Compare commits

..

No commits in common. "3dd64143ab4f125431dd6591dcf05d076eafdc73" and "bf4018a64986088f26f6bc1c2e48e5c84c7eaf08" have entirely different histories.

34 changed files with 10 additions and 6335 deletions

View File

@ -1,236 +0,0 @@
"""
Palma construction catalog
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Cecilia Pérez Pérez cperez@irec.cat
"""
import json
from pathlib import Path
from hub.catalog_factories.catalog import Catalog
from hub.catalog_factories.data_models.construction.content import Content
from hub.catalog_factories.construction.construction_helper import ConstructionHelper
from hub.catalog_factories.data_models.construction.construction import Construction
from hub.catalog_factories.data_models.construction.archetype import Archetype
from hub.catalog_factories.data_models.construction.window import Window
from hub.catalog_factories.data_models.construction.material import Material
from hub.catalog_factories.data_models.construction.layer import Layer
import hub.helpers.constants as cte
class PalmaCatalog(Catalog):
"""
Palma catalog class
"""
def __init__(self, path):
_path_archetypes = Path(path / 'palma_archetypes.json').resolve()
_path_constructions = (path / 'palma_constructions.json').resolve()
with open(_path_archetypes, 'r', encoding='utf-8') as file:
self._archetypes = json.load(file)
with open(_path_constructions, 'r', encoding='utf-8') as file:
self._constructions = json.load(file)
self._catalog_windows = self._load_windows()
self._catalog_materials = self._load_materials()
self._catalog_constructions = self._load_constructions()
self._catalog_archetypes = self._load_archetypes()
# store the full catalog data model in self._content
self._content = Content(self._catalog_archetypes,
self._catalog_constructions,
self._catalog_materials,
self._catalog_windows)
def _load_windows(self):
_catalog_windows = []
windows = self._constructions['transparent_surfaces']
for window in windows:
name = list(window.keys())[0]
window_id = name
g_value = window[name]['shgc']
window_type = window[name]['type']
frame_ratio = window[name]['frame_ratio']
overall_u_value = window[name]['u_value']
_catalog_windows.append(Window(window_id, frame_ratio, g_value, overall_u_value, name, window_type))
return _catalog_windows
def _load_materials(self):
_catalog_materials = []
materials = self._constructions['materials']
for material in materials:
name = list(material.keys())[0]
material_id = name
no_mass = material[name]['no_mass']
thermal_resistance = None
conductivity = None
density = None
specific_heat = None
solar_absorptance = None
thermal_absorptance = None
visible_absorptance = None
if no_mass:
thermal_resistance = material[name]['thermal_resistance']
else:
solar_absorptance = material[name]['solar_absorptance']
thermal_absorptance = str(1 - float(material[name]['thermal_emittance']))
visible_absorptance = material[name]['visible_absorptance']
conductivity = material[name]['conductivity']
density = material[name]['density']
specific_heat = material[name]['specific_heat']
_material = Material(material_id,
name,
solar_absorptance,
thermal_absorptance,
visible_absorptance,
no_mass,
thermal_resistance,
conductivity,
density,
specific_heat)
_catalog_materials.append(_material)
return _catalog_materials
def _load_constructions(self):
_catalog_constructions = []
constructions = self._constructions['opaque_surfaces']
for construction in constructions:
name = list(construction.keys())[0]
construction_id = name
construction_type = ConstructionHelper().nrcan_surfaces_types_to_hub_types[construction[name]['type']]
layers = []
for layer in construction[name]['layers']:
layer_id = layer
layer_name = layer
material_id = layer
thickness = construction[name]['layers'][layer]
for material in self._catalog_materials:
if str(material_id) == str(material.id):
layers.append(Layer(layer_id, layer_name, material, thickness))
break
_catalog_constructions.append(Construction(construction_id, construction_type, name, layers))
return _catalog_constructions
def _load_archetypes(self):
_catalog_archetypes = []
archetypes = self._archetypes['archetypes']
for archetype in archetypes:
archetype_id = f'{archetype["function"]}_{archetype["period_of_construction"]}_{archetype["climate_zone"]}'
function = archetype['function']
name = archetype_id
climate_zone = archetype['climate_zone']
construction_period = archetype['period_of_construction']
average_storey_height = archetype['average_storey_height']
thermal_capacity = float(archetype['thermal_capacity']) * 1000
extra_loses_due_to_thermal_bridges = archetype['extra_loses_due_thermal_bridges']
infiltration_rate_for_ventilation_system_off = archetype['infiltration_rate_for_ventilation_system_off'] / cte.HOUR_TO_SECONDS
infiltration_rate_for_ventilation_system_on = archetype['infiltration_rate_for_ventilation_system_on'] / cte.HOUR_TO_SECONDS
archetype_constructions = []
for archetype_construction in archetype['constructions']:
archetype_construction_type = ConstructionHelper().nrcan_surfaces_types_to_hub_types[archetype_construction]
archetype_construction_name = archetype['constructions'][archetype_construction]['opaque_surface_name']
for construction in self._catalog_constructions:
if archetype_construction_type == construction.type and construction.name == archetype_construction_name:
_construction = None
_window = None
_window_ratio = None
if 'transparent_surface_name' in archetype['constructions'][archetype_construction].keys():
_window_ratio = archetype['constructions'][archetype_construction]['transparent_ratio']
_window_id = archetype['constructions'][archetype_construction]['transparent_surface_name']
for window in self._catalog_windows:
if _window_id == window.id:
_window = window
break
_construction = Construction(construction.id,
construction.type,
construction.name,
construction.layers,
_window_ratio,
_window)
archetype_constructions.append(_construction)
break
_catalog_archetypes.append(Archetype(archetype_id,
name,
function,
climate_zone,
construction_period,
archetype_constructions,
average_storey_height,
thermal_capacity,
extra_loses_due_to_thermal_bridges,
None,
infiltration_rate_for_ventilation_system_off,
infiltration_rate_for_ventilation_system_on,
None,
None))
return _catalog_archetypes
def names(self, category=None):
"""
Get the catalog elements names
:parm: optional category filter
"""
if category is None:
_names = {'archetypes': [], 'constructions': [], 'materials': [], 'windows': []}
for archetype in self._content.archetypes:
_names['archetypes'].append(archetype.name)
for construction in self._content.constructions:
_names['constructions'].append(construction.name)
for material in self._content.materials:
_names['materials'].append(material.name)
for window in self._content.windows:
_names['windows'].append(window.name)
else:
_names = {category: []}
if category.lower() == 'archetypes':
for archetype in self._content.archetypes:
_names[category].append(archetype.name)
elif category.lower() == 'constructions':
for construction in self._content.constructions:
_names[category].append(construction.name)
elif category.lower() == 'materials':
for material in self._content.materials:
_names[category].append(material.name)
elif category.lower() == 'windows':
for window in self._content.windows:
_names[category].append(window.name)
else:
raise ValueError(f'Unknown category [{category}]')
return _names
def entries(self, category=None):
"""
Get the catalog elements
:parm: optional category filter
"""
if category is None:
return self._content
if category.lower() == 'archetypes':
return self._content.archetypes
if category.lower() == 'constructions':
return self._content.constructions
if category.lower() == 'materials':
return self._content.materials
if category.lower() == 'windows':
return self._content.windows
raise ValueError(f'Unknown category [{category}]')
def get_entry(self, name):
"""
Get one catalog element by names
:parm: entry name
"""
for entry in self._content.archetypes:
if entry.name.lower() == name.lower():
return entry
for entry in self._content.constructions:
if entry.name.lower() == name.lower():
return entry
for entry in self._content.materials:
if entry.name.lower() == name.lower():
return entry
for entry in self._content.windows:
if entry.name.lower() == name.lower():
return entry
raise IndexError(f"{name} doesn't exists in the catalog")

View File

@ -11,7 +11,6 @@ from typing import TypeVar
from hub.catalog_factories.construction.nrcan_catalog import NrcanCatalog from hub.catalog_factories.construction.nrcan_catalog import NrcanCatalog
from hub.catalog_factories.construction.nrel_catalog import NrelCatalog from hub.catalog_factories.construction.nrel_catalog import NrelCatalog
from hub.catalog_factories.construction.eilat_catalog import EilatCatalog from hub.catalog_factories.construction.eilat_catalog import EilatCatalog
from hub.catalog_factories.construction.palma_catalog import PalmaCatalog
from hub.helpers.utils import validate_import_export_type from hub.helpers.utils import validate_import_export_type
Catalog = TypeVar('Catalog') Catalog = TypeVar('Catalog')
@ -49,13 +48,6 @@ class ConstructionCatalogFactory:
""" """
return EilatCatalog(self._path) return EilatCatalog(self._path)
@property
def _palma(self):
"""
Retrieve Palma catalog
"""
return PalmaCatalog(self._path)
@property @property
def catalog(self) -> Catalog: def catalog(self) -> Catalog:
""" """

View File

@ -17,9 +17,8 @@ class PvGenerationSystem(GenerationSystem):
def __init__(self, system_id, name, system_type, model_name=None, manufacturer=None, electricity_efficiency=None, def __init__(self, system_id, name, system_type, model_name=None, manufacturer=None, electricity_efficiency=None,
nominal_electricity_output=None, nominal_ambient_temperature=None, nominal_cell_temperature=None, nominal_electricity_output=None, nominal_ambient_temperature=None, nominal_cell_temperature=None,
nominal_radiation=None, standard_test_condition_cell_temperature=None, nominal_radiation=None, standard_test_condition_cell_temperature=None,
standard_test_condition_maximum_power=None, standard_test_condition_radiation=None, standard_test_condition_maximum_power=None, cell_temperature_coefficient=None, width=None, height=None,
cell_temperature_coefficient=None, width=None, height=None, distribution_systems=None, distribution_systems=None, energy_storage_systems=None):
energy_storage_systems=None):
super().__init__(system_id=system_id, name=name, model_name=model_name, super().__init__(system_id=system_id, name=name, model_name=model_name,
manufacturer=manufacturer, fuel_type='renewable', distribution_systems=distribution_systems, manufacturer=manufacturer, fuel_type='renewable', distribution_systems=distribution_systems,
energy_storage_systems=energy_storage_systems) energy_storage_systems=energy_storage_systems)
@ -31,7 +30,6 @@ class PvGenerationSystem(GenerationSystem):
self._nominal_radiation = nominal_radiation self._nominal_radiation = nominal_radiation
self._standard_test_condition_cell_temperature = standard_test_condition_cell_temperature self._standard_test_condition_cell_temperature = standard_test_condition_cell_temperature
self._standard_test_condition_maximum_power = standard_test_condition_maximum_power self._standard_test_condition_maximum_power = standard_test_condition_maximum_power
self._standard_test_condition_radiation = standard_test_condition_radiation
self._cell_temperature_coefficient = cell_temperature_coefficient self._cell_temperature_coefficient = cell_temperature_coefficient
self._width = width self._width = width
self._height = height self._height = height
@ -100,15 +98,6 @@ class PvGenerationSystem(GenerationSystem):
""" """
return self._standard_test_condition_maximum_power return self._standard_test_condition_maximum_power
@property
def standard_test_condition_radiation(self):
"""
Get standard test condition cell temperature of PV panels in W/m2
:return: float
"""
return self._standard_test_condition_radiation
@property @property
def cell_temperature_coefficient(self): def cell_temperature_coefficient(self):
""" """
@ -154,7 +143,6 @@ class PvGenerationSystem(GenerationSystem):
'nominal radiation [W/m2]': self.nominal_radiation, 'nominal radiation [W/m2]': self.nominal_radiation,
'standard test condition cell temperature [Celsius]': self.standard_test_condition_cell_temperature, 'standard test condition cell temperature [Celsius]': self.standard_test_condition_cell_temperature,
'standard test condition maximum power [W]': self.standard_test_condition_maximum_power, 'standard test condition maximum power [W]': self.standard_test_condition_maximum_power,
'standard test condition radiation [W/m2]': self.standard_test_condition_radiation,
'cell temperature coefficient': self.cell_temperature_coefficient, 'cell temperature coefficient': self.cell_temperature_coefficient,
'width': self.width, 'width': self.width,
'height': self.height, 'height': self.height,

View File

@ -1,520 +0,0 @@
"""
Palma energy system catalog
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Saeed Ranjbar saeed.ranjbar@concordia.ca
"""
import xmltodict
from pathlib import Path
from hub.catalog_factories.catalog import Catalog
from hub.catalog_factories.data_models.energy_systems.distribution_system import DistributionSystem
from hub.catalog_factories.data_models.energy_systems.emission_system import EmissionSystem
from hub.catalog_factories.data_models.energy_systems.system import System
from hub.catalog_factories.data_models.energy_systems.content import Content
from hub.catalog_factories.data_models.energy_systems.non_pv_generation_system import NonPvGenerationSystem
from hub.catalog_factories.data_models.energy_systems.pv_generation_system import PvGenerationSystem
from hub.catalog_factories.data_models.energy_systems.thermal_storage_system import ThermalStorageSystem
from hub.catalog_factories.data_models.energy_systems.performance_curves import PerformanceCurves
from hub.catalog_factories.data_models.energy_systems.archetype import Archetype
from hub.catalog_factories.data_models.construction.material import Material
from hub.catalog_factories.data_models.construction.layer import Layer
class PalmaSystemCatalogue(Catalog):
"""
North america energy system catalog class
"""
def __init__(self, path):
path = str(path / 'palma_systems.xml')
with open(path, 'r', encoding='utf-8') as xml:
self._archetypes = xmltodict.parse(xml.read(),
force_list=['pv_generation_component', 'demand'])
self._storage_components = self._load_storage_components()
self._generation_components = self._load_generation_components()
self._energy_emission_components = self._load_emission_equipments()
self._distribution_components = self._load_distribution_equipments()
self._systems = self._load_systems()
self._system_archetypes = self._load_archetypes()
self._content = Content(self._system_archetypes,
self._systems,
generations=self._generation_components,
distributions=self._distribution_components)
def _load_generation_components(self):
generation_components = []
non_pv_generation_components = self._archetypes['EnergySystemCatalog']['energy_generation_components'][
'non_pv_generation_component']
if non_pv_generation_components is not None:
for non_pv in non_pv_generation_components:
system_id = non_pv['system_id']
name = non_pv['name']
system_type = non_pv['system_type']
model_name = non_pv['model_name']
manufacturer = non_pv['manufacturer']
fuel_type = non_pv['fuel_type']
distribution_systems = non_pv['distribution_systems']
energy_storage_systems = None
if non_pv['energy_storage_systems'] is not None:
storage_component = non_pv['energy_storage_systems']['storage_id']
storage_systems = self._search_storage_equipment(self._load_storage_components(), storage_component)
energy_storage_systems = storage_systems
nominal_heat_output = non_pv['nominal_heat_output']
maximum_heat_output = non_pv['maximum_heat_output']
minimum_heat_output = non_pv['minimum_heat_output']
source_medium = non_pv['source_medium']
supply_medium = non_pv['supply_medium']
heat_efficiency = non_pv['heat_efficiency']
nominal_cooling_output = non_pv['nominal_cooling_output']
maximum_cooling_output = non_pv['maximum_cooling_output']
minimum_cooling_output = non_pv['minimum_cooling_output']
cooling_efficiency = non_pv['cooling_efficiency']
electricity_efficiency = non_pv['electricity_efficiency']
source_temperature = non_pv['source_temperature']
source_mass_flow = non_pv['source_mass_flow']
nominal_electricity_output = non_pv['nominal_electricity_output']
maximum_heat_supply_temperature = non_pv['maximum_heat_supply_temperature']
minimum_heat_supply_temperature = non_pv['minimum_heat_supply_temperature']
maximum_cooling_supply_temperature = non_pv['maximum_cooling_supply_temperature']
minimum_cooling_supply_temperature = non_pv['minimum_cooling_supply_temperature']
heat_output_curve = None
heat_fuel_consumption_curve = None
heat_efficiency_curve = None
cooling_output_curve = None
cooling_fuel_consumption_curve = None
cooling_efficiency_curve = None
if non_pv['heat_output_curve'] is not None:
curve_type = non_pv['heat_output_curve']['curve_type']
dependant_variable = non_pv['heat_output_curve']['dependant_variable']
parameters = non_pv['heat_output_curve']['parameters']
coefficients = list(non_pv['heat_output_curve']['coefficients'].values())
heat_output_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
if non_pv['heat_fuel_consumption_curve'] is not None:
curve_type = non_pv['heat_fuel_consumption_curve']['curve_type']
dependant_variable = non_pv['heat_fuel_consumption_curve']['dependant_variable']
parameters = non_pv['heat_fuel_consumption_curve']['parameters']
coefficients = list(non_pv['heat_fuel_consumption_curve']['coefficients'].values())
heat_fuel_consumption_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
if non_pv['heat_efficiency_curve'] is not None:
curve_type = non_pv['heat_efficiency_curve']['curve_type']
dependant_variable = non_pv['heat_efficiency_curve']['dependant_variable']
parameters = non_pv['heat_efficiency_curve']['parameters']
coefficients = list(non_pv['heat_efficiency_curve']['coefficients'].values())
heat_efficiency_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
if non_pv['cooling_output_curve'] is not None:
curve_type = non_pv['cooling_output_curve']['curve_type']
dependant_variable = non_pv['cooling_output_curve']['dependant_variable']
parameters = non_pv['cooling_output_curve']['parameters']
coefficients = list(non_pv['cooling_output_curve']['coefficients'].values())
cooling_output_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
if non_pv['cooling_fuel_consumption_curve'] is not None:
curve_type = non_pv['cooling_fuel_consumption_curve']['curve_type']
dependant_variable = non_pv['cooling_fuel_consumption_curve']['dependant_variable']
parameters = non_pv['cooling_fuel_consumption_curve']['parameters']
coefficients = list(non_pv['cooling_fuel_consumption_curve']['coefficients'].values())
cooling_fuel_consumption_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
if non_pv['cooling_efficiency_curve'] is not None:
curve_type = non_pv['cooling_efficiency_curve']['curve_type']
dependant_variable = non_pv['cooling_efficiency_curve']['dependant_variable']
parameters = non_pv['cooling_efficiency_curve']['parameters']
coefficients = list(non_pv['cooling_efficiency_curve']['coefficients'].values())
cooling_efficiency_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
dhw = None
if non_pv['domestic_hot_water'] is not None:
if non_pv['domestic_hot_water'] == 'True':
dhw = True
else:
dhw = False
reversible = None
if non_pv['reversible'] is not None:
if non_pv['reversible'] == 'True':
reversible = True
else:
reversible = False
dual_supply = None
if non_pv['simultaneous_heat_cold'] is not None:
if non_pv['simultaneous_heat_cold'] == 'True':
dual_supply = True
else:
dual_supply = False
non_pv_component = NonPvGenerationSystem(system_id=system_id,
name=name,
system_type=system_type,
model_name=model_name,
manufacturer=manufacturer,
fuel_type=fuel_type,
nominal_heat_output=nominal_heat_output,
maximum_heat_output=maximum_heat_output,
minimum_heat_output=minimum_heat_output,
source_medium=source_medium,
supply_medium=supply_medium,
heat_efficiency=heat_efficiency,
nominal_cooling_output=nominal_cooling_output,
maximum_cooling_output=maximum_cooling_output,
minimum_cooling_output=minimum_cooling_output,
cooling_efficiency=cooling_efficiency,
electricity_efficiency=electricity_efficiency,
source_temperature=source_temperature,
source_mass_flow=source_mass_flow,
nominal_electricity_output=nominal_electricity_output,
maximum_heat_supply_temperature=maximum_heat_supply_temperature,
minimum_heat_supply_temperature=minimum_heat_supply_temperature,
maximum_cooling_supply_temperature=maximum_cooling_supply_temperature,
minimum_cooling_supply_temperature=minimum_cooling_supply_temperature,
heat_output_curve=heat_output_curve,
heat_fuel_consumption_curve=heat_fuel_consumption_curve,
heat_efficiency_curve=heat_efficiency_curve,
cooling_output_curve=cooling_output_curve,
cooling_fuel_consumption_curve=cooling_fuel_consumption_curve,
cooling_efficiency_curve=cooling_efficiency_curve,
distribution_systems=distribution_systems,
energy_storage_systems=energy_storage_systems,
domestic_hot_water=dhw,
reversible=reversible,
simultaneous_heat_cold=dual_supply)
generation_components.append(non_pv_component)
pv_generation_components = self._archetypes['EnergySystemCatalog']['energy_generation_components'][
'pv_generation_component']
if pv_generation_components is not None:
for pv in pv_generation_components:
system_id = pv['system_id']
name = pv['name']
system_type = pv['system_type']
model_name = pv['model_name']
manufacturer = pv['manufacturer']
electricity_efficiency = pv['electricity_efficiency']
nominal_electricity_output = pv['nominal_electricity_output']
nominal_ambient_temperature = pv['nominal_ambient_temperature']
nominal_cell_temperature = pv['nominal_cell_temperature']
nominal_radiation = pv['nominal_radiation']
standard_test_condition_cell_temperature = pv['standard_test_condition_cell_temperature']
standard_test_condition_maximum_power = pv['standard_test_condition_maximum_power']
standard_test_condition_radiation = pv['standard_test_condition_radiation']
cell_temperature_coefficient = pv['cell_temperature_coefficient']
width = pv['width']
height = pv['height']
distribution_systems = pv['distribution_systems']
energy_storage_systems = None
if pv['energy_storage_systems'] is not None:
storage_component = pv['energy_storage_systems']['storage_id']
storage_systems = self._search_storage_equipment(self._load_storage_components(), storage_component)
energy_storage_systems = storage_systems
pv_component = PvGenerationSystem(system_id=system_id,
name=name,
system_type=system_type,
model_name=model_name,
manufacturer=manufacturer,
electricity_efficiency=electricity_efficiency,
nominal_electricity_output=nominal_electricity_output,
nominal_ambient_temperature=nominal_ambient_temperature,
nominal_cell_temperature=nominal_cell_temperature,
nominal_radiation=nominal_radiation,
standard_test_condition_cell_temperature=
standard_test_condition_cell_temperature,
standard_test_condition_maximum_power=standard_test_condition_maximum_power,
standard_test_condition_radiation=standard_test_condition_radiation,
cell_temperature_coefficient=cell_temperature_coefficient,
width=width,
height=height,
distribution_systems=distribution_systems,
energy_storage_systems=energy_storage_systems)
generation_components.append(pv_component)
return generation_components
def _load_distribution_equipments(self):
_equipments = []
distribution_systems = self._archetypes['EnergySystemCatalog']['distribution_systems']['distribution_system']
if distribution_systems is not None:
for distribution_system in distribution_systems:
system_id = None
model_name = None
system_type = None
supply_temperature = None
distribution_consumption_fix_flow = None
distribution_consumption_variable_flow = None
heat_losses = None
generation_systems = None
energy_storage_systems = None
emission_systems = None
distribution_equipment = DistributionSystem(system_id=system_id,
model_name=model_name,
system_type=system_type,
supply_temperature=supply_temperature,
distribution_consumption_fix_flow=distribution_consumption_fix_flow,
distribution_consumption_variable_flow=
distribution_consumption_variable_flow,
heat_losses=heat_losses,
generation_systems=generation_systems,
energy_storage_systems=energy_storage_systems,
emission_systems=emission_systems
)
_equipments.append(distribution_equipment)
return _equipments
def _load_emission_equipments(self):
_equipments = []
dissipation_systems = self._archetypes['EnergySystemCatalog']['dissipation_systems']['dissipation_system']
if dissipation_systems is not None:
for dissipation_system in dissipation_systems:
system_id = None
model_name = None
system_type = None
parasitic_energy_consumption = 0
emission_system = EmissionSystem(system_id=system_id,
model_name=model_name,
system_type=system_type,
parasitic_energy_consumption=parasitic_energy_consumption)
_equipments.append(emission_system)
return _equipments
def _load_storage_components(self):
storage_components = []
thermal_storages = self._archetypes['EnergySystemCatalog']['energy_storage_components']['thermalStorages']
for tes in thermal_storages:
storage_id = tes['storage_id']
type_energy_stored = tes['type_energy_stored']
model_name = tes['model_name']
manufacturer = tes['manufacturer']
storage_type = tes['storage_type']
volume = tes['physical_characteristics']['volume']
height = tes['physical_characteristics']['height']
maximum_operating_temperature = tes['maximum_operating_temperature']
materials = self._load_materials()
insulation_material_id = tes['insulation']['material_id']
insulation_material = self._search_material(materials, insulation_material_id)
material_id = tes['physical_characteristics']['material_id']
tank_material = self._search_material(materials, material_id)
thickness = float(tes['insulation']['insulationThickness']) / 100 # from cm to m
insulation_layer = Layer(None, 'insulation', insulation_material, thickness)
thickness = float(tes['physical_characteristics']['tankThickness']) / 100 # from cm to m
tank_layer = Layer(None, 'tank', tank_material, thickness)
media = self._load_media()
media_id = tes['storage_medium']['medium_id']
medium = self._search_media(media, media_id)
layers = [insulation_layer, tank_layer]
nominal_capacity = tes['nominal_capacity']
losses_ratio = tes['losses_ratio']
heating_coil_capacity = tes['heating_coil_capacity']
storage_component = ThermalStorageSystem(storage_id=storage_id,
model_name=model_name,
type_energy_stored=type_energy_stored,
manufacturer=manufacturer,
storage_type=storage_type,
nominal_capacity=nominal_capacity,
losses_ratio=losses_ratio,
volume=volume,
height=height,
layers=layers,
maximum_operating_temperature=maximum_operating_temperature,
storage_medium=medium,
heating_coil_capacity=heating_coil_capacity)
storage_components.append(storage_component)
return storage_components
def _load_systems(self):
base_path = Path(Path(__file__).parent.parent.parent / 'data/energy_systems')
_catalog_systems = []
systems = self._archetypes['EnergySystemCatalog']['systems']['system']
for system in systems:
system_id = system['id']
name = system['name']
demands = system['demands']['demand']
generation_components = system['components']['generation_id']
generation_systems = self._search_generation_equipment(self._load_generation_components(), generation_components)
configuration_schema = None
if system['schema'] is not None:
configuration_schema = Path(base_path / system['schema'])
energy_system = System(system_id=system_id,
name=name,
demand_types=demands,
generation_systems=generation_systems,
distribution_systems=None,
configuration_schema=configuration_schema)
_catalog_systems.append(energy_system)
return _catalog_systems
def _load_archetypes(self):
_system_archetypes = []
system_clusters = self._archetypes['EnergySystemCatalog']['system_archetypes']['system_archetype']
for system_cluster in system_clusters:
name = system_cluster['name']
systems = system_cluster['systems']['system_id']
integer_system_ids = [int(item) for item in systems]
_systems = []
for system_archetype in self._systems:
if int(system_archetype.id) in integer_system_ids:
_systems.append(system_archetype)
_system_archetypes.append(Archetype(name=name, systems=_systems))
return _system_archetypes
def _load_materials(self):
materials = []
_materials = self._archetypes['EnergySystemCatalog']['materials']['material']
for _material in _materials:
material_id = _material['material_id']
name = _material['name']
conductivity = _material['conductivity']
solar_absorptance = _material['solar_absorptance']
thermal_absorptance = _material['thermal_absorptance']
density = _material['density']
specific_heat = _material['specific_heat']
no_mass = _material['no_mass']
visible_absorptance = _material['visible_absorptance']
thermal_resistance = _material['thermal_resistance']
material = Material(material_id,
name,
solar_absorptance=solar_absorptance,
thermal_absorptance=thermal_absorptance,
density=density,
conductivity=conductivity,
thermal_resistance=thermal_resistance,
visible_absorptance=visible_absorptance,
no_mass=no_mass,
specific_heat=specific_heat)
materials.append(material)
return materials
@staticmethod
def _search_material(materials, material_id):
_material = None
for material in materials:
if int(material.id) == int(material_id):
_material = material
break
if _material is None:
raise ValueError(f'Material with the id = [{material_id}] not found in catalog ')
return _material
def _load_media(self):
media = []
_media = [self._archetypes['EnergySystemCatalog']['media']['medium']]
for _medium in _media:
medium_id = _medium['medium_id']
density = _medium['density']
name = _medium['name']
conductivity = _medium['conductivity']
solar_absorptance = _medium['solar_absorptance']
thermal_absorptance = _medium['thermal_absorptance']
specific_heat = _medium['specific_heat']
no_mass = _medium['no_mass']
visible_absorptance = _medium['visible_absorptance']
thermal_resistance = _medium['thermal_resistance']
medium = Material(material_id=medium_id,
name=name,
solar_absorptance=solar_absorptance,
thermal_absorptance=thermal_absorptance,
visible_absorptance=visible_absorptance,
no_mass=no_mass,
thermal_resistance=thermal_resistance,
conductivity=conductivity,
density=density,
specific_heat=specific_heat)
media.append(medium)
return media
@staticmethod
def _search_media(media, medium_id):
_medium = None
for medium in media:
if int(medium.id) == int(medium_id):
_medium = medium
break
if _medium is None:
raise ValueError(f'media with the id = [{medium_id}] not found in catalog ')
return _medium
@staticmethod
def _search_generation_equipment(generation_systems, generation_id):
_generation_systems = []
if isinstance(generation_id, list):
integer_ids = [int(item) for item in generation_id]
for generation in generation_systems:
if int(generation.id) in integer_ids:
_generation_systems.append(generation)
else:
integer_id = int(generation_id)
for generation in generation_systems:
if int(generation.id) == integer_id:
_generation_systems.append(generation)
if len(_generation_systems) == 0:
_generation_systems = None
raise ValueError(f'The system with the following id is not found in catalog [{generation_id}]')
return _generation_systems
@staticmethod
def _search_storage_equipment(storage_systems, storage_id):
_storage_systems = []
for storage in storage_systems:
if storage.id in storage_id:
_storage_systems.append(storage)
if len(_storage_systems) == 0:
_storage_systems = None
raise ValueError(f'The system with the following id is not found in catalog [{storage_id}]')
return _storage_systems
def names(self, category=None):
"""
Get the catalog elements names
:parm: optional category filter
"""
if category is None:
_names = {'archetypes': [], 'systems': [], 'generation_equipments': [], 'storage_equipments': []}
for archetype in self._content.archetypes:
_names['archetypes'].append(archetype.name)
for system in self._content.systems:
_names['systems'].append(system.name)
for equipment in self._content.generation_equipments:
_names['generation_equipments'].append(equipment.name)
else:
_names = {category: []}
if category.lower() == 'archetypes':
for archetype in self._content.archetypes:
_names[category].append(archetype.name)
elif category.lower() == 'systems':
for system in self._content.systems:
_names[category].append(system.name)
elif category.lower() == 'generation_equipments':
for system in self._content.generation_equipments:
_names[category].append(system.name)
else:
raise ValueError(f'Unknown category [{category}]')
return _names
def entries(self, category=None):
"""
Get the catalog elements
:parm: optional category filter
"""
if category is None:
return self._content
if category.lower() == 'archetypes':
return self._content.archetypes
if category.lower() == 'systems':
return self._content.systems
if category.lower() == 'generation_equipments':
return self._content.generation_equipments
raise ValueError(f'Unknown category [{category}]')
def get_entry(self, name):
"""
Get one catalog element by names
:parm: entry name
"""
for entry in self._content.archetypes:
if entry.name.lower() == name.lower():
return entry
for entry in self._content.systems:
if entry.name.lower() == name.lower():
return entry
for entry in self._content.generation_equipments:
if entry.name.lower() == name.lower():
return entry
raise IndexError(f"{name} doesn't exists in the catalog")

View File

@ -10,7 +10,6 @@ from typing import TypeVar
from hub.catalog_factories.energy_systems.montreal_custom_catalog import MontrealCustomCatalog from hub.catalog_factories.energy_systems.montreal_custom_catalog import MontrealCustomCatalog
from hub.catalog_factories.energy_systems.montreal_future_system_catalogue import MontrealFutureSystemCatalogue from hub.catalog_factories.energy_systems.montreal_future_system_catalogue import MontrealFutureSystemCatalogue
from hub.catalog_factories.energy_systems.palma_system_catalgue import PalmaSystemCatalogue
from hub.helpers.utils import validate_import_export_type from hub.helpers.utils import validate_import_export_type
Catalog = TypeVar('Catalog') Catalog = TypeVar('Catalog')
@ -41,13 +40,6 @@ class EnergySystemsCatalogFactory:
""" """
return MontrealFutureSystemCatalogue(self._path) return MontrealFutureSystemCatalogue(self._path)
@property
def _palma(self):
"""
Retrieve Palma catalog
"""
return PalmaSystemCatalogue(self._path)
@property @property
def catalog(self) -> Catalog: def catalog(self) -> Catalog:
""" """

View File

@ -1,227 +0,0 @@
"""
Palma usage catalog
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Cecilia Pérez cperez@irec.cat
"""
import json
import urllib.request
from pathlib import Path
import xmltodict
import hub.helpers.constants as cte
from hub.catalog_factories.catalog import Catalog
from hub.catalog_factories.data_models.usages.appliances import Appliances
from hub.catalog_factories.data_models.usages.content import Content
from hub.catalog_factories.data_models.usages.lighting import Lighting
from hub.catalog_factories.data_models.usages.occupancy import Occupancy
from hub.catalog_factories.data_models.usages.domestic_hot_water import DomesticHotWater
from hub.catalog_factories.data_models.usages.schedule import Schedule
from hub.catalog_factories.data_models.usages.thermal_control import ThermalControl
from hub.catalog_factories.data_models.usages.usage import Usage
from hub.catalog_factories.usage.usage_helper import UsageHelper
class PalmaCatalog(Catalog):
"""
Palma catalog class
"""
def __init__(self, path):
self._schedules_path = Path(path / 'palma_schedules.json').resolve()
self._space_types_path = Path(path / 'palma_space_types.json').resolve()
self._space_compliance_path = Path(path / 'palma_space_compliance.json').resolve()
self._content = None
self._schedules = {}
self._load_schedules()
self._content = Content(self._load_archetypes())
@staticmethod
def _extract_schedule(raw):
nrcan_schedule_type = raw['category']
if 'Heating' in raw['name'] and 'Water' not in raw['name']:
nrcan_schedule_type = f'{nrcan_schedule_type} Heating'
elif 'Cooling' in raw['name']:
nrcan_schedule_type = f'{nrcan_schedule_type} Cooling'
if nrcan_schedule_type not in UsageHelper().nrcan_schedule_type_to_hub_schedule_type:
return None
hub_type = UsageHelper().nrcan_schedule_type_to_hub_schedule_type[nrcan_schedule_type]
data_type = UsageHelper().nrcan_data_type_to_hub_data_type[raw['units']]
time_step = UsageHelper().nrcan_time_to_hub_time[raw['type']]
# nrcan only uses daily range for the schedules
time_range = cte.DAY
day_types = UsageHelper().nrcan_day_type_to_hub_days[raw['day_types']]
return Schedule(hub_type, raw['values'], data_type, time_step, time_range, day_types)
def _load_schedules(self):
_schedule_types = []
with open(self._schedules_path, 'r') as f:
schedules_type = json.load(f)
for schedule_type in schedules_type['tables']['schedules']['table']:
schedule = PalmaCatalog._extract_schedule(schedule_type)
if schedule_type['name'] not in _schedule_types:
_schedule_types.append(schedule_type['name'])
if schedule is not None:
self._schedules[schedule_type['name']] = [schedule]
else:
if schedule is not None:
_schedules = self._schedules[schedule_type['name']]
_schedules.append(schedule)
self._schedules[schedule_type['name']] = _schedules
def _get_schedules(self, name):
schedule = None
if name in self._schedules:
schedule = self._schedules[name]
return schedule
def _load_archetypes(self):
usages = []
with open(self._space_types_path, 'r') as f:
space_types = json.load(f)['tables']['space_types']['table']
space_types = [st for st in space_types if st['space_type'] == 'WholeBuilding']
with open(self._space_compliance_path, 'r') as f:
space_types_compliance = json.load(f)['tables']['space_compliance']['table']
space_types_compliance = [st for st in space_types_compliance if st['space_type'] == 'WholeBuilding']
space_types_dictionary = {}
for space_type in space_types_compliance:
usage_type = space_type['building_type']
# people/m2
occupancy_density = space_type['occupancy_per_area_people_per_m2']
# W/m2
lighting_density = space_type['lighting_per_area_w_per_m2']
# W/m2
appliances_density = space_type['electric_equipment_per_area_w_per_m2']
# peak flow in gallons/h/m2
domestic_hot_water_peak_flow = (
space_type['service_water_heating_peak_flow_per_area'] *
cte.GALLONS_TO_QUBIC_METERS / cte.HOUR_TO_SECONDS
)
space_types_dictionary[usage_type] = {'occupancy_per_area': occupancy_density,
'lighting_per_area': lighting_density,
'electric_equipment_per_area': appliances_density,
'service_water_heating_peak_flow_per_area': domestic_hot_water_peak_flow
}
for space_type in space_types:
usage_type = space_type['building_type']
space_type_compliance = space_types_dictionary[usage_type]
occupancy_density = space_type_compliance['occupancy_per_area']
sensible_convective_internal_gain = space_type['sensible_convective_internal_gain']
sensible_radiative_internal_gain = space_type['sensible_radiative_internal_gain']
latent_internal_gain = space_type['latent_internal_gain']
lighting_density = space_type_compliance['lighting_per_area']
appliances_density = space_type_compliance['electric_equipment_per_area']
domestic_hot_water_peak_flow = space_type_compliance['service_water_heating_peak_flow_per_area']
occupancy_schedule_name = space_type['occupancy_schedule']
lighting_schedule_name = space_type['lighting_schedule']
appliance_schedule_name = space_type['electric_equipment_schedule']
hvac_schedule_name = space_type['exhaust_schedule']
if hvac_schedule_name and 'FAN' in hvac_schedule_name:
hvac_schedule_name = hvac_schedule_name.replace('FAN', 'Fan')
if not hvac_schedule_name:
hvac_schedule_name = 'default_HVAC_schedule'
heating_setpoint_schedule_name = space_type['heating_setpoint_schedule']
cooling_setpoint_schedule_name = space_type['cooling_setpoint_schedule']
domestic_hot_water_schedule_name = space_type['service_water_heating_schedule']
occupancy_schedule = self._get_schedules(occupancy_schedule_name)
lighting_schedule = self._get_schedules(lighting_schedule_name)
appliance_schedule = self._get_schedules(appliance_schedule_name)
heating_schedule = self._get_schedules(heating_setpoint_schedule_name)
cooling_schedule = self._get_schedules(cooling_setpoint_schedule_name)
hvac_availability = self._get_schedules(hvac_schedule_name)
domestic_hot_water_load_schedule = self._get_schedules(domestic_hot_water_schedule_name)
# ACH -> 1/s
mechanical_air_change = space_type['ventilation_air_changes'] / cte.HOUR_TO_SECONDS
# cfm/ft2 to m3/m2.s
ventilation_rate = space_type['ventilation_per_area'] / (cte.METERS_TO_FEET * cte.MINUTES_TO_SECONDS)
# cfm/person to m3/m2.s
ventilation_rate += space_type['ventilation_per_person'] / (
pow(cte.METERS_TO_FEET, 3) * cte.MINUTES_TO_SECONDS
) * occupancy_density
lighting_radiative_fraction = space_type['lighting_fraction_radiant']
lighting_convective_fraction = 0
if lighting_radiative_fraction is not None:
lighting_convective_fraction = 1 - lighting_radiative_fraction
lighting_latent_fraction = 0
appliances_radiative_fraction = space_type['electric_equipment_fraction_radiant']
appliances_latent_fraction = space_type['electric_equipment_fraction_latent']
appliances_convective_fraction = 0
if appliances_radiative_fraction is not None and appliances_latent_fraction is not None:
appliances_convective_fraction = 1 - appliances_radiative_fraction - appliances_latent_fraction
domestic_hot_water_service_temperature = space_type['service_water_heating_target_temperature']
occupancy = Occupancy(occupancy_density,
sensible_convective_internal_gain,
sensible_radiative_internal_gain,
latent_internal_gain,
occupancy_schedule)
lighting = Lighting(lighting_density,
lighting_convective_fraction,
lighting_radiative_fraction,
lighting_latent_fraction,
lighting_schedule)
appliances = Appliances(appliances_density,
appliances_convective_fraction,
appliances_radiative_fraction,
appliances_latent_fraction,
appliance_schedule)
thermal_control = ThermalControl(None,
None,
None,
hvac_availability,
heating_schedule,
cooling_schedule)
domestic_hot_water = DomesticHotWater(None,
domestic_hot_water_peak_flow,
domestic_hot_water_service_temperature,
domestic_hot_water_load_schedule)
hours_day = None
days_year = None
usages.append(Usage(usage_type,
hours_day,
days_year,
mechanical_air_change,
ventilation_rate,
occupancy,
lighting,
appliances,
thermal_control,
domestic_hot_water))
return usages
def names(self, category=None):
"""
Get the catalog elements names
:parm: for usage catalog category filter does nothing as there is only one category (usages)
"""
_names = {'usages': []}
for usage in self._content.usages:
_names['usages'].append(usage.name)
return _names
def entries(self, category=None):
"""
Get the catalog elements
:parm: for usage catalog category filter does nothing as there is only one category (usages)
"""
return self._content
def get_entry(self, name):
"""
Get one catalog element by names
:parm: entry name
"""
for usage in self._content.usages:
if usage.name.lower() == name.lower():
return usage
raise IndexError(f"{name} doesn't exists in the catalog")

View File

@ -11,7 +11,6 @@ from typing import TypeVar
from hub.catalog_factories.usage.comnet_catalog import ComnetCatalog from hub.catalog_factories.usage.comnet_catalog import ComnetCatalog
from hub.catalog_factories.usage.nrcan_catalog import NrcanCatalog from hub.catalog_factories.usage.nrcan_catalog import NrcanCatalog
from hub.catalog_factories.usage.eilat_catalog import EilatCatalog from hub.catalog_factories.usage.eilat_catalog import EilatCatalog
from hub.catalog_factories.usage.palma_catalog import PalmaCatalog
from hub.helpers.utils import validate_import_export_type from hub.helpers.utils import validate_import_export_type
Catalog = TypeVar('Catalog') Catalog = TypeVar('Catalog')
@ -50,13 +49,6 @@ class UsageCatalogFactory:
""" """
return EilatCatalog(self._path) return EilatCatalog(self._path)
@property
def _palma(self):
"""
Retrieve Palma catalog
"""
return PalmaCatalog(self._path)
@property @property
def catalog(self) -> Catalog: def catalog(self) -> Catalog:
""" """

View File

@ -1,664 +0,0 @@
{
"archetypes": [
{
"function": "Large multifamily building",
"period_of_construction": "2021_2050",
"climate_zone": "B3",
"average_storey_height": 3.57,
"thermal_capacity": 83.018,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT",
"transparent_surface_name": "PA1_PA2_2021_2050_WIN1",
"transparent_ratio": {
"north": "60",
"east": "5",
"south": "60",
"west": "5"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_ROOF",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOOR"
},
"GroundWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT"
},
"GroundRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOORINT"
}
}
},
{
"function": "Medium multifamily building",
"period_of_construction": "2021_2050",
"climate_zone": "B3",
"average_storey_height": 3.57,
"thermal_capacity": 83.018,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT",
"transparent_surface_name": "PA1_PA2_2021_2050_WIN1",
"transparent_ratio": {
"north": "60",
"east": "5",
"south": "60",
"west": "5"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_ROOF",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOOR"
},
"GroundWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT"
},
"GroundRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOORINT"
}
}
},
{
"function": "Small multifamily building",
"period_of_construction": "2021_2050",
"climate_zone": "B3",
"average_storey_height": 3.57,
"thermal_capacity": 83.018,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT",
"transparent_surface_name": "PA1_PA2_2021_2050_WIN1",
"transparent_ratio": {
"north": "60",
"east": "5",
"south": "60",
"west": "5"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_ROOF",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOOR"
},
"GroundWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT"
},
"GroundRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOORINT"
}
}
},
{
"function": "Single family building",
"period_of_construction": "2021_2050",
"climate_zone": "B3",
"average_storey_height": 3.57,
"thermal_capacity": 83.018,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT",
"transparent_surface_name": "PA1_PA2_2021_2050_WIN1",
"transparent_ratio": {
"north": "60",
"east": "5",
"south": "60",
"west": "5"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_ROOF",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOOR"
},
"GroundWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT"
},
"GroundRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOORINT"
}
}
},
{
"function": "Large multifamily building",
"period_of_construction": "1961_1980",
"climate_zone": "B3",
"average_storey_height": 3.57,
"thermal_capacity": 3000,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_1961_1980_FACEXT1",
"transparent_surface_name": "PA1_PA2_1961_1980_WIN1",
"transparent_ratio": {
"north": "60",
"east": "60",
"south": "60",
"west": "60"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_1961_1980_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_1961_1980_FLOOR1"
},
"GroundWall": {
"opaque_surface_name": "PA1_PA2_1961_1980_FACEXT1"
},
"GroundRoofCeiling": {
"opaque_surface_name": "PA1_PA2_1961_1980_FLOOR4"
}
}
},
{
"function": "Medium multifamily building",
"period_of_construction": "1800_1900",
"climate_zone": "B3",
"average_storey_height": 4.39,
"thermal_capacity": 3330,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "A_B1900_FACEXT1",
"transparent_surface_name": "A_B1900_WIN2",
"transparent_ratio": {
"north": "20",
"east": "20",
"south": "20",
"west": "20"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "A_B1900_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "A_B1900_FLOORGR1"
}
}
},
{
"function": "Medium multifamily building",
"period_of_construction": "1901_1940",
"climate_zone": "B3",
"average_storey_height": 3.65,
"thermal_capacity": 3420,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "B_1901_1940_FACEXT1",
"transparent_surface_name": "B_1901_1940_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "B_1901_1940_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "B_1901_1940_FLOORGR1"
}
}
},
{
"function": "Medium multifamily building",
"period_of_construction": "1941_1960",
"climate_zone": "B3",
"average_storey_height": 3.6,
"thermal_capacity": 3000,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": " C_1941_1960_FACEXT1",
"transparent_surface_name": "C_1941_1960_WIN1",
"transparent_ratio": {
"north": "30",
"east": "30",
"south": "30",
"west": "30"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "C_1941_1960_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "C_1941_1960_FLOORGR1"
}
}
},
{
"function": "Medium multifamily building",
"period_of_construction": "1961_1980",
"climate_zone": "B3",
"average_storey_height": 4.5,
"thermal_capacity": 3540,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_1961_1980_FACEXT1",
"transparent_surface_name": "PA1_PA2_1961_1980_WIN1",
"transparent_ratio": {
"north": "55",
"east": "55",
"south": "55",
"west": "55"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_1961_1980_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_1961_1980_FLOOR1"
}
}
},
{
"function": "Medium multifamily building",
"period_of_construction": "1981_2007",
"climate_zone": "B3",
"average_storey_height": 3.2,
"thermal_capacity": 3179,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "E_1981_2007_FACEXT1",
"transparent_surface_name": "E_1981_2007_WIN1",
"transparent_ratio": {
"north": "45",
"east": "45",
"south": "45",
"west": "45"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "E_1981_2007_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "E_1981_2007_FLOORGR1"
}
}
},
{
"function": "Small multifamily building",
"period_of_construction": "1800_1980",
"climate_zone": "B3",
"average_storey_height": 3.8,
"thermal_capacity": 3527.9,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA3_PA4_1901_1940_FACEXT1",
"transparent_surface_name": "PA3_PA4_1901_1940_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA3_PA4_1901_1940_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA3_PA4_1901_1940_FLOORGR1"
}
}
},
{
"function": "Small multifamily building",
"period_of_construction": "1981_2007",
"climate_zone": "B3",
"average_storey_height": 3.2,
"thermal_capacity": 3179,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "E_1981_2007_FACEXT1",
"transparent_surface_name": "E_1981_2007_WIN1",
"transparent_ratio": {
"north": "45",
"east": "45",
"south": "45",
"west": "45"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "E_1981_2007_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "E_1981_2007_FLOORGR1"
}
}
},
{
"function": "Small multifamily building",
"period_of_construction": "2008_2014",
"climate_zone": "B3",
"average_storey_height": 2.75,
"thermal_capacity": 3290,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "F_2008_2014_FACEXT1",
"transparent_surface_name": "F_2008_2014_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "F_2008_2014_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "F_2008_2014_FLOORGR1"
}
}
},
{
"function": "Small multifamily building",
"period_of_construction": "2015_2019",
"climate_zone": "B3",
"average_storey_height": 2.75,
"thermal_capacity": 3290,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "G_2015_2019_FACEXT1",
"transparent_surface_name": "G_2015_2019_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "G_2015_2019_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "G_2015_2019_FLOORGR1"
}
}
},
{
"function": "Single family building",
"period_of_construction": "1800_1980",
"climate_zone": "B3",
"average_storey_height": 3.68,
"thermal_capacity": 4400,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA3_PA4_1901_1940_FACEXT1",
"transparent_surface_name": "PA3_PA4_1901_1940_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA3_PA4_1901_1940_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA3_PA4_1901_1940_FLOORGR1"
}
}
},
{
"function": "Single family building",
"period_of_construction": "1981_2007",
"climate_zone": "B3",
"average_storey_height": 3.2,
"thermal_capacity": 3179,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "E_1981_2007_FACEXT1",
"transparent_surface_name": "E_1981_2007_WIN1",
"transparent_ratio": {
"north": "45",
"east": "45",
"south": "45",
"west": "45"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "E_1981_2007_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "E_1981_2007_FLOORGR1"
}
}
},
{
"function": "Single family building",
"period_of_construction": "2008_2014",
"climate_zone": "B3",
"average_storey_height": 3.75,
"thermal_capacity": 3200,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "F_2008_2014_FACEXT1",
"transparent_surface_name": "F_2008_2014_WIN1",
"transparent_ratio": {
"north": "60",
"east": "60",
"south": "60",
"west": "60"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "F_2008_2014_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "F_2008_2014_FLOORGR1"
}
}
},
{
"function": "Single family building",
"period_of_construction": "2015_2019",
"climate_zone": "B3",
"average_storey_height": 3.75,
"thermal_capacity": 3200,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "G_2015_2019_FACEXT1",
"transparent_surface_name": "G_2015_2019_WIN1",
"transparent_ratio": {
"north": "60",
"east": "60",
"south": "60",
"west": "60"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "G_2015_2019_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "G_2015_2019_FLOORGR1"
}
}
}
]
}

File diff suppressed because it is too large Load Diff

View File

@ -1,809 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<EnergySystemCatalog>
<schemas_path>./schemas/</schemas_path>
<media>
<medium>
<medium_id>1</medium_id>
<name>Water</name>
<solar_absorptance/>
<thermal_absorptance/>
<visible_absorptance/>
<no_mass/>
<thermal_resistance/>
<density>981.0</density>
<specific_heat>4180.0</specific_heat>
<conductivity>0.6</conductivity>
</medium>
</media>
<energy_generation_components>
<non_pv_generation_component>
<system_id>1</system_id>
<name>Natural-Gas Boiler</name>
<system_type>boiler</system_type>
<model_name/>
<manufacturer/>
<nominal_heat_output/>
<minimum_heat_output/>
<maximum_heat_output/>
<heat_efficiency>0.7</heat_efficiency>
<reversible>False</reversible>
<fuel_type>natural gas</fuel_type>
<source_medium/>
<supply_medium/>
<nominal_cooling_output/>
<minimum_cooling_output/>
<maximum_cooling_output/>
<cooling_efficiency/>
<electricity_efficiency/>
<source_temperature/>
<source_mass_flow/>
<nominal_electricity_output/>
<maximum_heat_supply_temperature/>
<minimum_heat_supply_temperature/>
<maximum_cooling_supply_temperature/>
<minimum_cooling_supply_temperature/>
<heat_output_curve/>
<heat_fuel_consumption_curve/>
<heat_efficiency_curve/>
<cooling_output_curve/>
<cooling_fuel_consumption_curve/>
<cooling_efficiency_curve/>
<distribution_systems/>
<energy_storage_systems/>
<domestic_hot_water>True</domestic_hot_water>
<heat_supply_temperature/>
<cooling_supply_temperature/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</non_pv_generation_component>
<non_pv_generation_component>
<system_id>2</system_id>
<name>Joule</name>
<system_type>joule</system_type>
<model_name/>
<manufacturer/>
<nominal_heat_output/>
<minimum_heat_output/>
<maximum_heat_output/>
<heat_efficiency>1</heat_efficiency>
<reversible>False</reversible>
<fuel_type>electricity</fuel_type>
<source_medium/>
<supply_medium/>
<nominal_cooling_output/>
<minimum_cooling_output/>
<maximum_cooling_output/>
<cooling_efficiency/>
<electricity_efficiency/>
<source_temperature/>
<source_mass_flow/>
<nominal_electricity_output/>
<maximum_heat_supply_temperature/>
<minimum_heat_supply_temperature/>
<maximum_cooling_supply_temperature/>
<minimum_cooling_supply_temperature/>
<heat_output_curve/>
<heat_fuel_consumption_curve/>
<heat_efficiency_curve/>
<cooling_output_curve/>
<cooling_fuel_consumption_curve/>
<cooling_efficiency_curve/>
<distribution_systems/>
<energy_storage_systems/>
<domestic_hot_water>True</domestic_hot_water>
<heat_supply_temperature/>
<cooling_supply_temperature/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</non_pv_generation_component>
<non_pv_generation_component>
<system_id>3</system_id>
<name>Heat Pump</name>
<system_type>heat pump</system_type>
<model_name/>
<manufacturer/>
<nominal_heat_output/>
<minimum_heat_output/>
<maximum_heat_output/>
<heat_efficiency>2</heat_efficiency>
<reversible>True</reversible>
<fuel_type>electricity</fuel_type>
<source_medium>Air</source_medium>
<supply_medium>Water</supply_medium>
<nominal_cooling_output/>
<minimum_cooling_output/>
<maximum_cooling_output/>
<cooling_efficiency>2</cooling_efficiency>
<electricity_efficiency/>
<source_temperature/>
<source_mass_flow/>
<nominal_electricity_output/>
<maximum_heat_supply_temperature/>
<minimum_heat_supply_temperature/>
<maximum_cooling_supply_temperature/>
<minimum_cooling_supply_temperature/>
<heat_output_curve/>
<heat_fuel_consumption_curve/>
<heat_efficiency_curve/>
<cooling_output_curve/>
<cooling_fuel_consumption_curve/>
<cooling_efficiency_curve/>
<distribution_systems/>
<energy_storage_systems/>
<domestic_hot_water>False</domestic_hot_water>
<heat_supply_temperature/>
<cooling_supply_temperature/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</non_pv_generation_component>
<non_pv_generation_component>
<system_id>4</system_id>
<name>Butane Heater</name>
<system_type>butane heater</system_type>
<model_name/>
<manufacturer/>
<nominal_heat_output/>
<minimum_heat_output/>
<maximum_heat_output/>
<heat_efficiency>0.7</heat_efficiency>
<reversible>False</reversible>
<fuel_type>butane</fuel_type>
<source_medium/>
<supply_medium/>
<nominal_cooling_output/>
<minimum_cooling_output/>
<maximum_cooling_output/>
<cooling_efficiency/>
<electricity_efficiency/>
<source_temperature/>
<source_mass_flow/>
<nominal_electricity_output/>
<maximum_heat_supply_temperature/>
<minimum_heat_supply_temperature/>
<maximum_cooling_supply_temperature/>
<minimum_cooling_supply_temperature/>
<heat_output_curve/>
<heat_fuel_consumption_curve/>
<heat_efficiency_curve/>
<cooling_output_curve/>
<cooling_fuel_consumption_curve/>
<cooling_efficiency_curve/>
<distribution_systems/>
<energy_storage_systems/>
<domestic_hot_water>True</domestic_hot_water>
<heat_supply_temperature/>
<cooling_supply_temperature/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</non_pv_generation_component>
<non_pv_generation_component>
<system_id>5</system_id>
<name>Split</name>
<system_type>split</system_type>
<model_name/>
<manufacturer/>
<nominal_heat_output/>
<minimum_heat_output/>
<maximum_heat_output/>
<heat_efficiency/>
<reversible>False</reversible>
<fuel_type>electricity</fuel_type>
<source_medium/>
<supply_medium/>
<nominal_cooling_output/>
<minimum_cooling_output/>
<maximum_cooling_output/>
<cooling_efficiency>2</cooling_efficiency>
<electricity_efficiency/>
<source_temperature/>
<source_mass_flow/>
<nominal_electricity_output/>
<maximum_heat_supply_temperature/>
<minimum_heat_supply_temperature/>
<maximum_cooling_supply_temperature/>
<minimum_cooling_supply_temperature/>
<heat_output_curve/>
<heat_fuel_consumption_curve/>
<heat_efficiency_curve/>
<cooling_output_curve/>
<cooling_fuel_consumption_curve/>
<cooling_efficiency_curve/>
<distribution_systems/>
<energy_storage_systems/>
<domestic_hot_water>False</domestic_hot_water>
<heat_supply_temperature/>
<cooling_supply_temperature/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</non_pv_generation_component>
<non_pv_generation_component>
<system_id>6</system_id>
<name>Domestic Hot Water Heat Pump</name>
<system_type>heat pump</system_type>
<model_name/>
<manufacturer/>
<nominal_heat_output/>
<minimum_heat_output/>
<maximum_heat_output/>
<heat_efficiency>3</heat_efficiency>
<reversible>False</reversible>
<fuel_type>electricity</fuel_type>
<source_medium>Air</source_medium>
<supply_medium>Water</supply_medium>
<nominal_cooling_output/>
<minimum_cooling_output/>
<maximum_cooling_output/>
<cooling_efficiency/>
<electricity_efficiency/>
<source_temperature/>
<source_mass_flow/>
<nominal_electricity_output/>
<maximum_heat_supply_temperature/>
<minimum_heat_supply_temperature/>
<maximum_cooling_supply_temperature/>
<minimum_cooling_supply_temperature/>
<heat_output_curve/>
<heat_fuel_consumption_curve/>
<heat_efficiency_curve/>
<cooling_output_curve/>
<cooling_fuel_consumption_curve/>
<cooling_efficiency_curve/>
<distribution_systems/>
<energy_storage_systems/>
<domestic_hot_water>True</domestic_hot_water>
<heat_supply_temperature/>
<cooling_supply_temperature/>
<simultaneous_heat_cold/>
</non_pv_generation_component>
<pv_generation_component>
<system_id>7</system_id>
<name>template Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<model_name/>
<manufacturer/>
<nominal_electricity_output/>
<electricity_efficiency>0.2</electricity_efficiency>
<nominal_ambient_temperature>20</nominal_ambient_temperature>
<nominal_cell_temperature>45</nominal_cell_temperature>
<nominal_radiation>800</nominal_radiation>
<standard_test_condition_cell_temperature>25</standard_test_condition_cell_temperature>
<standard_test_condition_radiation>1000</standard_test_condition_radiation>
<standard_test_condition_maximum_power>500</standard_test_condition_maximum_power>
<cell_temperature_coefficient/>
<width>2.0</width>
<height>1.0</height>
<distribution_systems/>
<energy_storage_systems/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</pv_generation_component>
<pv_generation_component>
<system_id>8</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<model_name>RE400CAA Pure 2</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>305</nominal_electricity_output>
<electricity_efficiency>0.206</electricity_efficiency>
<nominal_ambient_temperature>20</nominal_ambient_temperature>
<nominal_cell_temperature>44</nominal_cell_temperature>
<nominal_radiation>800</nominal_radiation>
<standard_test_condition_cell_temperature>25</standard_test_condition_cell_temperature>
<standard_test_condition_radiation>1000</standard_test_condition_radiation>
<standard_test_condition_maximum_power>400</standard_test_condition_maximum_power>
<cell_temperature_coefficient>0.24</cell_temperature_coefficient>
<width>1.86</width>
<height>1.04</height>
<distribution_systems/>
<energy_storage_systems/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</pv_generation_component>
<pv_generation_component>
<system_id>9</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<model_name>RE410CAA Pure 2</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>312</nominal_electricity_output>
<electricity_efficiency>0.211</electricity_efficiency>
<nominal_ambient_temperature>20</nominal_ambient_temperature>
<nominal_cell_temperature>44</nominal_cell_temperature>
<nominal_radiation>800</nominal_radiation>
<standard_test_condition_cell_temperature>25</standard_test_condition_cell_temperature>
<standard_test_condition_radiation>1000</standard_test_condition_radiation>
<standard_test_condition_maximum_power>410</standard_test_condition_maximum_power>
<cell_temperature_coefficient>0.24</cell_temperature_coefficient>
<width>1.86</width>
<height>1.04</height>
<distribution_systems/>
<energy_storage_systems/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</pv_generation_component>
<pv_generation_component>
<system_id>10</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<model_name>RE420CAA Pure 2</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>320</nominal_electricity_output>
<electricity_efficiency>0.217</electricity_efficiency>
<nominal_ambient_temperature>20</nominal_ambient_temperature>
<nominal_cell_temperature>44</nominal_cell_temperature>
<nominal_radiation>800</nominal_radiation>
<standard_test_condition_cell_temperature>25</standard_test_condition_cell_temperature>
<standard_test_condition_radiation>1000</standard_test_condition_radiation>
<standard_test_condition_maximum_power>420</standard_test_condition_maximum_power>
<cell_temperature_coefficient>0.24</cell_temperature_coefficient>
<width>1.86</width>
<height>1.04</height>
<distribution_systems/>
<energy_storage_systems/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</pv_generation_component>
<pv_generation_component>
<system_id>11</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<model_name>RE430CAA Pure 2</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>327</nominal_electricity_output>
<electricity_efficiency>0.222</electricity_efficiency>
<nominal_ambient_temperature>20</nominal_ambient_temperature>
<nominal_cell_temperature>44</nominal_cell_temperature>
<nominal_radiation>800</nominal_radiation>
<standard_test_condition_cell_temperature>25</standard_test_condition_cell_temperature>
<standard_test_condition_radiation>1000</standard_test_condition_radiation>
<standard_test_condition_maximum_power>430</standard_test_condition_maximum_power>
<cell_temperature_coefficient>0.24</cell_temperature_coefficient>
<width>1.86</width>
<height>1.04</height>
<distribution_systems/>
<energy_storage_systems/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</pv_generation_component>
<pv_generation_component>
<system_id>12</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<model_name>REC600AA Pro M</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>457</nominal_electricity_output>
<electricity_efficiency>0.211</electricity_efficiency>
<nominal_ambient_temperature>20</nominal_ambient_temperature>
<nominal_cell_temperature>44</nominal_cell_temperature>
<nominal_radiation>800</nominal_radiation>
<standard_test_condition_cell_temperature>25</standard_test_condition_cell_temperature>
<standard_test_condition_radiation>1000</standard_test_condition_radiation>
<standard_test_condition_maximum_power>600</standard_test_condition_maximum_power>
<cell_temperature_coefficient>0.24</cell_temperature_coefficient>
<width>2.17</width>
<height>1.3</height>
<distribution_systems/>
<energy_storage_systems/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</pv_generation_component>
<pv_generation_component>
<system_id>13</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<model_name>REC610AA Pro M</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>464</nominal_electricity_output>
<electricity_efficiency>0.215</electricity_efficiency>
<nominal_ambient_temperature>20</nominal_ambient_temperature>
<nominal_cell_temperature>44</nominal_cell_temperature>
<nominal_radiation>800</nominal_radiation>
<standard_test_condition_cell_temperature>25</standard_test_condition_cell_temperature>
<standard_test_condition_radiation>1000</standard_test_condition_radiation>
<standard_test_condition_maximum_power>610</standard_test_condition_maximum_power>
<cell_temperature_coefficient>0.24</cell_temperature_coefficient>
<width>2.17</width>
<height>1.3</height>
<distribution_systems/>
<energy_storage_systems/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</pv_generation_component>
<pv_generation_component>
<system_id>14</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<model_name>REC620AA Pro M</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>472</nominal_electricity_output>
<electricity_efficiency>0.218</electricity_efficiency>
<nominal_ambient_temperature>20</nominal_ambient_temperature>
<nominal_cell_temperature>44</nominal_cell_temperature>
<nominal_radiation>800</nominal_radiation>
<standard_test_condition_cell_temperature>25</standard_test_condition_cell_temperature>
<standard_test_condition_radiation>1000</standard_test_condition_radiation>
<standard_test_condition_maximum_power>620</standard_test_condition_maximum_power>
<cell_temperature_coefficient>0.24</cell_temperature_coefficient>
<width>2.17</width>
<height>1.3</height>
<distribution_systems/>
<energy_storage_systems/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</pv_generation_component>
<pv_generation_component>
<system_id>15</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<model_name>REC630AA Pro M</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>480</nominal_electricity_output>
<electricity_efficiency>0.222</electricity_efficiency>
<nominal_ambient_temperature>20</nominal_ambient_temperature>
<nominal_cell_temperature>44</nominal_cell_temperature>
<nominal_radiation>800</nominal_radiation>
<standard_test_condition_cell_temperature>25</standard_test_condition_cell_temperature>
<standard_test_condition_radiation>1000</standard_test_condition_radiation>
<standard_test_condition_maximum_power>630</standard_test_condition_maximum_power>
<cell_temperature_coefficient>0.24</cell_temperature_coefficient>
<width>2.17</width>
<height>1.3</height>
<distribution_systems/>
<energy_storage_systems/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</pv_generation_component>
<pv_generation_component>
<system_id>16</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<model_name>REC640AA Pro M</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>487</nominal_electricity_output>
<electricity_efficiency>0.215</electricity_efficiency>
<nominal_ambient_temperature>20</nominal_ambient_temperature>
<nominal_cell_temperature>44</nominal_cell_temperature>
<nominal_radiation>800</nominal_radiation>
<standard_test_condition_cell_temperature>25</standard_test_condition_cell_temperature>
<standard_test_condition_radiation>1000</standard_test_condition_radiation>
<standard_test_condition_maximum_power>640</standard_test_condition_maximum_power>
<cell_temperature_coefficient>0.24</cell_temperature_coefficient>
<width>2.17</width>
<height>1.3</height>
<distribution_systems/>
<energy_storage_systems/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</pv_generation_component>
</energy_generation_components>
<energy_storage_components>
<thermalStorages>
<storage_id>6</storage_id>
<name>template Hot Water Storage Tank</name>
<type_energy_stored>thermal</type_energy_stored>
<model_name/>
<manufacturer/>
<maximum_operating_temperature>95.0</maximum_operating_temperature>
<insulation>
<material_id>1</material_id>
<insulationThickness>90.0</insulationThickness>
</insulation>
<physical_characteristics>
<material_id>2</material_id>
<tankThickness>0</tankThickness>
<height>1.5</height>
<tankMaterial>Steel</tankMaterial>
<volume/>
</physical_characteristics>
<storage_medium>
<medium_id>1</medium_id>
</storage_medium>
<storage_type>sensible</storage_type>
<nominal_capacity/>
<losses_ratio/>
<heating_coil_capacity/>
</thermalStorages>
<thermalStorages>
<storage_id>7</storage_id>
<name>template Hot Water Storage Tank with Heating Coil</name>
<type_energy_stored>thermal</type_energy_stored>
<model_name/>
<manufacturer/>
<maximum_operating_temperature>95.0</maximum_operating_temperature>
<insulation>
<material_id>1</material_id>
<insulationThickness>90.0</insulationThickness>
</insulation>
<physical_characteristics>
<material_id>2</material_id>
<tankThickness>0</tankThickness>
<height>1.5</height>
<tankMaterial>Steel</tankMaterial>
<volume/>
</physical_characteristics>
<storage_medium>
<medium_id>1</medium_id>
</storage_medium>
<storage_type>sensible</storage_type>
<nominal_capacity/>
<losses_ratio/>
<heating_coil_capacity>5000</heating_coil_capacity>
</thermalStorages>
</energy_storage_components>
<materials>
<material>
<material_id>1</material_id>
<name>Polyurethane</name>
<solar_absorptance/>
<thermal_absorptance/>
<visible_absorptance/>
<no_mass/>
<thermal_resistance/>
<density/>
<specific_heat/>
<conductivity>0.028</conductivity>
</material>
<material>
<material_id>2</material_id>
<name>Steel</name>
<solar_absorptance/>
<thermal_absorptance/>
<visible_absorptance/>
<no_mass/>
<thermal_resistance/>
<density/>
<specific_heat/>
<conductivity>18</conductivity>
</material>
</materials>
<distribution_systems>
<distribution_system/>
</distribution_systems>
<dissipation_systems>
<dissipation_system/>
</dissipation_systems>
<systems>
<system>
<id>1</id>
<name>Central gas system</name>
<schema/>
<demands>
<demand>heating</demand>
<demand>domestic_hot_water</demand>
</demands>
<components>
<generation_id>1</generation_id>
</components>
</system>
<system>
<id>2</id>
<name>Central Joule system</name>
<schema/>
<demands>
<demand>heating</demand>
<demand>domestic_hot_water</demand>
</demands>
<components>
<generation_id>2</generation_id>
</components>
</system>
<system>
<id>3</id>
<name>Central butane system</name>
<schema/>
<demands>
<demand>heating</demand>
<demand>domestic_hot_water</demand>
</demands>
<components>
<generation_id>4</generation_id>
</components>
</system>
<system>
<id>4</id>
<name>Single zone split system</name>
<schema/>
<demands>
<demand>cooling</demand>
</demands>
<components>
<generation_id>5</generation_id>
</components>
</system>
<system>
<id>5</id>
<name>4 pipe heat pump system</name>
<schema/>
<demands>
<demand>heating</demand>
<demand>cooling</demand>
</demands>
<components>
<generation_id>3</generation_id>
</components>
</system>
<system>
<id>6</id>
<name>PV</name>
<schema/>
<demands>
<demand>electricity</demand>
</demands>
<components>
<generation_id>7</generation_id>
</components>
</system>
<system>
<id>7</id>
<name>Gas heating</name>
<schema/>
<demands>
<demand>heating</demand>
</demands>
<components>
<generation_id>1</generation_id>
</components>
</system>
<system>
<id>8</id>
<name>Electrical heating</name>
<schema/>
<demands>
<demand>heating</demand>
</demands>
<components>
<generation_id>2</generation_id>
</components>
</system>
<system>
<id>9</id>
<name>Butane heating</name>
<schema/>
<demands>
<demand>heating</demand>
</demands>
<components>
<generation_id>4</generation_id>
</components>
</system>
<system>
<id>10</id>
<name>Gas hot water system</name>
<schema/>
<demands>
<demand>domestic_hot_water</demand>
</demands>
<components>
<generation_id>1</generation_id>
</components>
</system>
<system>
<id>11</id>
<name>Electrical hot water system</name>
<schema/>
<demands>
<demand>domestic_hot_water</demand>
</demands>
<components>
<generation_id>2</generation_id>
</components>
</system>
<system>
<id>12</id>
<name>Butane hot water system</name>
<schema/>
<demands>
<demand>domestic_hot_water</demand>
</demands>
<components>
<generation_id>4</generation_id>
</components>
</system>
<system>
<id>13</id>
<name>Heat Pump hot water system</name>
<schema/>
<demands>
<demand>domestic_hot_water</demand>
</demands>
<components>
<generation_id>6</generation_id>
</components>
</system>
</systems>
<system_archetypes>
<system_archetype id="1">
<name>Gas boiler for heating and hot water heater with split cooling</name>
<systems>
<system_id>1</system_id>
<system_id>4</system_id>
</systems>
</system_archetype>
<system_archetype id="2">
<name>Joule heater for heating and hot water heater with split cooling</name>
<systems>
<system_id>2</system_id>
<system_id>4</system_id>
</systems>
</system_archetype>
<system_archetype id="3">
<name>Butane heater for heating and hot water heater with split cooling</name>
<systems>
<system_id>3</system_id>
<system_id>4</system_id>
</systems>
</system_archetype>
<system_archetype id="4">
<name>Gas heating</name>
<systems>
<system_id>1</system_id>
</systems>
</system_archetype>
<system_archetype id="5">
<name>Electrical joule heating</name>
<systems>
<system_id>2</system_id>
</systems>
</system_archetype>
<system_archetype id="6">
<name>Butane heating</name>
<systems>
<system_id>3</system_id>
</systems>
</system_archetype>
<system_archetype id="7">
<name>Heat pump with gas water heater</name>
<systems>
<system_id>5</system_id>
<system_id>7</system_id>
</systems>
</system_archetype>
<system_archetype id="8">
<name>Heat pump with joule water heater</name>
<systems>
<system_id>5</system_id>
<system_id>8</system_id>
</systems>
</system_archetype>
<system_archetype id="9">
<name>Heat pump with butane water heater</name>
<systems>
<system_id>5</system_id>
<system_id>9</system_id>
</systems>
</system_archetype>
<system_archetype id="10">
<name>Heat pump with gas water heater and rooftop PV</name>
<systems>
<system_id>5</system_id>
<system_id>7</system_id>
<system_id>6</system_id>
</systems>
</system_archetype>
<system_archetype id="11">
<name>Heat pump with joule water heater and rooftop PV</name>
<systems>
<system_id>5</system_id>
<system_id>8</system_id>
<system_id>6</system_id>
</systems>
</system_archetype>
<system_archetype id="12">
<name>Rooftop PV</name>
<systems>
<system_id>6</system_id>
</systems>
</system_archetype>
<system_archetype id="13">
<name>Joule heater with split cooling and gas hot water</name>
<systems>
<system_id>4</system_id>
<system_id>8</system_id>
<system_id>10</system_id>
</systems>
</system_archetype>
<system_archetype id="14">
<name>Joule heater with split cooling and butane hot water</name>
<systems>
<system_id>4</system_id>
<system_id>8</system_id>
<system_id>12</system_id>
</systems>
</system_archetype>
<system_archetype id="15">
<name>PV and heat pump</name>
<systems>
<system_id>5</system_id>
<system_id>6</system_id>
<system_id>13</system_id>
</systems>
</system_archetype>
</system_archetypes>
</EnergySystemCatalog>

View File

@ -1,904 +0,0 @@
{
"tables": {
"schedules": {
"data_type": "table",
"refs": [
"DBHE CTE Tabla b-Anejo D"
],
"table": [
{
"name": "DBHE-CTE-Occupancy-sensible",
"category": "Occupancy",
"units": "FRACTION",
"day_types": "Default|Wkdy",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
1,
1,
1,
1,
1,
1,
0.25,
0.25,
0.25,
0.25,
0.25,
0.25,
0.25,
0.25,
0.5,
0.5,
0.5,
0.5,
0.5,
0.5,
0.5,
0.5,
0.5,
1
]
},
{
"name": "DBHE-CTE-Occupancy-sensible",
"category": "Occupancy",
"units": "FRACTION",
"day_types": "Sat",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1
]
},
{
"name": "DBHE-CTE-Occupancy-sensible",
"category": "Occupancy",
"units": "FRACTION",
"day_types": "Sun|Hol",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1
]
},
{
"name": "DBHE-CTE-Occupancy-latent",
"category": "Occupancy",
"units": "FRACTION",
"day_types": "Default|Wkdy",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
1,
1,
1,
1,
1,
1,
0.25,
0.25,
0.25,
0.25,
0.25,
0.25,
0.25,
0.25,
0.5,
0.5,
0.5,
0.5,
0.5,
0.5,
0.5,
0.5,
0.5,
1
]
},
{
"name": "DBHE-CTE-Occupancy-latent",
"category": "Occupancy",
"units": "FRACTION",
"day_types": "Sat",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1
]
},
{
"name": "DBHE-CTE-Occupancy-latent",
"category": "Occupancy",
"units": "FRACTION",
"day_types": "Sun|Hol",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1
]
},
{
"name": "DBHE-CTE-Lighting",
"category": "Lighting",
"units": "FRACTION",
"day_types": "Default|Wkdy",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.5,
1,
1,
1,
1,
1,
0.5
]
},
{
"name": "DBHE-CTE-Lighting",
"category": "Lighting",
"units": "FRACTION",
"day_types": "Sat",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.5,
1,
1,
1,
1,
1,
0.5
]
},
{
"name": "DBHE-CTE-Lighting",
"category": "Lighting",
"units": "FRACTION",
"day_types": "Sun|Hol",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.5,
1,
1,
1,
1,
1,
0.5
]
},
{
"name": "DBHE-CTE-Equipment",
"category": "Equipment",
"units": "FRACTION",
"day_types": "Default|Wkdy",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.5,
1,
1,
1,
1,
1,
0.5
]
},
{
"name": "DBHE-CTE-Equipment",
"category": "Equipment",
"units": "FRACTION",
"day_types": "Sat",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.5,
1,
1,
1,
1,
1,
0.5
]
},
{
"name": "DBHE-CTE-Equipment",
"category": "Equipment",
"units": "FRACTION",
"day_types": "Sun|Hol",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.5,
1,
1,
1,
1,
1,
0.5
]
},
{
"name": "DBHE-CTE-Thermostat Setpoint-Heating",
"category": "Thermostat Setpoint",
"units": "TEMPERATURE",
"day_types": "Default|Wkdy",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
17.0,
17.0,
17.0,
17.0,
17.0,
17.0,
17.0,
21.0,
21.0,
21.0,
21.0,
21.0,
21.0,
21.0,
21.0,
21.0,
21.0,
21.0,
21.0,
21.0,
21.0,
20.0,
17.0,
17.0
]
},
{
"name": "DBHE-CTE-Thermostat Setpoint-Heating",
"category": "Thermostat Setpoint",
"units": "TEMPERATURE",
"day_types": "Sat",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
22.0,
18.0,
18.0,
18.0,
18.0,
18.0,
18.0,
20.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0
]
},
{
"name": "DBHE-CTE-Thermostat Setpoint-Heating",
"category": "Thermostat Setpoint",
"units": "TEMPERATURE",
"day_types": "Sun|Hol",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
22.0,
18.0,
18.0,
18.0,
18.0,
18.0,
18.0,
20.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0
]
},
{
"name": "DBHE-CTE-Thermostat Setpoint-Cooling",
"category": "Thermostat Setpoint",
"units": "TEMPERATURE",
"day_types": "Default|Wkdy",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
28.0,
28.0,
28.0,
28.0,
28.0,
28.0,
28.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
28.0,
28.0
]
},
{
"name": "DBHE-CTE-Thermostat Setpoint-Cooling",
"category": "Thermostat Setpoint",
"units": "TEMPERATURE",
"day_types": "Sat",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
28.0,
28.0,
28.0,
28.0,
28.0,
28.0,
28.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
28.0,
28.0
]
},
{
"name": "DBHE-CTE-Thermostat Setpoint-Cooling",
"category": "Thermostat Setpoint",
"units": "TEMPERATURE",
"day_types": "Sun|Hol",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
28.0,
28.0,
28.0,
28.0,
28.0,
28.0,
28.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
28.0,
28.0
]
},
{
"name": "Always On",
"category": "Unknown",
"units": null,
"day_types": "Default",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Constant",
"notes": null,
"values": [
1.0
]
},
{
"name": "default_HVAC_schedule",
"category": "Fan",
"units": "ON_OFF",
"day_types": "Default|Wkdy",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0
]
},
{
"name": "default_HVAC_schedule",
"category": "Fan",
"units": "ON_OFF",
"day_types": "Sat",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0
]
},
{
"name": "default_HVAC_schedule",
"category": "Fan",
"units": "ON_OFF",
"day_types": "Sun|Hol",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0
]
},
{
"name": "DBHE-CTE-Service Water Heating",
"category": "Service Water Heating",
"units": "FRACTION",
"day_types": "Default|Wkdy",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
0.01,
0.00,
0.00,
0.00,
0.00,
0.01,
0.03,
0.1,
0.07,
0.07,
0.06,
0.06,
0.05,
0.05,
0.04,
0.03,
0.04,
0.04,
0.05,
0.07,
0.06,
0.06,
0.05,
0.05
]
},
{
"name": "DBHE-CTE-Service Water Heating",
"category": "Service Water Heating",
"units": "FRACTION",
"day_types": "Sat",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
0.01,
0.00,
0.00,
0.00,
0.00,
0.01,
0.03,
0.1,
0.07,
0.07,
0.06,
0.06,
0.05,
0.05,
0.04,
0.03,
0.04,
0.04,
0.05,
0.07,
0.06,
0.06,
0.05,
0.05
]
},
{
"name": "DBHE-CTE-Service Water Heating",
"category": "Service Water Heating",
"units": "FRACTION",
"day_types": "Sun|Hol",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
0.01,
0.00,
0.00,
0.00,
0.00,
0.01,
0.03,
0.1,
0.07,
0.07,
0.06,
0.06,
0.05,
0.05,
0.04,
0.03,
0.04,
0.04,
0.05,
0.07,
0.06,
0.06,
0.05,
0.05
]
}
]
}}}

View File

@ -1,30 +0,0 @@
{
"tables": {
"space_compliance": {
"data_type": "table",
"refs": {
"lighting_per_area_w_per_m2": "DBHE-CTE Tabla b-Anejo D",
"occupancy_per_area_people_per_m2": "DBHE CTE Tabla b-Anejo D",
"occupancy_schedule": "DBHE-CTE Tabla b-Anejo D",
"electric_equipment_per_area_w_per_m2": "DBHE CTE Tabla b-Anejo D"
},
"tolerance": {
"lighting_per_area_w_per_m2": 1,
"occupancy_per_area_people_per_m2": 3,
"occupancy_schedule": null,
"electric_equipment_per_area_w_per_m2": 1
},
"table": [
{
"template": "DBHE-CTE",
"building_type": "residential",
"space_type": "WholeBuilding",
"lighting_per_area_w_per_m2": 4.4,
"occupancy_per_area_people_per_m2": 0.014333333,
"occupancy_schedule": "DBHE-CTE-Occupancy",
"electric_equipment_per_area_w_per_m2": 4.4,
"service_water_heating_peak_flow_per_area": 0.02272990107962068
}]
}
}
}

View File

@ -1,97 +0,0 @@
{
"tables": {
"space_types": {
"data_type": "table",
"refs": [
"assumption"
],
"table": [
{
"building_type": "residential",
"space_type": "WholeBuilding",
"rgb": "255_255_255",
"lighting_standard": "DBHE-CTE",
"lighting_primary_space_type": "residential",
"lighting_secondary_space_type": "WholeBuilding",
"lighting_per_area": 4.4,
"lighting_per_person": null,
"additional_lighting_per_area": null,
"rel_absence_occ": 0.0,
"personal_control": 0.0,
"occ_sense": 0.0,
"lighting_fraction_to_return_air": 0.0,
"lighting_fraction_radiant": 0.5,
"lighting_fraction_visible": 0.2,
"lighting_fraction_replaceable": null,
"lpd_fractionlinear_fluorescent": 1.0,
"lpd_fractioncompact_fluorescent": null,
"lpd_fractionhigh_bay": null,
"lpd_fractionspecialty_lighting": null,
"lpd_fractionexit_lighting": null,
"lighting_schedule": "DBHE-CTE-Lighting",
"compact_fluorescent_lighting_schedule": null,
"high_bay_lighting_schedule": null,
"specialty_lighting_schedule": null,
"exit_lighting_schedule": null,
"target_illuminance_setpoint": 125,
"target_illuminance_setpoint_ref": null,
"psa_nongeometry_fraction": null,
"ssa_nongeometry_fraction": null,
"ventilation_standard": null,
"ventilation_primary_space_type": "residential",
"ventilation_secondary_space_type": "WholeBuilding",
"ventilation_per_area": 0,
"ventilation_per_person": 0,
"ventilation_air_changes": 0.4,
"minimum_total_air_changes": null,
"occupancy_per_area": 2.15,
"occupancy_schedule": "DBHE-CTE-Occupancy-sensible",
"occupancy_activity_schedule": null,
"infiltration_per_exterior_area": 0.4,
"infiltration_per_exterior_wall_area": null,
"infiltration_air_changes": null,
"infiltration_schedule": "Always On",
"infiltration_schedule_perimeter": null,
"gas_equipment_per_area": null,
"gas_equipment_fraction_latent": null,
"gas_equipment_fraction_radiant": null,
"gas_equipment_fraction_lost": null,
"gas_equipment_schedule": null,
"electric_equipment_per_area": 4.4,
"electric_equipment_fraction_latent": 0.0,
"electric_equipment_fraction_radiant": 0.5,
"electric_equipment_fraction_lost": 0.0,
"electric_equipment_schedule": "DBHE-CTE-Equipment",
"additional_electric_equipment_schedule": null,
"additional_gas_equipment_schedule": null,
"heating_setpoint_schedule": "DBHE-CTE-Thermostat Setpoint-Heating",
"cooling_setpoint_schedule": "DBHE-CTE-Thermostat Setpoint-Cooling",
"service_water_heating_peak_flow_rate": null,
"service_water_heating_area": null,
"service_water_heating_peak_flow_per_area": 0.009385225,
"service_water_heating_target_temperature": 60.0,
"service_water_heating_fraction_sensible": null,
"service_water_heating_fraction_latent": null,
"service_water_heating_schedule": "DBHE-CTE-Service Water Heating",
"exhaust_per_area": null,
"exhaust_fan_efficiency": null,
"exhaust_fan_power": null,
"exhaust_fan_pressure_rise": null,
"exhaust_fan_maximum_flow_rate": null,
"exhaust_schedule": null,
"balanced_exhaust_fraction_schedule": null,
"is_residential": null,
"necb_hvac_system_selection_type": "residential",
"necb_schedule_type": "G",
"notes": null,
"ventilation_occupancy_rate_people_per_1000ft2": 10,
"ventilation_occupancy_standard": null,
"ventilation_standard_space_type": null,
"sensible_convective_internal_gain": 0.86,
"sensible_radiative_internal_gain": 1.29,
"latent_internal_gain": 1.36
}
]
}
}
}

View File

@ -25,6 +25,7 @@ KILO_WATTS_HOUR_TO_JULES = 3600000
WATTS_HOUR_TO_JULES = 3600 WATTS_HOUR_TO_JULES = 3600
GALLONS_TO_QUBIC_METERS = 0.0037854117954011185 GALLONS_TO_QUBIC_METERS = 0.0037854117954011185
# time # time
SECOND = 'second' SECOND = 'second'
MINUTE = 'minute' MINUTE = 'minute'
@ -293,7 +294,6 @@ GAS = 'Gas'
DIESEL = 'Diesel' DIESEL = 'Diesel'
COAL = 'Coal' COAL = 'Coal'
BIOMASS = 'Biomass' BIOMASS = 'Biomass'
BUTANE = 'Butane'
AIR = 'Air' AIR = 'Air'
WATER = 'Water' WATER = 'Water'
GEOTHERMAL = 'Geothermal' GEOTHERMAL = 'Geothermal'
@ -306,9 +306,6 @@ HEAT_PUMP = 'Heat Pump'
BASEBOARD = 'Baseboard' BASEBOARD = 'Baseboard'
ELECTRICITY_GENERATOR = 'Electricity generator' ELECTRICITY_GENERATOR = 'Electricity generator'
CHILLER = 'Chiller' CHILLER = 'Chiller'
SPLIT = 'Split'
JOULE = 'Joule'
BUTANE_HEATER = 'Butane Heater'
SENSIBLE = 'sensible' SENSIBLE = 'sensible'
LATENT = 'Latent' LATENT = 'Latent'
LITHIUMION = 'Lithium Ion' LITHIUMION = 'Lithium Ion'

View File

@ -1,30 +0,0 @@
"""
Dictionaries module for hub function to Palma construction function
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Cecilia Pérez cperez@irec.cat
"""
import hub.helpers.constants as cte
class HubFunctionToPalmaConstructionFunction:
"""
Hub function to Palma construction function class
"""
def __init__(self):
self._dictionary = {
cte.RESIDENTIAL: 'V',
cte.SINGLE_FAMILY_HOUSE: 'Single family building',
cte.HIGH_RISE_APARTMENT: 'Large multifamily building',
cte.MID_RISE_APARTMENT: 'Medium multifamily building',
cte.MULTI_FAMILY_HOUSE: 'Small multifamily building'
}
@property
def dictionary(self) -> dict:
"""
Get the dictionary
:return: {}
"""
return self._dictionary

View File

@ -1,51 +0,0 @@
"""
Dictionaries module for hub usage to Palma usage
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Cecilia Pérez cperez@irec.cat
"""
"""
Codification of uses from cadastre:
U: store-parking. Residential Use
S: store-parking. Industrial Use
V: Residential
I: Industrial
O: Offices
C: Comercial
K: Sportive center
T: Shows
G: Leisure and Hostelry
Y: Health and charity
E: Culture
R: Religion
M: Urbanization work, gardening and undeveloped land
P: Singular building
B: Farm warehouse
J: Farm Industry
Z: Farm-related
"""
import hub.helpers.constants as cte
class HubUsageToPalmaUsage:
"""
Hub usage to Palma usage class
"""
def __init__(self):
self._dictionary = {
cte.RESIDENTIAL: 'residential',
cte.SINGLE_FAMILY_HOUSE: 'residential',
cte.HIGH_RISE_APARTMENT: 'residential',
cte.MID_RISE_APARTMENT: 'residential',
cte.MULTI_FAMILY_HOUSE: 'residential'
}
@property
def dictionary(self) -> dict:
"""
Get the dictionary
:return: {}
"""
return self._dictionary

View File

@ -12,15 +12,11 @@ class MontrealCustomFuelToHubFuel:
""" """
Montreal custom fuel to hub fuel class Montreal custom fuel to hub fuel class
""" """
def __init__(self): def __init__(self):
self._dictionary = { self._dictionary = {
'gas': cte.GAS, 'gas': cte.GAS,
'natural gas': cte.GAS,
'electricity': cte.ELECTRICITY, 'electricity': cte.ELECTRICITY,
'renewable': cte.RENEWABLE, 'renewable': cte.RENEWABLE
'butane': cte.BUTANE,
'diesel': cte.DIESEL
} }
@property @property

View File

@ -18,12 +18,8 @@ class MontrealGenerationSystemToHubEnergyGenerationSystem:
'furnace': cte.BASEBOARD, 'furnace': cte.BASEBOARD,
'cooler': cte.CHILLER, 'cooler': cte.CHILLER,
'electricity generator': cte.ELECTRICITY_GENERATOR, 'electricity generator': cte.ELECTRICITY_GENERATOR,
'Photovoltaic': cte.PHOTOVOLTAIC, 'PV system': cte.PHOTOVOLTAIC,
'heat pump': cte.HEAT_PUMP, 'heat pump': cte.HEAT_PUMP
'joule': cte.JOULE,
'split': cte.SPLIT,
'butane heater': cte.BUTANE_HEATER
} }
@property @property

View File

@ -1,31 +0,0 @@
"""
Dictionaries module for Palma function to hub function
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Cecilia Pérez cperez@irec.cat
"""
import hub.helpers.constants as cte
class PalmaFunctionToHubFunction:
"""
Palma function to hub function class
"""
def __init__(self):
self._dictionary = {'Residential': cte.RESIDENTIAL,
'Single-family building': cte.SINGLE_FAMILY_HOUSE,
'Large multifamily building': cte.HIGH_RISE_APARTMENT,
'Medium multifamily building': cte.MID_RISE_APARTMENT,
'Small multifamily building': cte.MULTI_FAMILY_HOUSE,
'V': cte.RESIDENTIAL
}
@property
def dictionary(self) -> dict:
"""
Get the dictionary
:return: {}
"""
return self._dictionary

View File

@ -26,9 +26,6 @@ from hub.helpers.data.north_america_demand_type_to_hub_energy_demand_type import
from hub.helpers.data.north_america_system_to_hub_energy_generation_system import NorthAmericaSystemToHubEnergyGenerationSystem from hub.helpers.data.north_america_system_to_hub_energy_generation_system import NorthAmericaSystemToHubEnergyGenerationSystem
from hub.helpers.data.north_america_custom_fuel_to_hub_fuel import NorthAmericaCustomFuelToHubFuel from hub.helpers.data.north_america_custom_fuel_to_hub_fuel import NorthAmericaCustomFuelToHubFuel
from hub.helpers.data.north_america_storage_system_to_hub_storage import NorthAmericaStorageSystemToHubEnergyStorage from hub.helpers.data.north_america_storage_system_to_hub_storage import NorthAmericaStorageSystemToHubEnergyStorage
from hub.helpers.data.palma_function_to_hub_function import PalmaFunctionToHubFunction
from hub.helpers.data.hub_usage_to_palma_usage import HubUsageToPalmaUsage
from hub.helpers.data.hub_function_to_palma_construction_function import HubFunctionToPalmaConstructionFunction
class Dictionaries: class Dictionaries:
@ -68,14 +65,6 @@ class Dictionaries:
""" """
return HubUsageToEilatUsage().dictionary return HubUsageToEilatUsage().dictionary
@property
def hub_usage_to_palma_usage(self) -> dict:
"""
Hub usage to Palma usage, transformation dictionary
:return: dict
"""
return HubUsageToPalmaUsage().dictionary
@property @property
def hub_function_to_nrcan_construction_function(self) -> dict: def hub_function_to_nrcan_construction_function(self) -> dict:
""" """
@ -99,13 +88,6 @@ class Dictionaries:
:return: dict :return: dict
""" """
return HubFunctionToNrelConstructionFunction().dictionary return HubFunctionToNrelConstructionFunction().dictionary
@property
def hub_function_to_palma_construction_function(self) -> dict:
"""
Get hub function to Palma construction function, transformation dictionary
:return: dict
"""
return HubFunctionToPalmaConstructionFunction().dictionary
@property @property
def pluto_function_to_hub_function(self) -> dict: def pluto_function_to_hub_function(self) -> dict:
@ -123,14 +105,6 @@ class Dictionaries:
""" """
return HftFunctionToHubFunction().dictionary return HftFunctionToHubFunction().dictionary
@property
def palma_function_to_hub_function(self) -> dict:
"""
Get Palma function to hub function, transformation dictionary
:return: dict
"""
return PalmaFunctionToHubFunction().dictionary
@property @property
def montreal_function_to_hub_function(self) -> dict: def montreal_function_to_hub_function(self) -> dict:
""" """

View File

@ -65,11 +65,6 @@ class ConstructionHelper:
'Eilat': 'BWh' 'Eilat': 'BWh'
} }
_reference_city_to_palma_climate_zone = {
'Palma': 'B3'
}
@staticmethod @staticmethod
def yoc_to_nrel_standard(year_of_construction): def yoc_to_nrel_standard(year_of_construction):
""" """
@ -112,12 +107,3 @@ class ConstructionHelper:
:return: str :return: str
""" """
return ConstructionHelper._reference_city_to_israel_climate_zone[reference_city] return ConstructionHelper._reference_city_to_israel_climate_zone[reference_city]
@staticmethod
def city_to_palma_climate_zone(reference_city):
"""
City name to Palma climate zone
:param reference_city: str
:return: str
"""
return ConstructionHelper._reference_city_to_palma_climate_zone[reference_city]

View File

@ -1,104 +0,0 @@
"""
PalmaPhysicsParameters import the construction and material information defined by Palma
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Cecilia Pérez Pérez cperez@irec.cat
"""
import logging
from hub.catalog_factories.construction_catalog_factory import ConstructionCatalogFactory
from hub.city_model_structure.building_demand.thermal_archetype import ThermalArchetype
from hub.city_model_structure.building_demand.construction import Construction
from hub.city_model_structure.building_demand.layer import Layer
from hub.helpers.dictionaries import Dictionaries
from hub.imports.construction.helpers.construction_helper import ConstructionHelper
class PalmaPhysicsParameters:
"""
PalmaPhysicsParameters class
"""
def __init__(self, city, divide_in_storeys=False):
self._city = city
self._divide_in_storeys = divide_in_storeys
self._climate_zone = ConstructionHelper.city_to_palma_climate_zone(city.climate_reference_city)
def enrich_buildings(self):
"""
Returns the city with the construction parameters assigned to the buildings
"""
city = self._city
palma_catalog = ConstructionCatalogFactory('palma').catalog
for building in city.buildings:
if building.function not in Dictionaries().hub_function_to_palma_construction_function:
logging.error('Building %s has an unknown building function %s', building.name, building.function)
continue
function = Dictionaries().hub_function_to_palma_construction_function[building.function]
try:
archetype = self._search_archetype(palma_catalog, function, building.year_of_construction, self._climate_zone)
except KeyError:
logging.error('Building %s has unknown construction archetype for building function: %s '
'[%s], building year of construction: %s and climate zone %s', building.name, function,
building.function, building.year_of_construction, self._climate_zone)
continue
thermal_archetype = ThermalArchetype()
self._assign_values(thermal_archetype, archetype)
for internal_zone in building.internal_zones:
internal_zone.thermal_archetype = thermal_archetype
@staticmethod
def _search_archetype(nrcan_catalog, function, year_of_construction, climate_zone):
nrcan_archetypes = nrcan_catalog.entries('archetypes')
for building_archetype in nrcan_archetypes:
construction_period_limits = building_archetype.construction_period.split('_')
if int(construction_period_limits[0]) <= int(year_of_construction) <= int(construction_period_limits[1]):
if str(function) == str(building_archetype.function) and climate_zone == str(building_archetype.climate_zone):
return building_archetype
raise KeyError('archetype not found')
@staticmethod
def _assign_values(thermal_archetype, catalog_archetype):
thermal_archetype.average_storey_height = catalog_archetype.average_storey_height
thermal_archetype.extra_loses_due_to_thermal_bridges = catalog_archetype.extra_loses_due_to_thermal_bridges
thermal_archetype.thermal_capacity = catalog_archetype.thermal_capacity
thermal_archetype.indirect_heated_ratio = 0
thermal_archetype.infiltration_rate_for_ventilation_system_on = catalog_archetype.infiltration_rate_for_ventilation_system_on
thermal_archetype.infiltration_rate_for_ventilation_system_off = catalog_archetype.infiltration_rate_for_ventilation_system_off
_constructions = []
for catalog_construction in catalog_archetype.constructions:
construction = Construction()
construction.type = catalog_construction.type
construction.name = catalog_construction.name
if catalog_construction.window_ratio is not None:
for _orientation in catalog_construction.window_ratio:
if catalog_construction.window_ratio[_orientation] is None:
catalog_construction.window_ratio[_orientation] = 0
construction.window_ratio = catalog_construction.window_ratio
_layers = []
for layer_archetype in catalog_construction.layers:
layer = Layer()
layer.thickness = layer_archetype.thickness
archetype_material = layer_archetype.material
layer.material_name = archetype_material.name
layer.no_mass = archetype_material.no_mass
if archetype_material.no_mass:
layer.thermal_resistance = archetype_material.thermal_resistance
else:
layer.density = archetype_material.density
layer.conductivity = archetype_material.conductivity
layer.specific_heat = archetype_material.specific_heat
layer.solar_absorptance = archetype_material.solar_absorptance
layer.thermal_absorptance = archetype_material.thermal_absorptance
layer.visible_absorptance = archetype_material.visible_absorptance
_layers.append(layer)
construction.layers = _layers
if catalog_construction.window is not None:
window_archetype = catalog_construction.window
construction.window_frame_ratio = window_archetype.frame_ratio
construction.window_g_value = window_archetype.g_value
construction.window_overall_u_value = window_archetype.overall_u_value
_constructions.append(construction)
thermal_archetype.constructions = _constructions

View File

@ -10,7 +10,6 @@ from hub.helpers.utils import validate_import_export_type
from hub.imports.construction.nrcan_physics_parameters import NrcanPhysicsParameters from hub.imports.construction.nrcan_physics_parameters import NrcanPhysicsParameters
from hub.imports.construction.nrel_physics_parameters import NrelPhysicsParameters from hub.imports.construction.nrel_physics_parameters import NrelPhysicsParameters
from hub.imports.construction.eilat_physics_parameters import EilatPhysicsParameters from hub.imports.construction.eilat_physics_parameters import EilatPhysicsParameters
from hub.imports.construction.palma_physics_parameters import PalmaPhysicsParameters
class ConstructionFactory: class ConstructionFactory:
@ -49,15 +48,6 @@ class ConstructionFactory:
for building in self._city.buildings: for building in self._city.buildings:
building.level_of_detail.construction = 2 building.level_of_detail.construction = 2
def _palma(self):
"""
Enrich the city by using Palma information
"""
PalmaPhysicsParameters(self._city).enrich_buildings()
self._city.level_of_detail.construction = 2
for building in self._city.buildings:
building.level_of_detail.construction = 2
def enrich(self): def enrich(self):
""" """
Enrich the city given to the class using the class given handler Enrich the city given to the class using the class given handler

View File

@ -1,216 +0,0 @@
"""
Montreal future system importer
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Saeed Ranjbar saeed.ranjbar@concordia.ca
"""
import logging
import copy
from hub.catalog_factories.energy_systems_catalog_factory import EnergySystemsCatalogFactory
from hub.city_model_structure.energy_systems.energy_system import EnergySystem
from hub.city_model_structure.energy_systems.distribution_system import DistributionSystem
from hub.city_model_structure.energy_systems.non_pv_generation_system import NonPvGenerationSystem
from hub.city_model_structure.energy_systems.pv_generation_system import PvGenerationSystem
from hub.city_model_structure.energy_systems.electrical_storage_system import ElectricalStorageSystem
from hub.city_model_structure.energy_systems.thermal_storage_system import ThermalStorageSystem
from hub.city_model_structure.energy_systems.emission_system import EmissionSystem
from hub.helpers.dictionaries import Dictionaries
class PalmaEnergySystemParameters:
"""
MontrealCustomEnergySystemParameters class
"""
def __init__(self, city):
self._city = city
def enrich_buildings(self):
"""
Returns the city with the system parameters assigned to the buildings
:return:
"""
city = self._city
montreal_custom_catalog = EnergySystemsCatalogFactory('palma').catalog
if city.generic_energy_systems is None:
_generic_energy_systems = {}
else:
_generic_energy_systems = city.generic_energy_systems
for building in city.buildings:
archetype_name = building.energy_systems_archetype_name
try:
archetype = self._search_archetypes(montreal_custom_catalog, archetype_name)
except KeyError:
logging.error('Building %s has unknown energy system archetype for system name %s', building.name,
archetype_name)
continue
if archetype.name not in _generic_energy_systems:
_generic_energy_systems = self._create_generic_systems_list(archetype, _generic_energy_systems)
city.generic_energy_systems = _generic_energy_systems
self._assign_energy_systems_to_buildings(city)
@staticmethod
def _search_archetypes(catalog, name):
archetypes = catalog.entries('archetypes')
for building_archetype in archetypes:
if str(name) == str(building_archetype.name):
return building_archetype
raise KeyError('archetype not found')
def _create_generic_systems_list(self, archetype, _generic_energy_systems):
building_systems = []
for archetype_system in archetype.systems:
energy_system = EnergySystem()
_hub_demand_types = []
for demand_type in archetype_system.demand_types:
_hub_demand_types.append(Dictionaries().montreal_demand_type_to_hub_energy_demand_type[demand_type])
energy_system.name = archetype_system.name
energy_system.demand_types = _hub_demand_types
energy_system.configuration_schema = archetype_system.configuration_schema
energy_system.generation_systems = self._create_generation_systems(archetype_system)
if energy_system.distribution_systems is not None:
energy_system.distribution_systems = self._create_distribution_systems(archetype_system)
building_systems.append(energy_system)
_generic_energy_systems[archetype.name] = building_systems
return _generic_energy_systems
def _create_generation_systems(self, archetype_system):
_generation_systems = []
archetype_generation_systems = archetype_system.generation_systems
if archetype_generation_systems is not None:
for archetype_generation_system in archetype_system.generation_systems:
if archetype_generation_system.system_type == 'Photovoltaic':
_generation_system = PvGenerationSystem()
_generation_system.name = archetype_generation_system.name
_generation_system.model_name = archetype_generation_system.model_name
_generation_system.manufacturer = archetype_generation_system.manufacturer
_type = archetype_generation_system.system_type
_generation_system.system_type = Dictionaries().montreal_generation_system_to_hub_energy_generation_system[_type]
_fuel_type = Dictionaries().montreal_custom_fuel_to_hub_fuel[archetype_generation_system.fuel_type]
_generation_system.fuel_type = _fuel_type
_generation_system.electricity_efficiency = archetype_generation_system.electricity_efficiency
_generation_system.nominal_electricity_output = archetype_generation_system.nominal_electricity_output
_generation_system.nominal_ambient_temperature = archetype_generation_system.nominal_ambient_temperature
_generation_system.nominal_cell_temperature = archetype_generation_system.nominal_cell_temperature
_generation_system.nominal_radiation = archetype_generation_system.nominal_radiation
_generation_system.standard_test_condition_cell_temperature = archetype_generation_system.standard_test_condition_cell_temperature
_generation_system.standard_test_condition_maximum_power = archetype_generation_system.standard_test_condition_maximum_power
_generation_system.standard_test_condition_radiation = archetype_generation_system.standard_test_condition_radiation
_generation_system.cell_temperature_coefficient = archetype_generation_system.cell_temperature_coefficient
_generation_system.width = archetype_generation_system.width
_generation_system.height = archetype_generation_system.height
_generation_system.tilt_angle = self._city.latitude
_generic_storage_system = None
if archetype_generation_system.energy_storage_systems is not None:
_storage_systems = []
for storage_system in archetype_generation_system.energy_storage_systems:
if storage_system.type_energy_stored == 'electrical':
_generic_storage_system = ElectricalStorageSystem()
_generic_storage_system.type_energy_stored = 'electrical'
_storage_systems.append(_generic_storage_system)
_generation_system.energy_storage_systems = _storage_systems
else:
_generation_system = NonPvGenerationSystem()
_generation_system.name = archetype_generation_system.name
_generation_system.model_name = archetype_generation_system.model_name
_generation_system.manufacturer = archetype_generation_system.manufacturer
_type = archetype_generation_system.system_type
_generation_system.system_type = Dictionaries().montreal_generation_system_to_hub_energy_generation_system[_type]
_fuel_type = Dictionaries().montreal_custom_fuel_to_hub_fuel[archetype_generation_system.fuel_type]
_generation_system.fuel_type = _fuel_type
_generation_system.nominal_heat_output = archetype_generation_system.nominal_heat_output
_generation_system.nominal_cooling_output = archetype_generation_system.nominal_cooling_output
_generation_system.maximum_heat_output = archetype_generation_system.maximum_heat_output
_generation_system.minimum_heat_output = archetype_generation_system.minimum_heat_output
_generation_system.maximum_cooling_output = archetype_generation_system.maximum_cooling_output
_generation_system.minimum_cooling_output = archetype_generation_system.minimum_cooling_output
_generation_system.source_temperature = archetype_generation_system.source_temperature
_generation_system.source_mass_flow = archetype_generation_system.source_mass_flow
_generation_system.supply_medium = archetype_generation_system.supply_medium
_generation_system.maximum_heat_supply_temperature = archetype_generation_system.maximum_heat_supply_temperature
_generation_system.maximum_cooling_supply_temperature = archetype_generation_system.maximum_cooling_supply_temperature
_generation_system.minimum_heat_supply_temperature = archetype_generation_system.minimum_heat_supply_temperature
_generation_system.minimum_cooling_supply_temperature = archetype_generation_system.minimum_cooling_supply_temperature
_generation_system.heat_output_curve = archetype_generation_system.heat_output_curve
_generation_system.heat_fuel_consumption_curve = archetype_generation_system.heat_fuel_consumption_curve
_generation_system.heat_efficiency_curve = archetype_generation_system.heat_efficiency_curve
_generation_system.cooling_output_curve = archetype_generation_system.cooling_output_curve
_generation_system.cooling_fuel_consumption_curve = archetype_generation_system.cooling_fuel_consumption_curve
_generation_system.cooling_efficiency_curve = archetype_generation_system.cooling_efficiency_curve
_generation_system.domestic_hot_water = archetype_generation_system.domestic_hot_water
_generation_system.nominal_electricity_output = archetype_generation_system.nominal_electricity_output
_generation_system.source_medium = archetype_generation_system.source_medium
_generation_system.heat_efficiency = archetype_generation_system.heat_efficiency
_generation_system.cooling_efficiency = archetype_generation_system.cooling_efficiency
_generation_system.electricity_efficiency = archetype_generation_system.electricity_efficiency
_generation_system.reversibility = archetype_generation_system.reversibility
_generic_storage_system = None
if archetype_generation_system.energy_storage_systems is not None:
_storage_systems = []
for storage_system in archetype_generation_system.energy_storage_systems:
if storage_system.type_energy_stored == 'electrical':
_generic_storage_system = ElectricalStorageSystem()
_generic_storage_system.type_energy_stored = 'electrical'
else:
_generic_storage_system = ThermalStorageSystem()
_generic_storage_system.type_energy_stored = storage_system.type_energy_stored
_generic_storage_system.height = storage_system.height
_generic_storage_system.layers = storage_system.layers
_generic_storage_system.storage_medium = storage_system.storage_medium
_generic_storage_system.heating_coil_capacity = storage_system.heating_coil_capacity
_storage_systems.append(_generic_storage_system)
_generation_system.energy_storage_systems = _storage_systems
if archetype_generation_system.domestic_hot_water:
_generation_system.domestic_hot_water = True
if archetype_generation_system.reversibility:
_generation_system.reversibility = True
if archetype_generation_system.simultaneous_heat_cold:
_generation_system.simultaneous_heat_cold = True
_generation_systems.append(_generation_system)
return _generation_systems
@staticmethod
def _create_distribution_systems(archetype_system):
_distribution_systems = []
archetype_distribution_systems = archetype_system.distribution_systems
if archetype_distribution_systems is not None:
for archetype_distribution_system in archetype_system.distribution_systems:
_distribution_system = DistributionSystem()
_distribution_system.type = archetype_distribution_system.type
_distribution_system.distribution_consumption_fix_flow = \
archetype_distribution_system.distribution_consumption_fix_flow
_distribution_system.distribution_consumption_variable_flow = \
archetype_distribution_system.distribution_consumption_variable_flow
_distribution_system.heat_losses = archetype_distribution_system.heat_losses
_generic_emission_system = None
if archetype_distribution_system.emission_systems is not None:
_emission_systems = []
for emission_system in archetype_distribution_system.emission_systems:
_generic_emission_system = EmissionSystem()
_generic_emission_system.parasitic_energy_consumption = emission_system.parasitic_energy_consumption
_emission_systems.append(_generic_emission_system)
_distribution_system.emission_systems = _emission_systems
_distribution_systems.append(_distribution_system)
return _distribution_systems
@staticmethod
def _assign_energy_systems_to_buildings(city):
for building in city.buildings:
_building_energy_systems = []
energy_systems_cluster_name = building.energy_systems_archetype_name
if str(energy_systems_cluster_name) == 'nan':
break
_generic_building_energy_systems = city.generic_energy_systems[energy_systems_cluster_name]
for _generic_building_energy_system in _generic_building_energy_systems:
_building_energy_systems.append(copy.deepcopy(_generic_building_energy_system))
building.energy_systems = _building_energy_systems

View File

@ -11,7 +11,6 @@ from hub.helpers.utils import validate_import_export_type
from hub.imports.energy_systems.montreal_custom_energy_system_parameters import MontrealCustomEnergySystemParameters from hub.imports.energy_systems.montreal_custom_energy_system_parameters import MontrealCustomEnergySystemParameters
from hub.imports.energy_systems.north_america_custom_energy_system_parameters import NorthAmericaCustomEnergySystemParameters from hub.imports.energy_systems.north_america_custom_energy_system_parameters import NorthAmericaCustomEnergySystemParameters
from hub.imports.energy_systems.montreal_future_energy_systems_parameters import MontrealFutureEnergySystemParameters from hub.imports.energy_systems.montreal_future_energy_systems_parameters import MontrealFutureEnergySystemParameters
from hub.imports.energy_systems.palma_energy_systems_parameters import PalmaEnergySystemParameters
class EnergySystemsFactory: class EnergySystemsFactory:
""" """
@ -53,15 +52,6 @@ class EnergySystemsFactory:
for building in self._city.buildings: for building in self._city.buildings:
building.level_of_detail.energy_systems = 2 building.level_of_detail.energy_systems = 2
def _palma(self):
"""
Enrich the city by using north america custom energy systems catalog information
"""
PalmaEnergySystemParameters(self._city).enrich_buildings()
self._city.level_of_detail.energy_systems = 2
for building in self._city.buildings:
building.level_of_detail.energy_systems = 2
def enrich(self): def enrich(self):
""" """
Enrich the city given to the class using the class given handler Enrich the city given to the class using the class given handler

View File

@ -1,174 +0,0 @@
"""
PalmaUsageParameters extracts the usage properties from Palma catalog and assigns to each building
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Cecilia Pérez cperez@irec.cat
"""
import logging
import hub.helpers.constants as cte
from hub.helpers.dictionaries import Dictionaries
from hub.city_model_structure.building_demand.usage import Usage
from hub.city_model_structure.building_demand.lighting import Lighting
from hub.city_model_structure.building_demand.occupancy import Occupancy
from hub.city_model_structure.building_demand.appliances import Appliances
from hub.city_model_structure.building_demand.thermal_control import ThermalControl
from hub.city_model_structure.building_demand.domestic_hot_water import DomesticHotWater
from hub.catalog_factories.usage_catalog_factory import UsageCatalogFactory
class PalmaUsageParameters:
"""
PalmaUsageParameters class
"""
def __init__(self, city):
self._city = city
def enrich_buildings(self):
"""
Returns the city with the usage parameters assigned to the buildings
:return:
"""
city = self._city
palma_catalog = UsageCatalogFactory('palma').catalog
for building in city.buildings:
palma_usage_name = Dictionaries().hub_usage_to_palma_usage[building.function]
try:
archetype_usage = self._search_archetypes(palma_catalog, palma_usage_name)
except KeyError:
logging.error('Building %s has unknown usage archetype for usage %s', building.name, palma_usage_name)
continue
for internal_zone in building.internal_zones:
if len(building.internal_zones) > 1:
volume_per_area = 0
if internal_zone.area is None:
logging.error('Building %s has internal zone area not defined, ACH cannot be calculated for usage %s',
building.name, palma_usage_name)
continue
if internal_zone.volume is None:
logging.error('Building %s has internal zone volume not defined, ACH cannot be calculated for usage %s',
building.name, palma_usage_name)
continue
if internal_zone.area <= 0:
logging.error('Building %s has internal zone area equal to 0, ACH cannot be calculated for usage %s',
building.name, palma_usage_name)
continue
volume_per_area += internal_zone.volume / internal_zone.area
else:
if building.storeys_above_ground is None:
logging.error('Building %s no number of storeys assigned, ACH cannot be calculated for usage %s',
building.name, palma_usage_name)
continue
volume_per_area = building.volume / building.floor_area / building.storeys_above_ground
usage = Usage()
usage.name = palma_usage_name
self._assign_values(usage, archetype_usage, volume_per_area, building.cold_water_temperature)
usage.percentage = 1
self._calculate_reduced_values_from_extended_library(usage, archetype_usage)
internal_zone.usages = [usage]
@staticmethod
def _search_archetypes(palma_catalog, usage_name):
archetypes = palma_catalog.entries('archetypes').usages
for building_archetype in archetypes:
if str(usage_name) == str(building_archetype.name):
return building_archetype
raise KeyError('archetype not found')
@staticmethod
def _assign_values(usage, archetype, volume_per_area, cold_water_temperature):
if archetype.mechanical_air_change > 0:
# 1/s
usage.mechanical_air_change = archetype.mechanical_air_change
elif archetype.ventilation_rate > 0:
# m3/m2.s to 1/s
usage.mechanical_air_change = archetype.ventilation_rate / volume_per_area
else:
usage.mechanical_air_change = 0
_occupancy = Occupancy()
_occupancy.occupancy_density = archetype.occupancy.occupancy_density
_occupancy.sensible_radiative_internal_gain = archetype.occupancy.sensible_radiative_internal_gain
_occupancy.latent_internal_gain = archetype.occupancy.latent_internal_gain
_occupancy.sensible_convective_internal_gain = archetype.occupancy.sensible_convective_internal_gain
_occupancy.occupancy_schedules = archetype.occupancy.schedules
usage.occupancy = _occupancy
_lighting = Lighting()
_lighting.density = archetype.lighting.density
_lighting.convective_fraction = archetype.lighting.convective_fraction
_lighting.radiative_fraction = archetype.lighting.radiative_fraction
_lighting.latent_fraction = archetype.lighting.latent_fraction
_lighting.schedules = archetype.lighting.schedules
usage.lighting = _lighting
_appliances = Appliances()
_appliances.density = archetype.appliances.density
_appliances.convective_fraction = archetype.appliances.convective_fraction
_appliances.radiative_fraction = archetype.appliances.radiative_fraction
_appliances.latent_fraction = archetype.appliances.latent_fraction
_appliances.schedules = archetype.appliances.schedules
usage.appliances = _appliances
_control = ThermalControl()
_control.cooling_set_point_schedules = archetype.thermal_control.cooling_set_point_schedules
_control.heating_set_point_schedules = archetype.thermal_control.heating_set_point_schedules
_control.hvac_availability_schedules = archetype.thermal_control.hvac_availability_schedules
usage.thermal_control = _control
_domestic_hot_water = DomesticHotWater()
_domestic_hot_water.peak_flow = archetype.domestic_hot_water.peak_flow
_domestic_hot_water.service_temperature = archetype.domestic_hot_water.service_temperature
density = None
if len(cold_water_temperature) > 0:
cold_temperature = cold_water_temperature[cte.YEAR][0]
density = (
archetype.domestic_hot_water.peak_flow * cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY *
(archetype.domestic_hot_water.service_temperature - cold_temperature)
)
_domestic_hot_water.density = density
_domestic_hot_water.schedules = archetype.domestic_hot_water.schedules
usage.domestic_hot_water = _domestic_hot_water
@staticmethod
def _calculate_reduced_values_from_extended_library(usage, archetype):
number_of_days_per_type = {'WD': 251, 'Sat': 52, 'Sun': 62}
total = 0
for schedule in archetype.thermal_control.hvac_availability_schedules:
if schedule.day_types[0] == cte.SATURDAY:
for value in schedule.values:
total += value * number_of_days_per_type['Sat']
elif schedule.day_types[0] == cte.SUNDAY:
for value in schedule.values:
total += value * number_of_days_per_type['Sun']
else:
for value in schedule.values:
total += value * number_of_days_per_type['WD']
usage.hours_day = total / 365
usage.days_year = 365
max_heating_setpoint = cte.MIN_FLOAT
min_heating_setpoint = cte.MAX_FLOAT
for schedule in archetype.thermal_control.heating_set_point_schedules:
if schedule.values is None:
max_heating_setpoint = None
min_heating_setpoint = None
break
if max(schedule.values) > max_heating_setpoint:
max_heating_setpoint = max(schedule.values)
if min(schedule.values) < min_heating_setpoint:
min_heating_setpoint = min(schedule.values)
min_cooling_setpoint = cte.MAX_FLOAT
for schedule in archetype.thermal_control.cooling_set_point_schedules:
if schedule.values is None:
min_cooling_setpoint = None
break
if min(schedule.values) < min_cooling_setpoint:
min_cooling_setpoint = min(schedule.values)
usage.thermal_control.mean_heating_set_point = max_heating_setpoint
usage.thermal_control.heating_set_back = min_heating_setpoint
usage.thermal_control.mean_cooling_set_point = min_cooling_setpoint

View File

@ -10,7 +10,6 @@ from hub.helpers.utils import validate_import_export_type
from hub.imports.usage.comnet_usage_parameters import ComnetUsageParameters from hub.imports.usage.comnet_usage_parameters import ComnetUsageParameters
from hub.imports.usage.nrcan_usage_parameters import NrcanUsageParameters from hub.imports.usage.nrcan_usage_parameters import NrcanUsageParameters
from hub.imports.usage.eilat_usage_parameters import EilatUsageParameters from hub.imports.usage.eilat_usage_parameters import EilatUsageParameters
from hub.imports.usage.palma_usage_parameters import PalmaUsageParameters
class UsageFactory: class UsageFactory:
@ -49,15 +48,6 @@ class UsageFactory:
for building in self._city.buildings: for building in self._city.buildings:
building.level_of_detail.usage = 2 building.level_of_detail.usage = 2
def _palma(self):
"""
Enrich the city with Palma usage library
"""
PalmaUsageParameters(self._city).enrich_buildings()
self._city.level_of_detail.usage = 2
for building in self._city.buildings:
building.level_of_detail.usage = 2
def enrich(self): def enrich(self):
""" """
Enrich the city given to the class using the usage factory given handler Enrich the city given to the class using the usage factory given handler

View File

@ -71,23 +71,3 @@ class TestConstructionCatalog(TestCase):
with self.assertRaises(IndexError): with self.assertRaises(IndexError):
catalog.get_entry('unknown') catalog.get_entry('unknown')
def test_palma_catalog(self):
catalog = ConstructionCatalogFactory('palma').catalog
catalog_categories = catalog.names()
constructions = catalog.names('constructions')
windows = catalog.names('windows')
materials = catalog.names('materials')
self.assertEqual(29, len(constructions['constructions']))
self.assertEqual(9, len(windows['windows']))
self.assertEqual(122, len(materials['materials']))
with self.assertRaises(ValueError):
catalog.names('unknown')
# retrieving all the entries should not raise any exceptions
for category in catalog_categories:
for value in catalog_categories[category]:
catalog.get_entry(value)
with self.assertRaises(IndexError):
catalog.get_entry('unknown')

View File

@ -306,29 +306,3 @@ class TestConstructionFactory(TestCase):
self.assertIsNotNone(thermal_boundary.layers, 'layers is none') self.assertIsNotNone(thermal_boundary.layers, 'layers is none')
self._check_thermal_openings(thermal_boundary) self._check_thermal_openings(thermal_boundary)
self._check_surfaces(thermal_boundary) self._check_surfaces(thermal_boundary)
def test_palma_construction_factory(self):
"""
Enrich the city with the construction information from palma and verify it
"""
file = 'palma_test.geojson'
file_path = (self._example_path / file).resolve()
city = GeometryFactory('geojson',
path=file_path,
height_field='measuredHeight',
year_of_construction_field='yearOfConstruction',
function_field='usage',
function_to_hub=Dictionaries().palma_function_to_hub_function).city
ConstructionFactory('palma', city).enrich()
self._check_buildings(city)
for building in city.buildings:
for internal_zone in building.internal_zones:
self._check_thermal_zones(internal_zone)
for thermal_zone in internal_zone.thermal_zones_from_internal_zones:
self._check_thermal_boundaries(thermal_zone)
for thermal_boundary in thermal_zone.thermal_boundaries:
self.assertIsNotNone(thermal_boundary.layers, 'layers is none')
self._check_thermal_openings(thermal_boundary)
self._check_surfaces(thermal_boundary)

View File

@ -55,24 +55,3 @@ class TestSystemsCatalog(TestCase):
with self.assertRaises(IndexError): with self.assertRaises(IndexError):
catalog.get_entry('unknown') catalog.get_entry('unknown')
print(catalog.entries()) print(catalog.entries())
def test_palma_catalog(self):
catalog = EnergySystemsCatalogFactory('palma').catalog
catalog_categories = catalog.names()
archetypes = catalog.names()
self.assertEqual(15, len(archetypes['archetypes']))
systems = catalog.names('systems')
self.assertEqual(13, len(systems['systems']))
generation_equipments = catalog.names('generation_equipments')
self.assertEqual(16, len(generation_equipments['generation_equipments']))
with self.assertRaises(ValueError):
catalog.names('unknown')
# retrieving all the entries should not raise any exceptions
for category in catalog_categories:
for value in catalog_categories[category]:
catalog.get_entry(value)
with self.assertRaises(IndexError):
catalog.get_entry('unknown')

View File

@ -132,42 +132,3 @@ class TestSystemsFactory(TestCase):
self.assertLess(0, building.cooling_consumption[cte.YEAR][0]) self.assertLess(0, building.cooling_consumption[cte.YEAR][0])
self.assertLess(0, building.domestic_hot_water_consumption[cte.YEAR][0]) self.assertLess(0, building.domestic_hot_water_consumption[cte.YEAR][0])
self.assertLess(0, building.onsite_electrical_production[cte.YEAR][0]) self.assertLess(0, building.onsite_electrical_production[cte.YEAR][0])
def test_palma_system_results(self):
"""
Enrich the city with the construction information and verify it
"""
ConstructionFactory('nrcan', self._city).enrich()
UsageFactory('nrcan', self._city).enrich()
WeatherFactory('epw', self._city).enrich()
ExportsFactory('sra', self._city, self._output_path).export()
sra_path = (self._output_path / f'{self._city.name}_sra.xml').resolve()
subprocess.run(['sra', str(sra_path)])
ResultFactory('sra', self._city, self._output_path).enrich()
EnergyBuildingsExportsFactory('insel_monthly_energy_balance', self._city, self._output_path).export()
for building in self._city.buildings:
insel_path = (self._output_path / f'{building.name}.insel')
subprocess.run(['insel', str(insel_path)])
ResultFactory('insel_monthly_energy_balance', self._city, self._output_path).enrich()
for building in self._city.buildings:
building.energy_systems_archetype_name = 'PV and heat pump'
EnergySystemsFactory('palma', self._city).enrich()
# Need to assign energy systems to buildings:
for building in self._city.buildings:
_building_energy_systems = []
for energy_system in building.energy_systems:
if cte.HEATING in energy_system.demand_types:
_generation_system = cast(NonPvGenerationSystem, energy_system.generation_systems[0])
_generation_system.nominal_heat_output = building.heating_peak_load[cte.YEAR][0]
if cte.COOLING in energy_system.demand_types:
_generation_system = cast(NonPvGenerationSystem, energy_system.generation_systems[0])
_generation_system.nominal_cooling_output = building.cooling_peak_load[cte.YEAR][0]
print('test')
for building in self._city.buildings:
self.assertLess(0, building.heating_consumption[cte.YEAR][0])
self.assertLess(0, building.cooling_consumption[cte.YEAR][0])
self.assertLess(0, building.domestic_hot_water_consumption[cte.YEAR][0])
self.assertLess(0, building.onsite_electrical_production[cte.YEAR][0])

View File

@ -20,12 +20,4 @@ class TestConstructionCatalog(TestCase):
catalog = UsageCatalogFactory('nrcan').catalog catalog = UsageCatalogFactory('nrcan').catalog
self.assertIsNotNone(catalog, 'catalog is none') self.assertIsNotNone(catalog, 'catalog is none')
content = catalog.entries() content = catalog.entries()
print(catalog.entries())
self.assertEqual(34, len(content.usages), 'Wrong number of usages') self.assertEqual(34, len(content.usages), 'Wrong number of usages')
def test_palma_catalog(self):
catalog = UsageCatalogFactory('palma').catalog
self.assertIsNotNone(catalog, 'catalog is none')
content = catalog.entries()
#print(catalog.entries())
self.assertEqual(1, len(content.usages), 'Wrong number of usages')

View File

@ -182,61 +182,3 @@ class TestUsageFactory(TestCase):
self.assertIsNotNone(usage.domestic_hot_water.service_temperature, self.assertIsNotNone(usage.domestic_hot_water.service_temperature,
'domestic hot water service temperature is none') 'domestic hot water service temperature is none')
self.assertIsNotNone(usage.domestic_hot_water.schedules, 'domestic hot water schedules is none') self.assertIsNotNone(usage.domestic_hot_water.schedules, 'domestic hot water schedules is none')
def test_import_palma(self):
"""
Enrich the city with the usage information from palma and verify it
"""
file = 'palma_test.geojson'
file_path = (self._example_path / file).resolve()
city = GeometryFactory('geojson',
path=file_path,
height_field='measuredHeight',
year_of_construction_field='yearOfConstruction',
function_field='usage',
function_to_hub=Dictionaries().palma_function_to_hub_function).city
ConstructionFactory('palma', city).enrich()
UsageFactory('palma', city).enrich()
self._check_buildings(city)
for building in city.buildings:
for internal_zone in building.internal_zones:
if internal_zone.usages is not None:
self.assertIsNot(len(internal_zone.usages), 0, 'no building usage defined')
for usage in internal_zone.usages:
self._check_usage(usage)
self.assertIsNotNone(usage.mechanical_air_change, 'mechanical air change is none')
self.assertIsNotNone(usage.thermal_control.heating_set_point_schedules,
'control heating set point schedule is none')
self.assertIsNotNone(usage.thermal_control.cooling_set_point_schedules,
'control cooling set point schedule is none')
self.assertIsNotNone(usage.occupancy, 'occupancy is none')
occupancy = usage.occupancy
self.assertIsNotNone(occupancy.occupancy_density, 'occupancy density is none')
self.assertIsNotNone(occupancy.latent_internal_gain, 'occupancy latent internal gain is none')
self.assertIsNotNone(occupancy.sensible_convective_internal_gain,
'occupancy sensible convective internal gain is none')
self.assertIsNotNone(occupancy.sensible_radiative_internal_gain,
'occupancy sensible radiant internal gain is none')
self.assertIsNotNone(occupancy.occupancy_schedules, 'occupancy schedule is none')
self.assertIsNotNone(usage.lighting, 'lighting is none')
lighting = usage.lighting
self.assertIsNotNone(lighting.density, 'lighting density is none')
self.assertIsNotNone(lighting.latent_fraction, 'lighting latent fraction is none')
self.assertIsNotNone(lighting.convective_fraction, 'lighting convective fraction is none')
self.assertIsNotNone(lighting.radiative_fraction, 'lighting radiant fraction is none')
self.assertIsNotNone(lighting.schedules, 'lighting schedule is none')
self.assertIsNotNone(usage.appliances, 'appliances is none')
appliances = usage.appliances
self.assertIsNotNone(appliances.density, 'appliances density is none')
self.assertIsNotNone(appliances.latent_fraction, 'appliances latent fraction is none')
self.assertIsNotNone(appliances.convective_fraction, 'appliances convective fraction is none')
self.assertIsNotNone(appliances.radiative_fraction, 'appliances radiant fraction is none')
self.assertIsNotNone(appliances.schedules, 'appliances schedule is none')
self.assertIsNotNone(usage.thermal_control.hvac_availability_schedules,
'control hvac availability is none')
self.assertIsNotNone(usage.domestic_hot_water.peak_flow, 'domestic hot water peak flow is none')
self.assertIsNotNone(usage.domestic_hot_water.service_temperature,
'domestic hot water service temperature is none')
self.assertIsNotNone(usage.domestic_hot_water.schedules, 'domestic hot water schedules is none')

View File

@ -1,48 +0,0 @@
{
"type": "FeatureCollection",
"features": [
{
"type": "Feature",
"properties": {
"gml_id": "1701548DD7810B-1",
"name": "Build_1701548DD7810B-1",
"usage": "Single-family building",
"yearOfConstruction": 1903,
"measuredHeight": 4.01,
"id": 10000230
},
"geometry": {
"type": "Polygon",
"coordinates": [
[
[
2.670232581277104,
39.56952142176154,
12.83
],
[
2.670223774973652,
39.56943886109741,
8.82
],
[
2.670329525337772,
39.56943078141684,
8.82
],
[
2.670338924541374,
39.56951109114386,
8.82
],
[
2.670232581277104,
39.56952142176154,
12.83
]
]
]
}
}
]
}