_value.epw == 99.9].count().epw # number_invalid_records = new_value[new_value.epw == 99.9].count().epw
building.external_temperature[cte.HOUR] = self._weather_values['dry_bulb_temperature_c'] building.external_temperature[cte.HOUR] = self._weather_values['dry_bulb_temperature_c']
building.global_horizontal[cte.HOUR] = [x * cte.WATTS_HOUR_TO_JULES building.global_horizontal[cte.HOUR] = [x for x in self._weather_values['global_horizontal_radiation_wh_m2']]
for x in self._weather_values['global_horizontal_radiation_wh_m2']] building.diffuse[cte.HOUR] = [x for x in self._weather_values['diffuse_horizontal_radiation_wh_m2']]
building.diffuse[cte.HOUR] = [x * cte.WATTS_HOUR_TO_JULES building.direct_normal[cte.HOUR] = [x for x in self._weather_values['direct_normal_radiation_wh_m2']]
for x in self._weather_values['diffuse_horizontal_radiation_wh_m2']]
building.direct_normal[cte.HOUR] = [x * cte.WATTS_HOUR_TO_JULES
for x in self._weather_values['direct_normal_radiation_wh_m2']]
building.beam[cte.HOUR] = [building.global_horizontal[cte.HOUR][i] - building.beam[cte.HOUR] = [building.global_horizontal[cte.HOUR][i] -
building.diffuse[cte.HOUR][i] building.diffuse[cte.HOUR][i]
for i in range(len(building.global_horizontal[cte.HOUR]))] for i in range(len(building.global_horizontal[cte.HOUR]))]

View File

@ -1,4 +1,4 @@
""" """
Hub version number Hub version number
""" """
__version__ = '0.2.0.7' __version__ = '0.2.0.13'

View File

@ -1,5 +1,5 @@
xmltodict xmltodict
numpy numpy==1.26.4
trimesh[all] trimesh[all]
pyproj pyproj
pandas pandas
@ -24,4 +24,5 @@ triangle
psycopg2-binary psycopg2-binary
Pillow Pillow
pathlib pathlib
sqlalchemy_utils sqlalchemy_utils
build

View File

@ -71,3 +71,23 @@ class TestConstructionCatalog(TestCase):
with self.assertRaises(IndexError): with self.assertRaises(IndexError):
catalog.get_entry('unknown') catalog.get_entry('unknown')
def test_palma_catalog(self):
catalog = ConstructionCatalogFactory('palma').catalog
catalog_categories = catalog.names()
constructions = catalog.names('constructions')
windows = catalog.names('windows')
materials = catalog.names('materials')
self.assertEqual(29, len(constructions['constructions']))
self.assertEqual(9, len(windows['windows']))
self.assertEqual(122, len(materials['materials']))
with self.assertRaises(ValueError):
catalog.names('unknown')
# retrieving all the entries should not raise any exceptions
for category in catalog_categories:
for value in catalog_categories[category]:
catalog.get_entry(value)
with self.assertRaises(IndexError):
catalog.get_entry('unknown')

View File

@ -296,6 +296,27 @@ class TestConstructionFactory(TestCase):
function_to_hub=Dictionaries().eilat_function_to_hub_function).city function_to_hub=Dictionaries().eilat_function_to_hub_function).city
ConstructionFactory('eilat', city).enrich() ConstructionFactory('eilat', city).enrich()
self._check_buildings(city)
for building in city.buildings:
for internal_zone in building.internal_zones:
self._check_thermal_zones(internal_zone)
for thermal_zone in internal_zone.thermal_zones_from_internal_zones:
self._check_thermal_boundaries(thermal_zone)
for thermal_boundary in thermal_zone.thermal_boundaries:
self.assertIsNotNone(thermal_boundary.layers, 'layers is none')
self._check_thermal_openings(thermal_boundary)
self._check_surfaces(thermal_boundary)
def test_palma_construction_factory(self):
file = 'palma_test_file.geojson'
file_path = (self._example_path / file).resolve()
city = GeometryFactory(file_type='geojson',
path=file_path,
height_field='measuredHeight',
year_of_construction_field='yearOfConstruction',
function_field='usage',
function_to_hub=Dictionaries().palma_function_to_hub_function).city
ConstructionFactory('palma', city).enrich()
self._check_buildings(city) self._check_buildings(city)
for building in city.buildings: for building in city.buildings:
for internal_zone in building.internal_zones: for internal_zone in building.internal_zones:

View File

@ -54,4 +54,23 @@ class TestSystemsCatalog(TestCase):
with self.assertRaises(IndexError): with self.assertRaises(IndexError):
catalog.get_entry('unknown') catalog.get_entry('unknown')
print(catalog.entries())
def test_palma_catalog(self):
catalog = EnergySystemsCatalogFactory('palma').catalog
catalog_categories = catalog.names()
archetypes = catalog.names()
self.assertEqual(15, len(archetypes['archetypes']))
systems = catalog.names('systems')
self.assertEqual(13, len(systems['systems']))
generation_equipments = catalog.names('generation_equipments')
self.assertEqual(16, len(generation_equipments['generation_equipments']))
with self.assertRaises(ValueError):
catalog.names('unknown')
# retrieving all the entries should not raise any exceptions
for category in catalog_categories:
for value in catalog_categories[category]:
catalog.get_entry(value)
with self.assertRaises(IndexError):
catalog.get_entry('unknown')

View File

@ -127,6 +127,43 @@ class TestSystemsFactory(TestCase):
_generation_system = cast(NonPvGenerationSystem, energy_system.generation_systems[0]) _generation_system = cast(NonPvGenerationSystem, energy_system.generation_systems[0])
_generation_system.nominal_cooling_output = building.cooling_peak_load[cte.YEAR][0] _generation_system.nominal_cooling_output = building.cooling_peak_load[cte.YEAR][0]
for building in self._city.buildings:
self.assertLess(0, building.heating_consumption[cte.YEAR][0])
self.assertLess(0, building.cooling_consumption[cte.YEAR][0])
self.assertLess(0, building.domestic_hot_water_consumption[cte.YEAR][0])
self.assertLess(0, building.onsite_electrical_production[cte.YEAR][0])
def test_palma_system_results(self):
"""
Enrich the city with the construction information and verify it
"""
ConstructionFactory('nrcan', self._city).enrich()
UsageFactory('nrcan', self._city).enrich()
WeatherFactory('epw', self._city).enrich()
ExportsFactory('sra', self._city, self._output_path).export()
sra_path = (self._output_path / f'{self._city.name}_sra.xml').resolve()
subprocess.run(['sra', str(sra_path)])
ResultFactory('sra', self._city, self._output_path).enrich()
EnergyBuildingsExportsFactory('insel_monthly_energy_balance', self._city, self._output_path).export()
for building in self._city.buildings:
insel_path = (self._output_path / f'{building.name}.insel')
subprocess.run(['insel', str(insel_path)])
ResultFactory('insel_monthly_energy_balance', self._city, self._output_path).enrich()
for building in self._city.buildings:
building.energy_systems_archetype_name = 'PV and heat pump'
EnergySystemsFactory('palma', self._city).enrich()
# Need to assign energy systems to buildings:
for building in self._city.buildings:
_building_energy_systems = []
for energy_system in building.energy_systems:
if cte.HEATING in energy_system.demand_types:
_generation_system = cast(NonPvGenerationSystem, energy_system.generation_systems[0])
_generation_system.nominal_heat_output = building.heating_peak_load[cte.YEAR][0]
if cte.COOLING in energy_system.demand_types:
_generation_system = cast(NonPvGenerationSystem, energy_system.generation_systems[0])
_generation_system.nominal_cooling_output = building.cooling_peak_load[cte.YEAR][0]
for building in self._city.buildings: for building in self._city.buildings:
self.assertLess(0, building.heating_consumption[cte.YEAR][0]) self.assertLess(0, building.heating_consumption[cte.YEAR][0])
self.assertLess(0, building.cooling_consumption[cte.YEAR][0]) self.assertLess(0, building.cooling_consumption[cte.YEAR][0])

View File

@ -21,3 +21,10 @@ class TestConstructionCatalog(TestCase):
self.assertIsNotNone(catalog, 'catalog is none') self.assertIsNotNone(catalog, 'catalog is none')
content = catalog.entries() content = catalog.entries()
self.assertEqual(34, len(content.usages), 'Wrong number of usages') self.assertEqual(34, len(content.usages), 'Wrong number of usages')
def test_palma_catalog(self):
catalog = UsageCatalogFactory('palma').catalog
self.assertIsNotNone(catalog, 'catalog is none')
content = catalog.entries()
#print(catalog.entries())
self.assertEqual(1, len(content.usages), 'Wrong number of usages')

View File

@ -182,3 +182,61 @@ class TestUsageFactory(TestCase):
self.assertIsNotNone(usage.domestic_hot_water.service_temperature, self.assertIsNotNone(usage.domestic_hot_water.service_temperature,
'domestic hot water service temperature is none') 'domestic hot water service temperature is none')
self.assertIsNotNone(usage.domestic_hot_water.schedules, 'domestic hot water schedules is none') self.assertIsNotNone(usage.domestic_hot_water.schedules, 'domestic hot water schedules is none')
def test_import_palma(self):
"""
Enrich the city with the usage information from palma and verify it
"""
file = 'palma_test_file.geojson'
file_path = (self._example_path / file).resolve()
city = GeometryFactory('geojson',
path=file_path,
height_field='measuredHeight',
year_of_construction_field='yearOfConstruction',
function_field='usage',
function_to_hub=Dictionaries().palma_function_to_hub_function).city
ConstructionFactory('palma', city).enrich()
UsageFactory('palma', city).enrich()
self._check_buildings(city)
for building in city.buildings:
for internal_zone in building.internal_zones:
if internal_zone.usages is not None:
self.assertIsNot(len(internal_zone.usages), 0, 'no building usage defined')
for usage in internal_zone.usages:
self._check_usage(usage)
self.assertIsNotNone(usage.mechanical_air_change, 'mechanical air change is none')
self.assertIsNotNone(usage.thermal_control.heating_set_point_schedules,
'control heating set point schedule is none')
self.assertIsNotNone(usage.thermal_control.cooling_set_point_schedules,
'control cooling set point schedule is none')
self.assertIsNotNone(usage.occupancy, 'occupancy is none')
occupancy = usage.occupancy
self.assertIsNotNone(occupancy.occupancy_density, 'occupancy density is none')
self.assertIsNotNone(occupancy.latent_internal_gain, 'occupancy latent internal gain is none')
self.assertIsNotNone(occupancy.sensible_convective_internal_gain,
'occupancy sensible convective internal gain is none')
self.assertIsNotNone(occupancy.sensible_radiative_internal_gain,
'occupancy sensible radiant internal gain is none')
self.assertIsNotNone(occupancy.occupancy_schedules, 'occupancy schedule is none')
self.assertIsNotNone(usage.lighting, 'lighting is none')
lighting = usage.lighting
self.assertIsNotNone(lighting.density, 'lighting density is none')
self.assertIsNotNone(lighting.latent_fraction, 'lighting latent fraction is none')
self.assertIsNotNone(lighting.convective_fraction, 'lighting convective fraction is none')
self.assertIsNotNone(lighting.radiative_fraction, 'lighting radiant fraction is none')
self.assertIsNotNone(lighting.schedules, 'lighting schedule is none')
self.assertIsNotNone(usage.appliances, 'appliances is none')
appliances = usage.appliances
self.assertIsNotNone(appliances.density, 'appliances density is none')
self.assertIsNotNone(appliances.latent_fraction, 'appliances latent fraction is none')
self.assertIsNotNone(appliances.convective_fraction, 'appliances convective fraction is none')
self.assertIsNotNone(appliances.radiative_fraction, 'appliances radiant fraction is none')
self.assertIsNotNone(appliances.schedules, 'appliances schedule is none')
self.assertIsNotNone(usage.thermal_control.hvac_availability_schedules,
'control hvac availability is none')
self.assertIsNotNone(usage.domestic_hot_water.peak_flow, 'domestic hot water peak flow is none')
self.assertIsNotNone(usage.domestic_hot_water.service_temperature,
'domestic hot water service temperature is none')
self.assertIsNotNone(usage.domestic_hot_water.schedules, 'domestic hot water schedules is none')

View File

@ -0,0 +1,325 @@
{
"type": "FeatureCollection",
"features": [
{
"type": "Feature",
"properties": {
"gml_id": "1701545DD7810B-7",
"name": "Build_1701545DD7810B-7",
"usage": "Medium multifamily building",
"yearOfConstruction": 1900,
"measuredHeight": 1.91,
"id": 10000139
},
"geometry": {
"type": "Polygon",
"coordinates": [
[
[
2.670070724294205,
39.56930642367412,
10.59
],
[
2.670185785609704,
39.56929891118361,
10.59
],
[
2.670190100634483,
39.56934649857977,
8.68
],
[
2.670126975953838,
39.569351455373074,
8.68
],
[
2.670077594530873,
39.569355279790706,
8.68
],
[
2.670070724294205,
39.56930642367412,
10.59
]
]
]
}
},
{
"type": "Feature",
"properties": {
"gml_id": "1701556DD7810B-0",
"name": "Build_1701556DD7810B-0",
"usage": "Single-family building",
"yearOfConstruction": 1900,
"measuredHeight": 2.41,
"id": 10000187
},
"geometry": {
"type": "Polygon",
"coordinates": [
[
[
2.670200083996169,
39.569672074284036,
11.45
],
[
2.670200346722237,
39.569665767718384,
11.45
],
[
2.670198829516351,
39.569641975838955,
11.45
],
[
2.670196767769449,
39.56961025322274,
9.04
],
[
2.670193356349873,
39.5695685251824,
11.45
],
[
2.670277913478355,
39.56956137655187,
9.04
],
[
2.670279246946909,
39.56957480589787,
11.45
],
[
2.67033655158975,
39.56956965230401,
9.04
],
[
2.670344584906827,
39.5696433805295,
11.45
],
[
2.670355415974015,
39.56964260031243,
11.45
],
[
2.670356972062089,
39.569658192795536,
11.45
],
[
2.670325184211198,
39.56965909377396,
11.45
],
[
2.670324202558058,
39.569645124800005,
11.45
],
[
2.670282742314197,
39.56964798062581,
9.04
],
[
2.670220439148762,
39.56965149812889,
11.45
],
[
2.670223258772483,
39.56967069837706,
11.45
],
[
2.670200083996169,
39.569672074284036,
11.45
]
]
]
}
},
{
"type": "Feature",
"properties": {
"gml_id": "1701557DD7810B",
"name": "Build_1701557DD7810B",
"usage": "Single-family building",
"yearOfConstruction": 1900,
"measuredHeight": 3.14,
"id": 10000205
},
"geometry": {
"type": "Polygon",
"coordinates": [
[
[
2.670076001010665,
39.56959324111637,
12.07
],
[
2.670075832651971,
39.56957963486689,
8.93
],
[
2.670193356349873,
39.5695685251824,
12.07
],
[
2.670196767769449,
39.56961025322274,
8.93
],
[
2.670198829516351,
39.569641975838955,
8.93
],
[
2.670200346722237,
39.569665767718384,
12.07
],
[
2.670165875186915,
39.56966792249954,
12.07
],
[
2.670163320870091,
39.569641875065045,
12.07
],
[
2.670162763096683,
39.56963673752855,
12.07
],
[
2.670099057749991,
39.56964133224028,
12.07
],
[
2.670097648460491,
39.569619342754734,
12.07
],
[
2.670077380826434,
39.56962144772541,
12.07
],
[
2.670076001010665,
39.56959324111637,
12.07
]
]
]
}
},
{
"type": "Feature",
"properties": {
"gml_id": "1701548DD7810B-1",
"name": "Build_1701548DD7810B-1",
"usage": "Single-family building",
"yearOfConstruction": 1903,
"measuredHeight": 4.01,
"id": 10000230
},
"geometry": {
"type": "Polygon",
"coordinates": [
[
[
2.670232581277104,
39.56952142176154,
12.83
],
[
2.670223774973652,
39.56943886109741,
8.82
],
[
2.670329525337772,
39.56943078141684,
8.82
],
[
2.670338924541374,
39.56951109114386,
8.82
],
[
2.670232581277104,
39.56952142176154,
12.83
]
]
]
}
},
{
"type": "Feature",
"properties": {
"gml_id": "1701548DD7810B-0",
"name": "Build_1701548DD7810B-0",
"usage": "Single-family building",
"yearOfConstruction": 1903,
"measuredHeight": 3.54,
"id": 10000246
},
"geometry": {
"type": "Polygon",
"coordinates": [
[
[
2.670221550271632,
39.569416959403185,
12.6
],
[
2.670241580303924,
39.56941584488198,
12.6
],
[
2.670243380302281,
39.569429095343594,
12.6
],
[
2.67022299587959,
39.56943129011285,
12.6
],
[
2.670221550271632,
39.569416959403185,
12.6
]
]
]
}
}
]
}

142
texttest
View File

@ -1,142 +0,0 @@
ZoneControl:Thermostat,
Room_180_7ad8616b Thermostat, !- Name
Room_180_7ad8616b, !- Zone or ZoneList Name
Room_180_7ad8616b Thermostat Schedule, !- Control Type Schedule Name
ThermostatSetpoint:DualSetpoint, !- Control 1 Object Type
LargeOffice Building_Setpoint 26, !- Control 1 Name
, !- Control 2 Object Type
, !- Control 2 Name
, !- Control 3 Object Type
, !- Control 3 Name
, !- Control 4 Object Type
, !- Control 4 Name
0; !- Temperature Difference Between Cutout And Setpoint {deltaC}
Schedule:Compact,
Room_180_7ad8616b Thermostat Schedule, !- Name
Room_180_7ad8616b Thermostat Schedule Type Limits, !- Schedule Type Limits Name
Through: 12/31, !- Field 1
For: AllDays, !- Field 2
Until: 24:00, !- Field 3
4; !- Field 4
ScheduleTypeLimits,
Room_180_7ad8616b Thermostat Schedule Type Limits, !- Name
0, !- Lower Limit Value {BasedOnField A3}
4, !- Upper Limit Value {BasedOnField A3}
DISCRETE; !- Numeric Type
ThermostatSetpoint:DualSetpoint,
LargeOffice Building_Setpoint 26, !- Name
LargeOffice Building_Setpoint_HtgSetp Schedule, !- Heating Setpoint Temperature Schedule Name
LargeOffice Building_Setpoint_ClgSetp Schedule; !- Cooling Setpoint Temperature Schedule Name
ZoneHVAC:EquipmentConnections,
Room_180_7ad8616b, !- Zone Name
Room_180_7ad8616b Equipment List, !- Zone Conditioning Equipment List Name
Room_180_7ad8616b Inlet Node List, !- Zone Air Inlet Node or NodeList Name
, !- Zone Air Exhaust Node or NodeList Name
Node 27, !- Zone Air Node Name
Room_180_7ad8616b Return Node List; !- Zone Return Air Node or NodeList Name
NodeList,
Room_180_7ad8616b Inlet Node List, !- Name
Node 305; !- Node Name 1
NodeList,
Room_180_7ad8616b Return Node List, !- Name
Node 308; !- Node Name 1
ZoneHVAC:Baseboard:Convective:Electric,
Elec Baseboard 1, !- Name
Always On Discrete hvac_library, !- Availability Schedule Name
, !- Heating Design Capacity Method
Autosize, !- Heating Design Capacity {W}
, !- Heating Design Capacity Per Floor Area {W/m2}
, !- Fraction of Autosized Heating Design Capacity
1; !- Efficiency
AirTerminal:SingleDuct:ConstantVolume:NoReheat,
Diffuser 21, !- Name
Always On Discrete hvac_library, !- Availability Schedule Name
Node 307, !- Air Inlet Node Name
Node 305, !- Air Outlet Node Name
AutoSize; !- Maximum Air Flow Rate {m3/s}
ZoneHVAC:AirDistributionUnit,
ADU Diffuser 21, !- Name
Node 305, !- Air Distribution Unit Outlet Node Name
AirTerminal:SingleDuct:ConstantVolume:NoReheat, !- Air Terminal Object Type
Diffuser 21; !- Air Terminal Name
ZoneHVAC:EquipmentList,
Room_180_7ad8616b Equipment List, !- Name
SequentialLoad, !- Load Distribution Scheme
ZoneHVAC:Baseboard:Convective:Electric, !- Zone Equipment Object Type 1
Elec Baseboard 1, !- Zone Equipment Name 1
1, !- Zone Equipment Cooling Sequence 1
1, !- Zone Equipment Heating or No-Load Sequence 1
, !- Zone Equipment Sequential Cooling Fraction Schedule Name 1
, !- Zone Equipment Sequential Heating Fraction Schedule Name 1
ZoneHVAC:AirDistributionUnit, !- Zone Equipment Object Type 2
ADU Diffuser 21, !- Zone Equipment Name 2
2, !- Zone Equipment Cooling Sequence 2
2, !- Zone Equipment Heating or No-Load Sequence 2
, !- Zone Equipment Sequential Cooling Fraction Schedule Name 2
; !- Zone Equipment Sequential Heating Fraction Schedule Name 2
Sizing:Zone,
Room_180_7ad8616b, !- Zone or ZoneList Name
SupplyAirTemperature, !- Zone Cooling Design Supply Air Temperature Input Method
14, !- Zone Cooling Design Supply Air Temperature {C}
11.11, !- Zone Cooling Design Supply Air Temperature Difference {deltaC}
SupplyAirTemperature, !- Zone Heating Design Supply Air Temperature Input Method
40, !- Zone Heating Design Supply Air Temperature {C}
11.11, !- Zone Heating Design Supply Air Temperature Difference {deltaC}
0.0085, !- Zone Cooling Design Supply Air Humidity Ratio {kgWater/kgDryAir}
0.008, !- Zone Heating Design Supply Air Humidity Ratio {kgWater/kgDryAir}
Room_180_7ad8616b DSOA Space List, !- Design Specification Outdoor Air Object Name
, !- Zone Heating Sizing Factor
, !- Zone Cooling Sizing Factor
DesignDay, !- Cooling Design Air Flow Method
0, !- Cooling Design Air Flow Rate {m3/s}
0.000762, !- Cooling Minimum Air Flow per Zone Floor Area {m3/s-m2}
0, !- Cooling Minimum Air Flow {m3/s}
0, !- Cooling Minimum Air Flow Fraction
DesignDay, !- Heating Design Air Flow Method
0, !- Heating Design Air Flow Rate {m3/s}
0.002032, !- Heating Maximum Air Flow per Zone Floor Area {m3/s-m2}
0.1415762, !- Heating Maximum Air Flow {m3/s}
0.3, !- Heating Maximum Air Flow Fraction
, !- Design Specification Zone Air Distribution Object Name
No, !- Account for Dedicated Outdoor Air System
, !- Dedicated Outdoor Air System Control Strategy
, !- Dedicated Outdoor Air Low Setpoint Temperature for Design {C}
, !- Dedicated Outdoor Air High Setpoint Temperature for Design {C}
Sensible Load Only No Latent Load, !- Zone Load Sizing Method
HumidityRatioDifference, !- Zone Latent Cooling Design Supply Air Humidity Ratio Input Method
, !- Zone Dehumidification Design Supply Air Humidity Ratio {kgWater/kgDryAir}
0.005, !- Zone Cooling Design Supply Air Humidity Ratio Difference {kgWater/kgDryAir}
HumidityRatioDifference, !- Zone Latent Heating Design Supply Air Humidity Ratio Input Method
, !- Zone Humidification Design Supply Air Humidity Ratio {kgWater/kgDryAir}
0.005; !- Zone Humidification Design Supply Air Humidity Ratio Difference {kgWater/kgDryAir}
DesignSpecification:OutdoorAir:SpaceList,
Room_180_7ad8616b DSOA Space List, !- Name
Room_180_7ad8616b_Space, !- Space Name 1
MidriseApartment Apartment Ventilation; !- Space Design Specification Outdoor Air Object Name 1
Zone,
Room_181_3a411b5d, !- Name
, !- Direction of Relative North {deg}
0, !- X Origin {m}
0, !- Y Origin {m}
0, !- Z Origin {m}
, !- Type
1, !- Multiplier
4, !- Ceiling Height {m}
291.62935408288, !- Volume {m3}
, !- Floor Area {m2}
, !- Zone Inside Convection Algorithm
, !- Zone Outside Convection Algorithm
Yes; !- Part of Total Floor Area