Compare commits

..

231 Commits

Author SHA1 Message Date
3db3acd3c6 update version number 2024-10-29 22:00:57 +01:00
15aaf2a337 Merge pull request 'feat: Palma catalogues and importers are added' (#73) from feature/palma into main
Reviewed-on: #73
2024-10-29 16:46:17 -04:00
7ad16ba640 feat: Palma catalogues and importers are added 2024-10-29 11:36:47 +01:00
f42bb64b85 revert 3dd64143ab
revert Merge pull request 'feat: all the catalogues, importers, data and tests of palma are added' (#72) from feature/palma into main

Reviewed-on: #72
2024-10-22 14:27:35 -04:00
3dd64143ab Merge pull request 'feat: all the catalogues, importers, data and tests of palma are added' (#72) from feature/palma into main
Reviewed-on: #72
2024-10-21 17:32:20 -04:00
164ffbf9c8 feat: all the catalogues, importers, data and tests of palma are added 2024-10-21 23:30:10 +02:00
bf4018a649 Update version number 2024-10-20 17:39:54 +02:00
6c7f652390 Merge pull request 'fix: the small bug in test units is resolved, the construction and usage factories can be loaded without any order' (#71) from small_bugs_in_user_tests into main
Reviewed-on: #71
2024-10-20 11:15:40 -04:00
4e46b6bc0d fix: the small bug in test units is resolved, the construction and usage factories can be loaded without any order 2024-10-18 12:28:38 +02:00
4ac9ccda81 Update hub/version.py 2024-10-17 08:05:13 -04:00
df2d7a3054 Geojson class modified for the geojson format Guille suggested 2024-10-17 07:40:13 -04:00
47810737fa geojson, construction and usage importers are all modified for mixed use buildings 2024-10-17 07:40:13 -04:00
99535a979c Update hub/version.py 2024-10-17 00:19:27 -04:00
9986552ec1 Merge remote-tracking branch 'origin/main' 2024-10-17 06:17:48 +02:00
d1719b50ed Merge branch 'infilt_availability_oriol' 2024-10-17 06:15:04 +02:00
5e01f4eb7f Merge pull request 'Remove build from setup.py and add it to requirements.txt' (#69) from fix/fix-build into main
Reviewed-on: #69
2024-10-03 14:08:37 -04:00
d38150ac2d Remove build from setup.py and add it to requirements.txt 2024-10-03 13:05:56 -05:00
5e5129ecd7 Merge pull request 'Add build package to setup.py and remove texttest' (#68) from fix/update-setup.py into main
Reviewed-on: #68
2024-10-02 12:07:55 -04:00
3905f228dc correct unittests 2024-10-02 06:30:43 +02:00
33049441f0 Add build package to setup.py and remove texttest 2024-10-01 14:35:08 -05:00
70dd9f7c6a Merge pull request 'fix: change building names in ep_multiple_buildings.py to upper case' (#66) from fix/ep-result-factory-naming-bug into main
Reviewed-on: #66
2024-10-01 10:15:40 -04:00
0ce392ea06 fix: change building names in ep_multiple_buildings.py to upper case 2024-10-01 09:43:57 -04:00
ogavalda
4b6a942324 Small change. test 2024-09-30 15:58:21 -04:00
2495046c44 correct typo 2024-09-30 19:46:07 +02:00
4738de0d8c Merge branch 'infilt_availability_oriol' 2024-09-30 15:17:05 +02:00
e220bf2c0d Merge remote-tracking branch 'origin/main' 2024-09-23 18:26:33 +02:00
a45cf02b28 Update hub/version.py 2024-09-23 11:57:33 -04:00
ef62e2531f add weather file to the EnergyBuildingsExportsFactory 2024-09-23 17:56:58 +02:00
ogavalda
cd34435a9f Including air temperature output 2024-09-16 15:49:18 -04:00
ogavalda
15b96fe154 Changing the full structure to incorporate a second way of entering infiltration (infiltration per outdoor area) 2024-09-16 15:41:27 -04:00
ogavalda
54a6e6b2db Adding infiltration per m2 2024-09-15 10:22:07 -04:00
ogavalda
a7375f0b53 Adding infiltration per m2 2024-09-15 10:15:41 -04:00
ogavalda
725746fbcb Changes in infiltration profiles and the source of values for infiltration 2024-09-15 09:44:07 -04:00
ec320a2e1c Merge pull request 'fix: small bugs in the irradiance units were fixed.' (#65) from irradiance_unit_fixing into main
Reviewed-on: #65
2024-09-09 13:27:05 -04:00
8a68118503 fix: small bugs in the irradiance units were fixed. 2024-09-09 11:11:33 -04:00
a3ec3c7e19 Merge pull request 'Add version number to numpy' (#64) from fix/downgrade-numpy into main
Reviewed-on: https://nextgenerations-cities.encs.concordia.ca/gitea/CERC/hub/pulls/64

Hi Connor, I have accepted the change, but some additional review will be needed, it creates a hard dependency from a specific version of numpy with almost sure will create issues with other libraries, will be nice if you could keep an eye on the issue resolution from sqlalchemy
2024-09-02 12:35:30 -04:00
connor
ace666553a Add version number to numpy 2024-08-30 18:01:26 -04:00
c4636c2c3c Merge remote-tracking branch 'origin/main' 2024-07-25 18:11:10 +02:00
4a01ac51d8 Remove the building from the targets if needed 2024-07-25 18:10:51 +02:00
ee846a6225 Update hub/version.py 2024-07-16 01:25:01 -04:00
a4f3b48617 Merge remote-tracking branch 'origin/main' 2024-07-16 07:24:41 +02:00
abc3fc48dd Add type to constructions to avoid collisions in constructions names 2024-07-16 07:24:22 +02:00
db371aecf3 Update hub/version.py 2024-07-10 05:57:01 -04:00
998df80b63 Correct shading object selection and idd file 2024-07-10 11:55:13 +02:00
446c7fa4ce Correct correct shadding object selection and idd file 2024-07-10 07:39:53 +02:00
3c5f1b7357 Update hub/version.py 2024-07-04 03:55:45 -04:00
6d2bb98470 Correct bug in shadding object creation when no archetype available 2024-07-04 09:53:45 +02:00
26b2af1e2b Merge remote-tracking branch 'origin/modifying_energy_system_catalogs_and_importers' into modifying_energy_system_catalogs_and_importers 2024-07-04 08:17:59 +02:00
dc3372ff5e fix: final changes to catalogue, importer, and parameter importer 2024-07-03 10:35:31 -04:00
a81c0cfee3 Correct bug in shadding object creation when no archetype available 2024-07-01 18:48:37 +02:00
1279dffff8 fix: small issue in the city creator was resolved 2024-07-01 12:16:26 -04:00
1cc7b2cb8c IDFL Add objects without archetype as shadow objects instead 2024-07-01 07:04:50 +02:00
2d11bf6640 Reapply "fix: energy system catalogue and importers are modified"
This reverts commit 9adacadc2a.
2024-06-27 17:21:43 -04:00
9adacadc2a Revert "fix: energy system catalogue and importers are modified"
This reverts commit 15e43a0f35.
2024-06-27 15:33:04 -04:00
15e43a0f35 fix: energy system catalogue and importers are modified 2024-06-27 15:18:26 -04:00
6dbff12ff9 Update hub/version.py 2024-06-27 10:35:47 -04:00
982bcab045 IDFL Add objects without archetype as shadow objects instead 2024-06-27 16:35:24 +02:00
83d308e03b Merge branch 'main' of https://nextgenerations-cities.encs.concordia.ca/gitea/CERC/hub 2024-06-27 16:25:02 +02:00
915170e60f Bugfix: now surfaces has associated thermal boundaries after construction factory 2024-06-27 16:22:57 +02:00
6afc076402 Merge pull request 'Delete all __pycache__ files' (#62) from fix/remove-pycaches into main
Reviewed-on: https://nextgenerations-cities.encs.concordia.ca/gitea/CERC/hub/pulls/62
2024-06-18 10:50:46 -04:00
6e79541816 Delete all __pycache__ files 2024-06-17 19:08:52 -04:00
c36ce1b83a Correct future warning 2024-05-27 18:09:40 +02:00
3de2e00a54 Update hub/version.py 2024-05-24 05:24:16 -04:00
5fb31fc5ca Merge remote-tracking branch 'origin/main' 2024-05-24 11:23:53 +02:00
7851968bdc Add get city to the control 2024-05-24 11:23:47 +02:00
6684e7ef1b Update hub/version.py 2024-05-24 05:20:25 -04:00
64449aee1d Merge remote-tracking branch 'origin/main' 2024-05-24 11:19:49 +02:00
a0f7ca0e17 Update idf 2024-05-24 11:19:43 +02:00
58d84021cf Update hub/version.py 2024-05-15 10:10:45 -04:00
84d80d5d2a Merge remote-tracking branch 'origin/main' 2024-05-15 16:04:15 +02:00
6b3110d1c0 Update idf 2024-05-15 16:04:08 +02:00
f095483b36 Update hub/version.py 2024-05-13 01:41:22 -04:00
841098b615 fix: energy storage bug is fixed. 2024-05-10 13:27:29 -04:00
73e6dcdaf7 Update hub/version.py 2024-04-29 00:08:21 -04:00
8fe002a22c Merge remote-tracking branch 'origin/main' 2024-04-29 06:02:49 +02:00
ffd0367d50 Bugfix in sra export 2024-04-29 06:02:43 +02:00
f15401c148 Update hub/version.py 2024-04-18 01:43:18 -04:00
9a99f69bdf Merge remote-tracking branch 'origin/main' 2024-04-18 07:42:27 +02:00
fe99059e5a Bugfix in montreal custom catalog 2024-04-18 07:42:19 +02:00
d9d9a628b4 Update hub/version.py 2024-04-16 01:02:37 -04:00
d9a941a97a Correct unittests 2024-04-16 07:01:51 +02:00
b52e66c263 bugfix in heating peak load units 2024-04-15 07:13:53 +02:00
039a0f30ba Update hub/version.py 2024-04-03 01:18:06 -04:00
ebeafddc74 Update hub/version.py 2024-03-28 02:00:40 -04:00
355cc6ecdf bugfix in idf exporter 2024-03-28 06:59:57 +01:00
cbe720f0de Update hub/version.py 2024-03-27 12:08:52 -04:00
52382566d3 bugfix: correct minimal idf 2024-03-27 17:08:08 +01:00
4056a2ab8a Update hub/version.py 2024-03-26 01:05:46 -04:00
1f7b4924fe Merge remote-tracking branch 'origin/main' 2024-03-26 06:04:34 +01:00
20200f0efe Update hub/version.py 2024-03-25 12:47:13 -04:00
919ab60bd5 bugfix in emission systems 2024-03-25 17:27:02 +01:00
aa85473a81 Update hub/version.py 2024-03-25 10:40:46 -04:00
aac006f63a Merge remote-tracking branch 'origin/main' 2024-03-25 15:35:42 +01:00
199d7dc4f9 bugfix in emission systems 2024-03-25 15:35:00 +01:00
3a6a712cad Update hub/version.py 2024-03-25 10:10:56 -04:00
27291ad1b8 bugfix in emission systems 2024-03-25 15:10:03 +01:00
5fdfee9265 update version.py 2024-03-14 14:19:09 +01:00
0f0a923329 Merge pull request 'final_energy_system_model' (#60) from final_energy_system_model into main
Reviewed-on: https://nextgenerations-cities.encs.concordia.ca/gitea/CERC/hub/pulls/60
2024-03-14 09:13:21 -04:00
bf23730281 correct the unit tests 2024-03-12 16:21:43 +01:00
11d493ba0e remove north_america catalog for energy systems 2024-03-12 14:56:22 +01:00
1266f50e29 Correct small error in unittest 2024-02-16 06:01:54 +01:00
674393970c Merge remote-tracking branch 'origin/main' into final_energy_system_model
# Conflicts:
#	.gitignore
#	hub/city_model_structure/building.py
#	hub/exports/building_energy/idf.py
#	hub/imports/geometry_factory.py
2024-02-16 05:50:45 +01:00
8d75fe1f3a remove pychache 2024-02-16 05:38:07 +01:00
57a9d24f4c Title: Improvement of Energy System Parameters Importer
>> To make life easier for people who want to work on energy systems in future, I tried to make my code as generic as possible.
2024-02-13 20:05:03 -05:00
087fead489 Title: Finalizing the energy system data model and system factory
A new XML file named montreal_future_systems.xml is created where the elements of the file are the same as attributes of various classes. Therefore, the catalogue importer and energy system importer should have been updated accordingly. The catalog importer is organized in a general method so whenever someone wants to create a new catalogue they can use the created code as the blueprint.
2024-02-07 20:51:10 -05:00
ebaec9bb7c Title: Finalizing the energy system data model and system factory
A new XML file named montreal_future_systems.xml is created where the elements of the file are the same as attributes of various classes. Therefore, the catalogue importer and energy system importer should have been updated accordingly. The catalog importer is organized in a general method so whenever someone wants to create a new catalogue they can use the created code as the blueprint.
2024-02-07 18:54:09 -05:00
3e193f04a6 The dual_supply_capability is added to the city model structure 2024-02-01 15:41:05 -05:00
ac4742d2c4 A new attribute "dual_supply_capability" is added to NonPVGeneration class in non_pv_generation_system.py and the catalogue importer is adjusted 2024-02-01 12:24:15 -05:00
f976040f45 A new attribute "dual_supply_capability" is added to NonPVGeneration class in non_pv_generation_system.py and the catalogue importer is adjusted 2024-02-01 12:23:58 -05:00
54b62ec2d0 update version 2024-01-25 06:57:33 +01:00
9357cef641 remove wrong indentation 2024-01-25 06:57:00 +01:00
002d5a659d Update hub/version.py 2024-01-22 12:48:42 -05:00
f9815dfa49 Update hub/version.py 2024-01-22 08:36:05 -05:00
eeda66f410 Merge pull request 'feature/upgrade_ep_to_23.2.0' (#59) from feature/upgrade_ep_to_23.2.0 into main
Reviewed-on: https://nextgenerations-cities.encs.concordia.ca/gitea/CERC/hub/pulls/59
2024-01-22 08:34:47 -05:00
aa0f790d8e remove commented code and debug prints 2024-01-22 14:33:44 +01:00
e0e7daf64b Merge remote-tracking branch 'origin/main' into feature/upgrade_ep_to_23.2.0
# Conflicts:
#	hub/exports/building_energy/idf_files/Minimal.idf
2024-01-22 14:32:24 +01:00
5181ddcabb Update hub/version.py 2024-01-18 00:33:39 -05:00
68457b9d26 add nrcan data to the pip package 2024-01-18 06:32:44 +01:00
673cbac77a added storage_medium attribute to thermal_storage_system.py to enable us use water thermodynamic characteristics in the modelling 2024-01-17 13:05:10 -05:00
11f78ccb89 added storage_medium attribute to thermal_storage_system.py to enable us use water thermodynamic characteristics in the modelling 2024-01-10 16:10:42 -05:00
3891c866cf Merge branch 'bug/units' 2024-01-09 14:01:29 +01:00
5230da861c correct units according to oriol's instruction 2024-01-09 14:00:33 +01:00
87b2319fda Update hub/version.py 2024-01-09 07:48:37 -05:00
1916d21c4e restore unittests after debug is completed 2024-01-09 10:32:47 +01:00
57388a9dc4 replace github nrel with cerc offline nrcan_data 2024-01-09 10:31:59 +01:00
89d0d0eae8 replace github nrel with cerc nrcan_data, this may also be local instead 2024-01-09 10:15:43 +01:00
e025510c93 Merge pull request 'ep_23.2.0' (#58) from ep_23.2.0 into main
Reviewed-on: https://nextgenerations-cities.encs.concordia.ca/gitea/CERC/hub/pulls/58
2023-12-07 13:22:23 -05:00
d592de6759 Surfaces have now a more human-readable name 2023-12-07 13:20:21 -05:00
eeac9a24a8 Update energy plus
Shadow object surfaces are now building_name_{index}
Now version 23.2 is supported
Minimal.idf set the proper simulation method
2023-12-07 12:05:59 -05:00
7328118861 Add debugging code to idf.py 2023-12-06 16:20:35 -05:00
9444de6bae Update add minimal.idf and energy+.idd for energyplus 23.2.0 2023-12-06 16:15:35 -05:00
27ceed01fe persistence changes 2023-12-06 15:15:36 -05:00
57c7a76529 The ep results importer for multiple buildings is completed 2023-12-06 13:53:31 -05:00
020190829f The energy plus result importer for multiple buildings is created and tested. Currently, buildings are enriched with hourly values but monthly and yearly values are not working. 2023-12-05 19:38:11 -05:00
c3f2cfb02a updated the idf.py 2023-12-05 13:13:19 -05:00
e3f1d52a21 Add .gitignore to exclude Python bytecode files 2023-12-05 12:47:44 -05:00
716465f1eb Update hub/version.py 2023-11-27 01:01:59 -05:00
81702e0008 Merge remote-tracking branch 'origin/main' 2023-11-27 07:01:30 +01:00
953b6796e9 correct persistence json read 2023-11-27 07:00:39 +01:00
898f364e28 Add additional idfobjects, keys, and cleaned up syntax 2023-11-24 14:45:27 -05:00
03da727d29 Update hub/version.py 2023-11-24 03:03:20 -05:00
b51d49d598 correct persistence json read 2023-11-24 09:01:49 +01:00
802641b4a3 Update hub/version.py 2023-11-24 02:04:37 -05:00
914375171a remove useless files 2023-11-24 08:03:55 +01:00
72b6cddea4 change result structure (concept proof) 2023-11-24 08:02:01 +01:00
7f16449edb Update hub/version.py 2023-11-20 09:59:58 -05:00
c8545835d9 Update hub/version.py 2023-11-20 09:39:57 -05:00
4bc8df8e9d Merge remote-tracking branch 'origin/main' 2023-11-20 15:38:56 +01:00
fca74eeb08 persistence performance improvements 2023-11-20 15:38:49 +01:00
227685695a All working, missing Sizing:Zone and DesignSpecification:OutdoorAir 2023-11-17 15:08:57 -05:00
ac6b023080 Air terminal working, air distribution not yet 2023-11-17 08:55:37 -05:00
383a480f65 Nodelist working 2023-11-17 08:13:53 -05:00
67525e50fa Update hub/version.py 2023-11-17 02:16:59 -05:00
601058fc5e Bug fix in persistence CityObject 2023-11-17 08:16:19 +01:00
cfd2586f80 Tests to incorporate HVAC systems to EP workflow 2023-11-16 15:52:00 -05:00
a3c5219ccd Changed idf to start producing detailed systems 2023-11-16 14:26:41 -05:00
5fa55ea79f Update hub/version.py 2023-11-16 01:42:01 -05:00
68bb9223e3 persistence performance improvements 2023-11-16 07:39:46 +01:00
a1ca764057 Merge remote-tracking branch 'origin/main' 2023-11-15 04:50:22 +01:00
8c27e69a79 remove unused parameters and handlers 2023-11-15 04:50:15 +01:00
557d77661e Update hub/version.py 2023-11-06 04:15:14 -05:00
38d8013356 remove unused parameter 2023-11-06 10:14:27 +01:00
43fa1e0d92 Update hub/version.py 2023-11-03 04:31:21 -04:00
812c9541f4 Merge remote-tracking branch 'origin/main' 2023-11-03 09:30:54 +01:00
c1e392d828 rollback useless change 2023-11-03 09:30:49 +01:00
fe315bc6bb Update hub/version.py 2023-11-03 02:22:45 -04:00
087379b010 Merge remote-tracking branch 'origin/main' 2023-11-03 07:22:03 +01:00
452bfdf780 correct unit tests in ci/cd 2023-11-03 07:21:50 +01:00
63803efccb Update hub/version.py 2023-11-03 01:38:48 -04:00
0f0368c074 Merge remote-tracking branch 'origin/main' 2023-11-03 06:38:17 +01:00
08e701a972 Remove deprecated warning 2023-11-03 06:38:06 +01:00
914d521e81 Update hub/version.py 2023-11-02 11:00:48 -04:00
7f8e0d48ee Correct missing reflectance values 2023-11-02 15:59:30 +01:00
26c0ef7864 rollback change 2023-11-02 09:46:45 +01:00
5ce3a24e55 Update hub/version.py 2023-11-02 02:40:21 -04:00
0894c5dac6 Update hub/version.py 2023-11-02 02:22:19 -04:00
ee06d45ba9 Merge pull request 'bug correction' (#55) from IDF_bug into main
Reviewed-on: https://nextgenerations-cities.encs.concordia.ca/gitea/CERC/hub/pulls/55
2023-11-02 02:21:52 -04:00
3dd928574a bug correction 2023-11-02 07:20:55 +01:00
9591db3bf8 Update hub/version.py 2023-10-31 10:21:01 -04:00
69f3b7f814 Merge pull request 'bug correction' (#54) from correct_layer_name into main
Reviewed-on: https://nextgenerations-cities.encs.concordia.ca/gitea/CERC/hub/pulls/54
2023-10-31 10:20:21 -04:00
6e6c78b6f4 Update hub/version.py 2023-10-31 09:19:24 -04:00
75bb316848 bug correction 2023-10-31 14:17:59 +01:00
ed7d6d13f6 Update hub/version.py 2023-10-31 08:15:20 -04:00
42de9cea97 Merge pull request 'Bug correction in persistence' (#53) from correct_layer_name into main
Reviewed-on: https://nextgenerations-cities.encs.concordia.ca/gitea/CERC/hub/pulls/53
2023-10-31 06:38:45 -04:00
255f9f861a Bug correction in persistence 2023-10-31 11:37:23 +01:00
4449d0b92d Update hub/version.py 2023-10-27 04:29:24 -04:00
89452dcf31 Merge remote-tracking branch 'origin/main' 2023-10-27 10:28:30 +02:00
6aafda7f42 Bug correction in persistence 2023-10-27 10:28:20 +02:00
6da8fde949 Update hub/version.py 2023-10-26 02:18:54 -04:00
6332519e12 Update hub/version.py 2023-10-26 01:04:17 -04:00
9ce97edc13 Merge pull request 'Bug correction in citygml factory' (#52) from geojson_exporter into main
Reviewed-on: https://nextgenerations-cities.encs.concordia.ca/gitea/CERC/hub/pulls/52
2023-10-26 01:03:17 -04:00
98676e81e0 Bug correction in citygml factory 2023-10-26 07:02:26 +02:00
5cba38cf65 Update hub/version.py 2023-10-24 10:09:24 -04:00
3512d4b1e4 Merge pull request 'Add crs to the geometry importer as a parameter' (#51) from geojson_exporter into main
Reviewed-on: https://nextgenerations-cities.encs.concordia.ca/gitea/CERC/hub/pulls/51
2023-10-24 10:03:49 -04:00
b0fabf3b7f Add crs to the geometry importer as a parameter 2023-10-24 15:46:40 +02:00
6d987f43f7 Update hub/version.py 2023-10-24 02:04:05 -04:00
f62ab95cf0 Merge pull request 'geojson_exporter' (#50) from geojson_exporter into main
Reviewed-on: https://nextgenerations-cities.encs.concordia.ca/gitea/CERC/hub/pulls/50
2023-10-24 02:03:06 -04:00
b711bceb7b Add geojson exporter 2023-10-24 08:01:57 +02:00
6ee1466b8e Add geojson exporter 2023-10-24 08:00:48 +02:00
a31281cae7 Code quality improvements and basic creation og geojson from gml 2023-10-20 14:19:46 +02:00
8d5010218b Update hub/version.py 2023-10-19 02:23:18 -04:00
a102a201e6 Merge pull request 'cesiumjs_tileset' (#49) from cesiumjs_tileset into main
Reviewed-on: https://nextgenerations-cities.encs.concordia.ca/gitea/CERC/hub/pulls/49
2023-10-19 02:22:40 -04:00
2afce4acce Corrected obj and glb exporters, building now exposes lower and upper corner 2023-10-19 07:39:35 +02:00
9c1e05939a The city energy system importer for the north america is modified and tested. 2023-10-17 17:25:13 -04:00
978cc9d1ea added system schematics to the data folder and to the catalog importer 2023-10-16 17:48:42 -04:00
0240e89170 modified a small bug in north_america_energy_system_catalog.py 2023-10-16 17:24:39 -04:00
c6d4feec89 Modified the classes and the north amercia catalog importer based on the changes Pilar made in the data model structure 2023-10-16 16:44:53 -04:00
3f649fd020 finished central data model new structure for energy systems, importer and test 2023-10-13 13:31:46 -04:00
d94bce4174 half made changes in central data model for systems 2023-10-13 08:23:40 -04:00
f865490ff9 Corrected bug in distribution_systems_electrical_consumption, but need to be confirmed with pilar 2023-10-13 09:11:03 +02:00
31a4893ed8 Corrections in persistence, distribution_systems_electrical_consumption property seems to be bugged 2023-10-13 08:57:42 +02:00
1a7ad20135 new catalog model and factory finished and test passed 2023-10-12 11:59:52 -04:00
fe76d2fe3d Correct the positions for the boxes 2023-10-11 17:16:18 +02:00
57ee3e734b finished generic system and system parts 2023-10-11 09:14:38 -04:00
7cb4600c15 Correct the positions for the boxes 2023-10-11 14:32:31 +02:00
3578d2faae add temporary indentation to tilesets 2023-10-11 06:01:15 +02:00
d6bfe730eb add non-standard render position to tileset 2023-10-11 06:00:34 +02:00
84f5ebe4a0 checking a problem with lists assignation where a single value should be assigned 2023-10-10 16:22:45 -04:00
6b24a59178 Add exports for cesium tileset and glb format 2023-10-10 11:16:26 +02:00
11dc02d0e8 starting point, not working 2023-10-10 05:03:31 -04:00
dae117fb44 Merge remote-tracking branch 'origin/energy_plus_result_factory' into energy_plus_result_factory 2023-10-05 14:20:24 -04:00
8b66e20e9a some refactoring 2023-09-27 05:35:28 -04:00
4ce9f99e4d cleaning mix-branches 2023-09-25 03:41:52 -04:00
e3c9c64e9f Merge remote-tracking branch 'origin/Stochastic_occupancy_model' into energy_plus_result_factory
# Conflicts:
#	.gitignore
2023-09-25 03:35:51 -04:00
sanam
12d20f2d7a Stochastic schedule folder created 2023-09-22 09:42:10 -04:00
sanam
bf004f9e18 Stochastic schedule folder created 2023-09-21 14:33:13 -04:00
sanam
482c06e4c2 new class created 2023-09-20 11:30:41 -04:00
a3028221e3 added .gitignore to always ignore .idea 2023-08-11 10:17:02 -04:00
sanam
e1ca39950f new directory created 2023-08-10 11:25:40 -04:00
sanam
02a03b8239 new directory created 2023-08-10 11:23:23 -04:00
sanam
9094c286c4 new branch created 2023-08-10 10:07:14 -04:00
151 changed files with 78037 additions and 5114 deletions

13
.gitignore vendored
View File

@ -1 +1,12 @@
.idea
!.gitignore
**/venv/
.idea/
/development_tests/
/data/energy_systems/heat_pumps/*.csv
/data/energy_systems/heat_pumps/*.insel
.DS_Store
**/.env
**/hub/logs/
**/__pycache__/
**/.idea/
cerc_hub.egg-info

View File

@ -1,3 +0,0 @@
# Except this file
*
!.gitignore

View File

@ -22,6 +22,7 @@ class EilatCatalog(Catalog):
"""
Eilat catalog class
"""
def __init__(self, path):
_path_archetypes = Path(path / 'eilat_archetypes.json').resolve()
_path_constructions = (path / 'eilat_constructions.json').resolve()
@ -121,8 +122,10 @@ class EilatCatalog(Catalog):
construction_period = archetype['period_of_construction']
average_storey_height = archetype['average_storey_height']
extra_loses_due_to_thermal_bridges = archetype['extra_loses_due_thermal_bridges']
infiltration_rate_for_ventilation_system_off = archetype['infiltration_rate_for_ventilation_system_off'] / cte.HOUR_TO_SECONDS
infiltration_rate_for_ventilation_system_on = archetype['infiltration_rate_for_ventilation_system_on'] / cte.HOUR_TO_SECONDS
infiltration_rate_for_ventilation_system_off = archetype[
'infiltration_rate_for_ventilation_system_off'] / cte.HOUR_TO_SECONDS
infiltration_rate_for_ventilation_system_on = archetype[
'infiltration_rate_for_ventilation_system_on'] / cte.HOUR_TO_SECONDS
archetype_constructions = []
for archetype_construction in archetype['constructions']:
@ -160,7 +163,9 @@ class EilatCatalog(Catalog):
extra_loses_due_to_thermal_bridges,
None,
infiltration_rate_for_ventilation_system_off,
infiltration_rate_for_ventilation_system_on))
infiltration_rate_for_ventilation_system_on,
0,
0))
return _catalog_archetypes
def names(self, category=None):

View File

@ -128,6 +128,12 @@ class NrcanCatalog(Catalog):
infiltration_rate_for_ventilation_system_on = (
archetype['infiltration_rate_for_ventilation_system_on'] / cte.HOUR_TO_SECONDS
)
infiltration_rate_area_for_ventilation_system_off = (
archetype['infiltration_rate_area_for_ventilation_system_off'] * 1
)
infiltration_rate_area_for_ventilation_system_on = (
archetype['infiltration_rate_area_for_ventilation_system_on'] * 1
)
archetype_constructions = []
for archetype_construction in archetype['constructions']:
@ -153,7 +159,6 @@ class NrcanCatalog(Catalog):
_window)
archetype_constructions.append(_construction)
break
_catalog_archetypes.append(Archetype(archetype_id,
name,
function,
@ -165,7 +170,10 @@ class NrcanCatalog(Catalog):
extra_loses_due_to_thermal_bridges,
None,
infiltration_rate_for_ventilation_system_off,
infiltration_rate_for_ventilation_system_on))
infiltration_rate_for_ventilation_system_on,
infiltration_rate_area_for_ventilation_system_off,
infiltration_rate_area_for_ventilation_system_on
))
return _catalog_archetypes
def names(self, category=None):

View File

@ -162,7 +162,9 @@ class NrelCatalog(Catalog):
extra_loses_due_to_thermal_bridges,
indirect_heated_ratio,
infiltration_rate_for_ventilation_system_off,
infiltration_rate_for_ventilation_system_on))
infiltration_rate_for_ventilation_system_on,
0,
0))
return _catalog_archetypes
def names(self, category=None):

View File

@ -0,0 +1,242 @@
"""
Palma construction catalog
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Cecilia Pérez Pérez cperez@irec.cat
"""
import json
from pathlib import Path
from hub.catalog_factories.catalog import Catalog
from hub.catalog_factories.data_models.construction.content import Content
from hub.catalog_factories.construction.construction_helper import ConstructionHelper
from hub.catalog_factories.data_models.construction.construction import Construction
from hub.catalog_factories.data_models.construction.archetype import Archetype
from hub.catalog_factories.data_models.construction.window import Window
from hub.catalog_factories.data_models.construction.material import Material
from hub.catalog_factories.data_models.construction.layer import Layer
import hub.helpers.constants as cte
class PalmaCatalog(Catalog):
"""
Palma catalog class
"""
def __init__(self, path):
_path_archetypes = Path(path / 'palma_archetypes.json').resolve()
_path_constructions = (path / 'palma_constructions.json').resolve()
with open(_path_archetypes, 'r', encoding='utf-8') as file:
self._archetypes = json.load(file)
with open(_path_constructions, 'r', encoding='utf-8') as file:
self._constructions = json.load(file)
self._catalog_windows = self._load_windows()
self._catalog_materials = self._load_materials()
self._catalog_constructions = self._load_constructions()
self._catalog_archetypes = self._load_archetypes()
# store the full catalog data model in self._content
self._content = Content(self._catalog_archetypes,
self._catalog_constructions,
self._catalog_materials,
self._catalog_windows)
def _load_windows(self):
_catalog_windows = []
windows = self._constructions['transparent_surfaces']
for window in windows:
name = list(window.keys())[0]
window_id = name
g_value = window[name]['shgc']
window_type = window[name]['type']
frame_ratio = window[name]['frame_ratio']
overall_u_value = window[name]['u_value']
_catalog_windows.append(Window(window_id, frame_ratio, g_value, overall_u_value, name, window_type))
return _catalog_windows
def _load_materials(self):
_catalog_materials = []
materials = self._constructions['materials']
for material in materials:
name = list(material.keys())[0]
material_id = name
no_mass = material[name]['no_mass']
thermal_resistance = None
conductivity = None
density = None
specific_heat = None
solar_absorptance = None
thermal_absorptance = None
visible_absorptance = None
if no_mass:
thermal_resistance = material[name]['thermal_resistance']
else:
solar_absorptance = material[name]['solar_absorptance']
thermal_absorptance = str(1 - float(material[name]['thermal_emittance']))
visible_absorptance = material[name]['visible_absorptance']
conductivity = material[name]['conductivity']
density = material[name]['density']
specific_heat = material[name]['specific_heat']
_material = Material(material_id,
name,
solar_absorptance,
thermal_absorptance,
visible_absorptance,
no_mass,
thermal_resistance,
conductivity,
density,
specific_heat)
_catalog_materials.append(_material)
return _catalog_materials
def _load_constructions(self):
_catalog_constructions = []
constructions = self._constructions['opaque_surfaces']
for construction in constructions:
name = list(construction.keys())[0]
construction_id = name
construction_type = ConstructionHelper().nrcan_surfaces_types_to_hub_types[construction[name]['type']]
layers = []
for layer in construction[name]['layers']:
layer_id = layer
layer_name = layer
material_id = layer
thickness = construction[name]['layers'][layer]
for material in self._catalog_materials:
if str(material_id) == str(material.id):
layers.append(Layer(layer_id, layer_name, material, thickness))
break
_catalog_constructions.append(Construction(construction_id, construction_type, name, layers))
return _catalog_constructions
def _load_archetypes(self):
_catalog_archetypes = []
archetypes = self._archetypes['archetypes']
for archetype in archetypes:
archetype_id = f'{archetype["function"]}_{archetype["period_of_construction"]}_{archetype["climate_zone"]}'
function = archetype['function']
name = archetype_id
climate_zone = archetype['climate_zone']
construction_period = archetype['period_of_construction']
average_storey_height = archetype['average_storey_height']
thermal_capacity = float(archetype['thermal_capacity']) * 1000
extra_loses_due_to_thermal_bridges = archetype['extra_loses_due_thermal_bridges']
infiltration_rate_for_ventilation_system_off = archetype['infiltration_rate_for_ventilation_system_off'] / cte.HOUR_TO_SECONDS
infiltration_rate_for_ventilation_system_on = archetype['infiltration_rate_for_ventilation_system_on'] / cte.HOUR_TO_SECONDS
infiltration_rate_area_for_ventilation_system_off = (
archetype['infiltration_rate_area_for_ventilation_system_off'] * 1
)
infiltration_rate_area_for_ventilation_system_on = (
archetype['infiltration_rate_area_for_ventilation_system_on'] * 1
)
archetype_constructions = []
for archetype_construction in archetype['constructions']:
archetype_construction_type = ConstructionHelper().nrcan_surfaces_types_to_hub_types[archetype_construction]
archetype_construction_name = archetype['constructions'][archetype_construction]['opaque_surface_name']
for construction in self._catalog_constructions:
if archetype_construction_type == construction.type and construction.name == archetype_construction_name:
_construction = None
_window = None
_window_ratio = None
if 'transparent_surface_name' in archetype['constructions'][archetype_construction].keys():
_window_ratio = archetype['constructions'][archetype_construction]['transparent_ratio']
_window_id = archetype['constructions'][archetype_construction]['transparent_surface_name']
for window in self._catalog_windows:
if _window_id == window.id:
_window = window
break
_construction = Construction(construction.id,
construction.type,
construction.name,
construction.layers,
_window_ratio,
_window)
archetype_constructions.append(_construction)
break
_catalog_archetypes.append(Archetype(archetype_id,
name,
function,
climate_zone,
construction_period,
archetype_constructions,
average_storey_height,
thermal_capacity,
extra_loses_due_to_thermal_bridges,
None,
infiltration_rate_for_ventilation_system_off,
infiltration_rate_for_ventilation_system_on,
infiltration_rate_area_for_ventilation_system_off,
infiltration_rate_area_for_ventilation_system_on))
return _catalog_archetypes
def names(self, category=None):
"""
Get the catalog elements names
:parm: optional category filter
"""
if category is None:
_names = {'archetypes': [], 'constructions': [], 'materials': [], 'windows': []}
for archetype in self._content.archetypes:
_names['archetypes'].append(archetype.name)
for construction in self._content.constructions:
_names['constructions'].append(construction.name)
for material in self._content.materials:
_names['materials'].append(material.name)
for window in self._content.windows:
_names['windows'].append(window.name)
else:
_names = {category: []}
if category.lower() == 'archetypes':
for archetype in self._content.archetypes:
_names[category].append(archetype.name)
elif category.lower() == 'constructions':
for construction in self._content.constructions:
_names[category].append(construction.name)
elif category.lower() == 'materials':
for material in self._content.materials:
_names[category].append(material.name)
elif category.lower() == 'windows':
for window in self._content.windows:
_names[category].append(window.name)
else:
raise ValueError(f'Unknown category [{category}]')
return _names
def entries(self, category=None):
"""
Get the catalog elements
:parm: optional category filter
"""
if category is None:
return self._content
if category.lower() == 'archetypes':
return self._content.archetypes
if category.lower() == 'constructions':
return self._content.constructions
if category.lower() == 'materials':
return self._content.materials
if category.lower() == 'windows':
return self._content.windows
raise ValueError(f'Unknown category [{category}]')
def get_entry(self, name):
"""
Get one catalog element by names
:parm: entry name
"""
for entry in self._content.archetypes:
if entry.name.lower() == name.lower():
return entry
for entry in self._content.constructions:
if entry.name.lower() == name.lower():
return entry
for entry in self._content.materials:
if entry.name.lower() == name.lower():
return entry
for entry in self._content.windows:
if entry.name.lower() == name.lower():
return entry
raise IndexError(f"{name} doesn't exists in the catalog")

View File

@ -11,6 +11,7 @@ from typing import TypeVar
from hub.catalog_factories.construction.nrcan_catalog import NrcanCatalog
from hub.catalog_factories.construction.nrel_catalog import NrelCatalog
from hub.catalog_factories.construction.eilat_catalog import EilatCatalog
from hub.catalog_factories.construction.palma_catalog import PalmaCatalog
from hub.helpers.utils import validate_import_export_type
Catalog = TypeVar('Catalog')
@ -48,6 +49,13 @@ class ConstructionCatalogFactory:
"""
return EilatCatalog(self._path)
@property
def _palma(self):
"""
Retrieve Palma catalog
"""
return PalmaCatalog(self._path)
@property
def catalog(self) -> Catalog:
"""

View File

@ -23,7 +23,10 @@ class Archetype:
extra_loses_due_to_thermal_bridges,
indirect_heated_ratio,
infiltration_rate_for_ventilation_system_off,
infiltration_rate_for_ventilation_system_on):
infiltration_rate_for_ventilation_system_on,
infiltration_rate_area_for_ventilation_system_off,
infiltration_rate_area_for_ventilation_system_on
):
self._id = archetype_id
self._name = name
self._function = function
@ -36,6 +39,8 @@ class Archetype:
self._indirect_heated_ratio = indirect_heated_ratio
self._infiltration_rate_for_ventilation_system_off = infiltration_rate_for_ventilation_system_off
self._infiltration_rate_for_ventilation_system_on = infiltration_rate_for_ventilation_system_on
self._infiltration_rate_area_for_ventilation_system_off = infiltration_rate_area_for_ventilation_system_off
self._infiltration_rate_area_for_ventilation_system_on = infiltration_rate_area_for_ventilation_system_on
@property
def id(self):
@ -133,6 +138,22 @@ class Archetype:
"""
return self._infiltration_rate_for_ventilation_system_on
@property
def infiltration_rate_area_for_ventilation_system_off(self):
"""
Get archetype infiltration rate for ventilation system off in m3/sm2
:return: float
"""
return self._infiltration_rate_area_for_ventilation_system_off
@property
def infiltration_rate_area_for_ventilation_system_on(self):
"""
Get archetype infiltration rate for ventilation system on in m3/sm2
:return: float
"""
return self._infiltration_rate_for_ventilation_system_on
def to_dictionary(self):
"""Class content to dictionary"""
_constructions = []
@ -149,6 +170,8 @@ class Archetype:
'indirect heated ratio': self.indirect_heated_ratio,
'infiltration rate for ventilation off [1/s]': self.infiltration_rate_for_ventilation_system_off,
'infiltration rate for ventilation on [1/s]': self.infiltration_rate_for_ventilation_system_on,
'infiltration rate area for ventilation off [m3/sm2]': self.infiltration_rate_area_for_ventilation_system_off,
'infiltration rate area for ventilation on [m3/sm2]': self.infiltration_rate_area_for_ventilation_system_on,
'constructions': _constructions
}
}

View File

@ -1,5 +1,5 @@
"""
Energy System catalog archetype
Energy System catalog archetype, understood as a cluster of energy systems
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
@ -15,21 +15,11 @@ class Archetype:
"""
Archetype class
"""
def __init__(self, lod, name, schema, systems):
def __init__(self, name, systems):
self._lod = lod
self._name = name
self._schema = schema
self._systems = systems
@property
def lod(self):
"""
Get level of detail of the catalog
:return: string
"""
return self._lod
@property
def name(self):
"""
@ -38,14 +28,6 @@ class Archetype:
"""
return self._name
@property
def schema(self):
"""
Get schema path
:return: string
"""
return self._schema
@property
def systems(self) -> List[System]:
"""
@ -62,8 +44,6 @@ class Archetype:
content = {
'Archetype': {
'name': self.name,
'schema': self.schema,
'level of detail': self.lod,
'systems': _systems
}
}

View File

@ -10,13 +10,11 @@ class Content:
"""
Content class
"""
def __init__(self, archetypes, systems, generations, distributions, emissions, storages):
def __init__(self, archetypes, systems, generations=None, distributions=None):
self._archetypes = archetypes
self._systems = systems
self._generations = generations
self._distributions = distributions
self._emissions = emissions
self._storages = storages
@property
def archetypes(self):
@ -46,20 +44,6 @@ class Content:
"""
return self._distributions
@property
def emission_equipments(self):
"""
All emission equipments in the catalog
"""
return self._emissions
@property
def storage_equipments(self):
"""
All storage equipments in the catalog
"""
return self._storages
def to_dictionary(self):
"""Class content to dictionary"""
_archetypes = []

View File

@ -6,21 +6,32 @@ Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
Code contributors: Saeed Ranjbar saeed.ranjbar@concordia.ca
"""
from typing import Union, List, TypeVar
from hub.catalog_factories.data_models.energy_systems.energy_storage_system import EnergyStorageSystem
from hub.catalog_factories.data_models.energy_systems.emission_system import EmissionSystem
GenerationSystem = TypeVar('GenerationSystem')
class DistributionSystem:
"""
Distribution system class
"""
def __init__(self, system_id, name, system_type, supply_temperature, distribution_consumption_fix_flow,
distribution_consumption_variable_flow, heat_losses):
def __init__(self, system_id, model_name=None, system_type=None, supply_temperature=None,
distribution_consumption_fix_flow=None, distribution_consumption_variable_flow=None, heat_losses=None,
generation_systems=None, energy_storage_systems=None, emission_systems=None):
self._system_id = system_id
self._name = name
self._model_name = model_name
self._type = system_type
self._supply_temperature = supply_temperature
self._distribution_consumption_fix_flow = distribution_consumption_fix_flow
self._distribution_consumption_variable_flow = distribution_consumption_variable_flow
self._heat_losses = heat_losses
self._generation_systems = generation_systems
self._energy_storage_systems = energy_storage_systems
self._emission_systems = emission_systems
@property
def id(self):
@ -31,12 +42,12 @@ class DistributionSystem:
return self._system_id
@property
def name(self):
def model_name(self):
"""
Get name
Get model name
:return: string
"""
return self._name
return self._model_name
@property
def type(self):
@ -79,17 +90,51 @@ class DistributionSystem:
"""
return self._heat_losses
@property
def generation_systems(self) -> Union[None, List[GenerationSystem]]:
"""
Get generation systems connected to the distribution system
:return: [GenerationSystem]
"""
return self._generation_systems
@property
def energy_storage_systems(self) -> Union[None, List[EnergyStorageSystem]]:
"""
Get energy storage systems connected to this distribution system
:return: [EnergyStorageSystem]
"""
return self._energy_storage_systems
@property
def emission_systems(self) -> Union[None, List[EmissionSystem]]:
"""
Get energy emission systems connected to this distribution system
:return: [EmissionSystem]
"""
return self._emission_systems
def to_dictionary(self):
"""Class content to dictionary"""
_generation_systems = [_generation_system.to_dictionary() for _generation_system in
self.generation_systems] if self.generation_systems is not None else None
_energy_storage_systems = [_energy_storage_system.to_dictionary() for _energy_storage_system in
self.energy_storage_systems] if self.energy_storage_systems is not None else None
_emission_systems = [_emission_system.to_dictionary() for _emission_system in
self.emission_systems] if self.emission_systems is not None else None
content = {
'Layer': {
'id': self.id,
'name': self.name,
'model name': self.model_name,
'type': self.type,
'supply temperature [Celsius]': self.supply_temperature,
'distribution consumption if fix flow over peak power [W/W]': self.distribution_consumption_fix_flow,
'distribution consumption if variable flow over peak power [J/J]': self.distribution_consumption_variable_flow,
'heat losses per energy produced [J/J]': self.heat_losses
'heat losses per energy produced [J/J]': self.heat_losses,
'generation systems connected': _generation_systems,
'energy storage systems connected': _energy_storage_systems,
'emission systems connected': _emission_systems
}
}
return content

View File

@ -14,10 +14,12 @@ class ElectricalStorageSystem(EnergyStorageSystem):
Energy Storage System Class
"""
def __init__(self, storage_id, name, model_name, manufacturer, storage_type, nominal_capacity, losses_ratio,
rated_output_power, nominal_efficiency, battery_voltage, depth_of_discharge, self_discharge_rate):
def __init__(self, storage_id, type_energy_stored=None, model_name=None, manufacturer=None, storage_type=None,
nominal_capacity=None, losses_ratio=None, rated_output_power=None, nominal_efficiency=None,
battery_voltage=None, depth_of_discharge=None, self_discharge_rate=None):
super().__init__(storage_id, name, model_name, manufacturer, nominal_capacity, losses_ratio)
super().__init__(storage_id, model_name, manufacturer, nominal_capacity, losses_ratio)
self._type_energy_stored = type_energy_stored
self._storage_type = storage_type
self._rated_output_power = rated_output_power
self._nominal_efficiency = nominal_efficiency
@ -25,10 +27,18 @@ class ElectricalStorageSystem(EnergyStorageSystem):
self._depth_of_discharge = depth_of_discharge
self._self_discharge_rate = self_discharge_rate
@property
def type_energy_stored(self):
"""
Get type of energy stored from ['electrical', 'thermal']
:return: string
"""
return self._type_energy_stored
@property
def storage_type(self):
"""
Get storage type from ['electrical', 'lithium_ion', 'lead_acid', 'NiCd']
Get storage type from ['lithium_ion', 'lead_acid', 'NiCd']
:return: string
"""
return self._storage_type
@ -44,7 +54,7 @@ class ElectricalStorageSystem(EnergyStorageSystem):
@property
def nominal_efficiency(self):
"""
Get the nominal efficiency of the storage system
Get the nominal efficiency of the storage system
:return: float
"""
return self._nominal_efficiency
@ -77,7 +87,7 @@ class ElectricalStorageSystem(EnergyStorageSystem):
"""Class content to dictionary"""
content = {'Storage component': {
'storage id': self.id,
'name': self.name,
'type of energy stored': self.type_energy_stored,
'model name': self.model_name,
'manufacturer': self.manufacturer,
'storage type': self.storage_type,

View File

@ -10,10 +10,10 @@ class EmissionSystem:
"""
Emission system class
"""
def __init__(self, system_id, name, system_type, parasitic_energy_consumption):
def __init__(self, system_id, model_name=None, system_type=None, parasitic_energy_consumption=0):
self._system_id = system_id
self._name = name
self._model_name = model_name
self._type = system_type
self._parasitic_energy_consumption = parasitic_energy_consumption
@ -26,12 +26,12 @@ class EmissionSystem:
return self._system_id
@property
def name(self):
def model_name(self):
"""
Get name
Get model name
:return: string
"""
return self._name
return self._model_name
@property
def type(self):
@ -52,7 +52,7 @@ class EmissionSystem:
def to_dictionary(self):
"""Class content to dictionary"""
content = {'Layer': {'id': self.id,
'name': self.name,
'model name': self.model_name,
'type': self.type,
'parasitic energy consumption per energy produced [J/J]': self.parasitic_energy_consumption
}

View File

@ -14,9 +14,9 @@ class EnergyStorageSystem(ABC):
Energy Storage System Abstract Class
"""
def __init__(self, storage_id, name, model_name, manufacturer, nominal_capacity, losses_ratio):
def __init__(self, storage_id, model_name=None, manufacturer=None,
nominal_capacity=None, losses_ratio=None):
self._storage_id = storage_id
self._name = name
self._model_name = model_name
self._manufacturer = manufacturer
self._nominal_capacity = nominal_capacity
@ -31,18 +31,18 @@ class EnergyStorageSystem(ABC):
return self._storage_id
@property
def name(self):
def type_energy_stored(self):
"""
Get storage name
Get type of energy stored from ['electrical', 'thermal']
:return: string
"""
return self._name
raise NotImplementedError
@property
def model_name(self):
"""
Get system model
:return: float
:return: string
"""
return self._model_name

View File

@ -6,53 +6,28 @@ Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
Code contributors: Saeed Ranjbar saeed.ranjbar@concordia.ca
"""
from typing import Union
from hub.catalog_factories.data_models.energy_systems.performance_curves import PerformanceCurves
from __future__ import annotations
from abc import ABC
from typing import List, Union
from hub.catalog_factories.data_models.energy_systems.energy_storage_system import EnergyStorageSystem
from hub.catalog_factories.data_models.energy_systems.distribution_system import DistributionSystem
class GenerationSystem:
class GenerationSystem(ABC):
"""
Heat Generation system class
"""
def __init__(self, system_id, name, model_name, manufacturer, system_type, fuel_type, nominal_thermal_output,
maximum_heat_output, minimum_heat_output, source_medium, supply_medium, heat_efficiency,
nominal_cooling_output, maximum_cooling_output, minimum_cooling_output, cooling_efficiency,
electricity_efficiency, source_temperature, source_mass_flow, nominal_electricity_output,
maximum_heat_supply_temperature, minimum_heat_supply_temperature,
maximum_cooling_supply_temperature, minimum_cooling_supply_temperature, heat_output_curve,
heat_fuel_consumption_curve, heat_efficiency_curve, cooling_output_curve, cooling_fuel_consumption_curve,
cooling_efficiency_curve):
def __init__(self, system_id, name, model_name=None, manufacturer=None, fuel_type=None,
distribution_systems=None, energy_storage_systems=None):
self._system_id = system_id
self._name = name
self._model_name = model_name
self._manufacturer = manufacturer
self._system_type = system_type
self._fuel_type = fuel_type
self._nominal_thermal_output = nominal_thermal_output
self._maximum_heat_output = maximum_heat_output
self._minimum_heat_output = minimum_heat_output
self._heat_efficiency = heat_efficiency
self._nominal_cooling_output = nominal_cooling_output
self._maximum_cooling_output = maximum_cooling_output
self._minimum_cooling_output = minimum_cooling_output
self._cooling_efficiency = cooling_efficiency
self._electricity_efficiency = electricity_efficiency
self._nominal_electricity_output = nominal_electricity_output
self._source_medium = source_medium
self._source_temperature = source_temperature
self._source_mass_flow = source_mass_flow
self._supply_medium = supply_medium
self._maximum_heat_supply_temperature = maximum_heat_supply_temperature
self._minimum_heat_supply_temperature = minimum_heat_supply_temperature
self._maximum_cooling_supply_temperature = maximum_cooling_supply_temperature
self._minimum_cooling_supply_temperature = minimum_cooling_supply_temperature
self._heat_output_curve = heat_output_curve
self._heat_fuel_consumption_curve = heat_fuel_consumption_curve
self._heat_efficiency_curve = heat_efficiency_curve
self._cooling_output_curve = cooling_output_curve
self._cooling_fuel_consumption_curve = cooling_fuel_consumption_curve
self._cooling_efficiency_curve = cooling_efficiency_curve
self._distribution_systems = distribution_systems
self._energy_storage_systems = energy_storage_systems
@property
def id(self):
@ -65,11 +40,19 @@ class GenerationSystem:
@property
def name(self):
"""
Get name
Get system name
:return: string
"""
return self._name
@property
def system_type(self):
"""
Get type
:return: string
"""
raise NotImplementedError
@property
def model_name(self):
"""
@ -86,14 +69,6 @@ class GenerationSystem:
"""
return self._manufacturer
@property
def system_type(self):
"""
Get type
:return: string
"""
return self._system_type
@property
def fuel_type(self):
"""
@ -103,230 +78,21 @@ class GenerationSystem:
return self._fuel_type
@property
def nominal_thermal_output(self):
def distribution_systems(self) -> Union[None, List[DistributionSystem]]:
"""
Get nominal_thermal_output of heat generation devices in kW
:return: float
Get distributions systems connected to this generation system
:return: [DistributionSystem]
"""
return self._nominal_thermal_output
return self._distribution_systems
@property
def maximum_heat_output(self):
def energy_storage_systems(self) -> Union[None, List[EnergyStorageSystem]]:
"""
Get maximum heat output of heat generation devices in W
:return: float
Get energy storage systems connected to this generation system
:return: [EnergyStorageSystem]
"""
return self._maximum_heat_output
@property
def minimum_heat_output(self):
"""
Get minimum heat output of heat generation devices in W
:return: float
"""
return self._minimum_heat_output
@property
def source_medium(self):
"""
Get source_type from [air, water, ground, district_heating, grid, on_site_electricity]
:return: [string]
"""
return self._source_medium
@property
def supply_medium(self):
"""
Get the supply medium from ['air', 'water']
:return: string
"""
return self._supply_medium
@property
def heat_efficiency(self):
"""
Get heat_efficiency
:return: float
"""
return self._heat_efficiency
@property
def nominal_cooling_output(self):
"""
Get nominal_thermal_output of heat generation devices in kW
:return: float
"""
return self._nominal_cooling_output
@property
def maximum_cooling_output(self):
"""
Get maximum heat output of heat generation devices in W
:return: float
"""
return self._maximum_cooling_output
@property
def minimum_cooling_output(self):
"""
Get minimum heat output of heat generation devices in W
:return: float
"""
return self._minimum_cooling_output
@property
def cooling_efficiency(self):
"""
Get cooling_efficiency
:return: float
"""
return self._cooling_efficiency
@property
def electricity_efficiency(self):
"""
Get electricity_efficiency
:return: float
"""
return self._electricity_efficiency
@property
def source_temperature(self):
"""
Get source_temperature in degree Celsius
:return: float
"""
return self._source_temperature
@property
def source_mass_flow(self):
"""
Get source_mass_flow in kg/s
:return: float
"""
return self._source_mass_flow
@property
def nominal_electricity_output(self):
"""
Get nominal_power_output of electricity generation devices or inverters in kW
:return: float
"""
return self._nominal_electricity_output
@property
def maximum_heat_supply_temperature(self):
"""
Get the maximum heat supply temperature in degree Celsius
:return: float
"""
return self._minimum_heat_supply_temperature
@property
def minimum_heat_supply_temperature(self):
"""
Get the minimum heat supply temperature in degree Celsius
:return: float
"""
return self._minimum_heat_supply_temperature
@property
def maximum_cooling_supply_temperature(self):
"""
Get the maximum cooling supply temperature in degree Celsius
:return: float
"""
return self._maximum_cooling_supply_temperature
@property
def minimum_cooling_supply_temperature(self):
"""
Get the minimum cooling supply temperature in degree Celsius
:return: float
"""
return self._minimum_cooling_supply_temperature
@property
def heat_output_curve(self) -> Union[None, PerformanceCurves]:
"""
Get the heat output curve of the heat generation device
:return: PerformanceCurve
"""
return self._heat_output_curve
@property
def heat_fuel_consumption_curve(self) -> Union[None, PerformanceCurves]:
"""
Get the heating fuel consumption curve of the heat generation device
:return: PerformanceCurve
"""
return self._heat_fuel_consumption_curve
@property
def heat_efficiency_curve(self) -> Union[None, PerformanceCurves]:
"""
Get the heating efficiency curve of the heat generation device
:return: PerformanceCurve
"""
return self._heat_efficiency_curve
@property
def cooling_output_curve(self) -> Union[None, PerformanceCurves]:
"""
Get the heat output curve of the heat generation device
:return: PerformanceCurve
"""
return self._cooling_output_curve
@property
def cooling_fuel_consumption_curve(self) -> Union[None, PerformanceCurves]:
"""
Get the heating fuel consumption curve of the heat generation device
:return: PerformanceCurve
"""
return self._cooling_fuel_consumption_curve
@property
def cooling_efficiency_curve(self) -> Union[None, PerformanceCurves]:
"""
Get the heating efficiency curve of the heat generation device
:return: PerformanceCurve
"""
return self._cooling_efficiency_curve
return self._energy_storage_systems
def to_dictionary(self):
"""Class content to dictionary"""
content = {'Energy Generation component': {
'id': self.id,
'name': self.name,
'model name': self.model_name,
'manufacturer': self.manufacturer,
'type': self.system_type,
'fuel type': self.fuel_type,
'nominal thermal output [W]': self.nominal_thermal_output,
'maximum heat output [W]': self.maximum_heat_output,
'minimum heat output [W]': self.minimum_heat_output,
'source medium': self.source_medium,
'supply medium': self.supply_medium,
'source temperature [Celsius]': self.source_temperature,
'source mass flow [kg/s]': self.source_mass_flow,
'heat efficiency': self.heat_efficiency,
'nominal cooling output [W]': self.nominal_cooling_output,
'maximum cooling output [W]': self.maximum_cooling_output,
'minimum cooling output [W]': self.minimum_cooling_output,
'cooling efficiency': self.cooling_efficiency,
'electricity efficiency': self.electricity_efficiency,
'nominal power output [W]': self.nominal_electricity_output,
'maximum heating supply temperature [Celsius]': self.maximum_heat_supply_temperature,
'minimum heating supply temperature [Celsius]': self.minimum_heat_supply_temperature,
'maximum cooling supply temperature [Celsius]': self.maximum_cooling_supply_temperature,
'minimum cooling supply temperature [Celsius]': self.minimum_cooling_supply_temperature,
'heat output curve': self.heat_output_curve,
'heat fuel consumption curve': self.heat_fuel_consumption_curve,
'heat efficiency curve': self.heat_efficiency_curve,
'cooling output curve': self.cooling_output_curve,
'cooling fuel consumption curve': self.cooling_fuel_consumption_curve,
'cooling efficiency curve': self.cooling_efficiency_curve
}
}
return content
raise NotImplementedError

View File

@ -0,0 +1,344 @@
"""
Energy System catalog non PV generation system
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
Code contributors: Saeed Ranjbar saeed.ranjbar@concordia.ca
"""
from typing import Union
from hub.catalog_factories.data_models.energy_systems.performance_curves import PerformanceCurves
from hub.catalog_factories.data_models.energy_systems.generation_system import GenerationSystem
class NonPvGenerationSystem(GenerationSystem):
"""
Non PV Generation system class
"""
def __init__(self, system_id, name, system_type, model_name=None, manufacturer=None, fuel_type=None,
nominal_heat_output=None, maximum_heat_output=None, minimum_heat_output=None, source_medium=None,
supply_medium=None, heat_efficiency=None, nominal_cooling_output=None, maximum_cooling_output=None,
minimum_cooling_output=None, cooling_efficiency=None, electricity_efficiency=None,
source_temperature=None, source_mass_flow=None, nominal_electricity_output=None,
maximum_heat_supply_temperature=None, minimum_heat_supply_temperature=None,
maximum_cooling_supply_temperature=None, minimum_cooling_supply_temperature=None, heat_output_curve=None,
heat_fuel_consumption_curve=None, heat_efficiency_curve=None, cooling_output_curve=None,
cooling_fuel_consumption_curve=None, cooling_efficiency_curve=None,
distribution_systems=None, energy_storage_systems=None, domestic_hot_water=False,
reversible=None, simultaneous_heat_cold=None):
super().__init__(system_id=system_id, name=name, model_name=model_name, manufacturer=manufacturer,
fuel_type=fuel_type, distribution_systems=distribution_systems,
energy_storage_systems=energy_storage_systems)
self._system_type = system_type
self._nominal_heat_output = nominal_heat_output
self._maximum_heat_output = maximum_heat_output
self._minimum_heat_output = minimum_heat_output
self._heat_efficiency = heat_efficiency
self._nominal_cooling_output = nominal_cooling_output
self._maximum_cooling_output = maximum_cooling_output
self._minimum_cooling_output = minimum_cooling_output
self._cooling_efficiency = cooling_efficiency
self._electricity_efficiency = electricity_efficiency
self._nominal_electricity_output = nominal_electricity_output
self._source_medium = source_medium
self._source_temperature = source_temperature
self._source_mass_flow = source_mass_flow
self._supply_medium = supply_medium
self._maximum_heat_supply_temperature = maximum_heat_supply_temperature
self._minimum_heat_supply_temperature = minimum_heat_supply_temperature
self._maximum_cooling_supply_temperature = maximum_cooling_supply_temperature
self._minimum_cooling_supply_temperature = minimum_cooling_supply_temperature
self._heat_output_curve = heat_output_curve
self._heat_fuel_consumption_curve = heat_fuel_consumption_curve
self._heat_efficiency_curve = heat_efficiency_curve
self._cooling_output_curve = cooling_output_curve
self._cooling_fuel_consumption_curve = cooling_fuel_consumption_curve
self._cooling_efficiency_curve = cooling_efficiency_curve
self._domestic_hot_water = domestic_hot_water
self._reversible = reversible
self._simultaneous_heat_cold = simultaneous_heat_cold
@property
def system_type(self):
"""
Get type
:return: string
"""
return self._system_type
@property
def nominal_heat_output(self):
"""
Get nominal heat output of heat generation devices in W
:return: float
"""
return self._nominal_heat_output
@property
def maximum_heat_output(self):
"""
Get maximum heat output of heat generation devices in W
:return: float
"""
return self._maximum_heat_output
@property
def minimum_heat_output(self):
"""
Get minimum heat output of heat generation devices in W
:return: float
"""
return self._minimum_heat_output
@property
def source_medium(self):
"""
Get source_type from [air, water, ground, district_heating, grid, on_site_electricity]
:return: string
"""
return self._source_medium
@property
def supply_medium(self):
"""
Get the supply medium from ['air', 'water']
:return: string
"""
return self._supply_medium
@property
def heat_efficiency(self):
"""
Get heat_efficiency
:return: float
"""
return self._heat_efficiency
@property
def nominal_cooling_output(self):
"""
Get nominal cooling output of heat generation devices in W
:return: float
"""
return self._nominal_cooling_output
@property
def maximum_cooling_output(self):
"""
Get maximum heat output of heat generation devices in W
:return: float
"""
return self._maximum_cooling_output
@property
def minimum_cooling_output(self):
"""
Get minimum heat output of heat generation devices in W
:return: float
"""
return self._minimum_cooling_output
@property
def cooling_efficiency(self):
"""
Get cooling_efficiency
:return: float
"""
return self._cooling_efficiency
@property
def electricity_efficiency(self):
"""
Get electricity_efficiency
:return: float
"""
return self._electricity_efficiency
@property
def source_temperature(self):
"""
Get source_temperature in degree Celsius
:return: float
"""
return self._source_temperature
@property
def source_mass_flow(self):
"""
Get source_mass_flow in kg/s
:return: float
"""
return self._source_mass_flow
@property
def nominal_electricity_output(self):
"""
Get nominal_power_output of electricity generation devices or inverters in W
:return: float
"""
return self._nominal_electricity_output
@property
def maximum_heat_supply_temperature(self):
"""
Get the maximum heat supply temperature in degree Celsius
:return: float
"""
return self._minimum_heat_supply_temperature
@property
def minimum_heat_supply_temperature(self):
"""
Get the minimum heat supply temperature in degree Celsius
:return: float
"""
return self._minimum_heat_supply_temperature
@property
def maximum_cooling_supply_temperature(self):
"""
Get the maximum cooling supply temperature in degree Celsius
:return: float
"""
return self._maximum_cooling_supply_temperature
@property
def minimum_cooling_supply_temperature(self):
"""
Get the minimum cooling supply temperature in degree Celsius
:return: float
"""
return self._minimum_cooling_supply_temperature
@property
def heat_output_curve(self) -> Union[None, PerformanceCurves]:
"""
Get the heat output curve of the heat generation device
:return: PerformanceCurve
"""
return self._heat_output_curve
@property
def heat_fuel_consumption_curve(self) -> Union[None, PerformanceCurves]:
"""
Get the heating fuel consumption curve of the heat generation device
:return: PerformanceCurve
"""
return self._heat_fuel_consumption_curve
@property
def heat_efficiency_curve(self) -> Union[None, PerformanceCurves]:
"""
Get the heating efficiency curve of the heat generation device
:return: PerformanceCurve
"""
return self._heat_efficiency_curve
@property
def cooling_output_curve(self) -> Union[None, PerformanceCurves]:
"""
Get the heat output curve of the heat generation device
:return: PerformanceCurve
"""
return self._cooling_output_curve
@property
def cooling_fuel_consumption_curve(self) -> Union[None, PerformanceCurves]:
"""
Get the heating fuel consumption curve of the heat generation device
:return: PerformanceCurve
"""
return self._cooling_fuel_consumption_curve
@property
def cooling_efficiency_curve(self) -> Union[None, PerformanceCurves]:
"""
Get the heating efficiency curve of the heat generation device
:return: PerformanceCurve
"""
return self._cooling_efficiency_curve
@property
def domestic_hot_water(self):
"""
Get the ability to produce domestic hot water
:return: bool
"""
return self._domestic_hot_water
@property
def reversibility(self):
"""
Get the ability to produce heating and cooling
:return: bool
"""
return self._reversible
@property
def simultaneous_heat_cold(self):
"""
Get the ability to produce heating and cooling at the same time
:return: bool
"""
return self._simultaneous_heat_cold
def to_dictionary(self):
"""Class content to dictionary"""
_distribution_systems = [_distribution_system.to_dictionary() for _distribution_system in
self.distribution_systems] if self.distribution_systems is not None else None
_energy_storage_systems = [_energy_storage_system.to_dictionary() for _energy_storage_system in
self.energy_storage_systems] if self.energy_storage_systems is not None else None
_heat_output_curve = self.heat_output_curve.to_dictionary() if (
self.heat_output_curve is not None) else None
_heat_fuel_consumption_curve = self.heat_fuel_consumption_curve.to_dictionary() if (
self.heat_fuel_consumption_curve is not None) else None
_heat_efficiency_curve = self.heat_efficiency_curve.to_dictionary() if (
self.heat_efficiency_curve is not None) else None
_cooling_output_curve = self.cooling_output_curve.to_dictionary() if (
self.cooling_output_curve is not None) else None
_cooling_fuel_consumption_curve = self.cooling_fuel_consumption_curve.to_dictionary() if (
self.cooling_fuel_consumption_curve is not None) else None
_cooling_efficiency_curve = self.cooling_efficiency_curve.to_dictionary() if (
self.cooling_efficiency_curve is not None) else None
content = {
'Energy Generation component':
{
'id': self.id,
'model name': self.model_name,
'manufacturer': self.manufacturer,
'type': self.system_type,
'fuel type': self.fuel_type,
'nominal heat output [W]': self.nominal_heat_output,
'maximum heat output [W]': self.maximum_heat_output,
'minimum heat output [W]': self.minimum_heat_output,
'source medium': self.source_medium,
'supply medium': self.supply_medium,
'source temperature [Celsius]': self.source_temperature,
'source mass flow [kg/s]': self.source_mass_flow,
'heat efficiency': self.heat_efficiency,
'nominal cooling output [W]': self.nominal_cooling_output,
'maximum cooling output [W]': self.maximum_cooling_output,
'minimum cooling output [W]': self.minimum_cooling_output,
'cooling efficiency': self.cooling_efficiency,
'electricity efficiency': self.electricity_efficiency,
'nominal power output [W]': self.nominal_electricity_output,
'maximum heating supply temperature [Celsius]': self.maximum_heat_supply_temperature,
'minimum heating supply temperature [Celsius]': self.minimum_heat_supply_temperature,
'maximum cooling supply temperature [Celsius]': self.maximum_cooling_supply_temperature,
'minimum cooling supply temperature [Celsius]': self.minimum_cooling_supply_temperature,
'heat output curve': self.heat_output_curve,
'heat fuel consumption curve': self.heat_fuel_consumption_curve,
'heat efficiency curve': _heat_efficiency_curve,
'cooling output curve': self.cooling_output_curve,
'cooling fuel consumption curve': self.cooling_fuel_consumption_curve,
'cooling efficiency curve': self.cooling_efficiency_curve,
'distribution systems connected': _distribution_systems,
'storage systems connected': _energy_storage_systems,
'domestic hot water production capability': self.domestic_hot_water,
'reversible cycle': self.reversibility,
'simultaneous heat and cooling production': self.simultaneous_heat_cold
}
}
return content

View File

@ -24,13 +24,13 @@ class PerformanceCurves:
def curve_type(self):
"""
The type of the fit function from the following
Linear =>>> y = a*x + b
Linear =>>> y = a + b*x
Exponential =>>> y = a*(b**x)
Polynomial =>>> y = a*(x**2) + b*x + c
Second degree polynomial =>>> y = a + b*x + c*(x**2)
Power =>>> y = a*(x**b)
Second degree multivariable =>>> y = a*(x**2) + b*x + c*x*z + d*z + e*(z**2) + f
Bi-Quadratic =>>> y = a + b*x + c*(x**2) + d*z + e*(z**2) + f*x*z
Get the type of function from ['linear', 'exponential', 'polynomial', 'power', 'second degree multivariable']
Get the type of function from ['linear', 'exponential', 'second degree polynomial', 'power', 'bi-quadratic']
:return: string
"""
return self._curve_type

View File

@ -14,35 +14,52 @@ class PvGenerationSystem(GenerationSystem):
Electricity Generation system class
"""
def __init__(self, system_id, name, model_name, manufacturer, electricity_efficiency,
nominal_electricity_output, nominal_ambient_temperature, nominal_cell_temperature,
nominal_radiation, standard_test_condition_cell_temperature, standard_test_condition_maximum_power,
cell_temperature_coefficient, width, height):
def __init__(self, system_id, name, system_type, model_name=None, manufacturer=None, electricity_efficiency=None,
nominal_electricity_output=None, nominal_ambient_temperature=None, nominal_cell_temperature=None,
nominal_radiation=None, standard_test_condition_cell_temperature=None,
standard_test_condition_maximum_power=None, standard_test_condition_radiation=None,
cell_temperature_coefficient=None, width=None, height=None, distribution_systems=None,
energy_storage_systems=None):
super().__init__(system_id=system_id, name=name, model_name=model_name,
manufacturer=manufacturer, system_type='pv', fuel_type='renewable',
nominal_thermal_output=None, maximum_heat_output=None,
minimum_heat_output=None, source_medium=None,
supply_medium=None, heat_efficiency=None, nominal_cooling_output=None,
maximum_cooling_output=None, minimum_cooling_output=None,
cooling_efficiency=None, electricity_efficiency=electricity_efficiency,
source_temperature=None, source_mass_flow=None,
nominal_electricity_output=nominal_electricity_output,
maximum_heat_supply_temperature=None,
minimum_heat_supply_temperature=None,
maximum_cooling_supply_temperature=None,
minimum_cooling_supply_temperature=None, heat_output_curve=None,
heat_fuel_consumption_curve=None, heat_efficiency_curve=None,
cooling_output_curve=None, cooling_fuel_consumption_curve=None,
cooling_efficiency_curve=None)
manufacturer=manufacturer, fuel_type='renewable', distribution_systems=distribution_systems,
energy_storage_systems=energy_storage_systems)
self._system_type = system_type
self._electricity_efficiency = electricity_efficiency
self._nominal_electricity_output = nominal_electricity_output
self._nominal_ambient_temperature = nominal_ambient_temperature
self._nominal_cell_temperature = nominal_cell_temperature
self._nominal_radiation = nominal_radiation
self._standard_test_condition_cell_temperature = standard_test_condition_cell_temperature
self._standard_test_condition_maximum_power = standard_test_condition_maximum_power
self._standard_test_condition_radiation = standard_test_condition_radiation
self._cell_temperature_coefficient = cell_temperature_coefficient
self._width = width
self._height = height
@property
def system_type(self):
"""
Get type
:return: string
"""
return self._system_type
@property
def nominal_electricity_output(self):
"""
Get nominal_power_output of electricity generation devices or inverters in W
:return: float
"""
return self._nominal_electricity_output
@property
def electricity_efficiency(self):
"""
Get electricity_efficiency
:return: float
"""
return self._electricity_efficiency
@property
def nominal_ambient_temperature(self):
"""
@ -78,11 +95,20 @@ class PvGenerationSystem(GenerationSystem):
@property
def standard_test_condition_maximum_power(self):
"""
Get standard test condition maximum power of PV panels in kW
Get standard test condition maximum power of PV panels in W
:return: float
"""
return self._standard_test_condition_maximum_power
@property
def standard_test_condition_radiation(self):
"""
Get standard test condition cell temperature of PV panels in W/m2
:return: float
"""
return self._standard_test_condition_radiation
@property
def cell_temperature_coefficient(self):
"""
@ -109,23 +135,31 @@ class PvGenerationSystem(GenerationSystem):
def to_dictionary(self):
"""Class content to dictionary"""
content = {'Energy Generation component': {
'id': self.id,
'name': self.name,
'model name': self.model_name,
'manufacturer': self.manufacturer,
'type': self.system_type,
'fuel type': self.fuel_type,
'electricity efficiency': self.electricity_efficiency,
'nominal power output [kW]': self.nominal_electricity_output,
'nominal ambient temperature [Celsius]': self.nominal_ambient_temperature,
'nominal cell temperature [Celsius]': self.nominal_cell_temperature,
'nominal radiation [W/m2]': self.nominal_radiation,
'standard test condition cell temperature [Celsius]': self.standard_test_condition_cell_temperature,
'standard test condition maximum power [kW]': self.standard_test_condition_maximum_power,
'cell temperature coefficient': self.cell_temperature_coefficient,
'width': self.width,
'height': self.height,
}
_distribution_systems = [_distribution_system.to_dictionary() for _distribution_system in
self.distribution_systems] if self.distribution_systems is not None else None
_energy_storage_systems = [_energy_storage_system.to_dictionary() for _energy_storage_system in
self.energy_storage_systems] if self.energy_storage_systems is not None else None
content = {
'Energy Generation component':
{
'id': self.id,
'model name': self.model_name,
'manufacturer': self.manufacturer,
'type': self.system_type,
'fuel type': self.fuel_type,
'electricity efficiency': self.electricity_efficiency,
'nominal power output [W]': self.nominal_electricity_output,
'nominal ambient temperature [Celsius]': self.nominal_ambient_temperature,
'nominal cell temperature [Celsius]': self.nominal_cell_temperature,
'nominal radiation [W/m2]': self.nominal_radiation,
'standard test condition cell temperature [Celsius]': self.standard_test_condition_cell_temperature,
'standard test condition maximum power [W]': self.standard_test_condition_maximum_power,
'standard test condition radiation [W/m2]': self.standard_test_condition_radiation,
'cell temperature coefficient': self.cell_temperature_coefficient,
'width': self.width,
'height': self.height,
'distribution systems connected': _distribution_systems,
'storage systems connected': _energy_storage_systems
}
}
return content

View File

@ -1,5 +1,5 @@
"""
Energy System catalog heat generation system
Energy Systems catalog System
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
@ -7,12 +7,10 @@ Code contributors: Saeed Ranjbar saeed.ranjbar@concordia.ca
"""
from typing import Union, List
from pathlib import Path
from hub.catalog_factories.data_models.energy_systems.generation_system import GenerationSystem
from hub.catalog_factories.data_models.energy_systems.thermal_storage_system import ThermalStorageSystem
from hub.catalog_factories.data_models.energy_systems.electrical_storage_system import ElectricalStorageSystem
from hub.catalog_factories.data_models.energy_systems.distribution_system import DistributionSystem
from hub.catalog_factories.data_models.energy_systems.emission_system import EmissionSystem
class System:
@ -21,31 +19,18 @@ class System:
"""
def __init__(self,
lod,
system_id,
name,
demand_types,
generation_systems,
distribution_systems,
emission_systems,
energy_storage_systems):
self._lod = lod
name=None,
generation_systems=None,
distribution_systems=None,
configuration_schema=None):
self._system_id = system_id
self._name = name
self._demand_types = demand_types
self._distribution_systems = distribution_systems
self._emission_systems = emission_systems
self._generation_systems = generation_systems
self._energy_storage_systems = energy_storage_systems
# self._configuration = configuration
@property
def lod(self):
"""
Get level of detail of the catalog
:return: string
"""
return self._lod
self._distribution_systems = distribution_systems
self._configuration_schema = configuration_schema
@property
def id(self):
@ -72,7 +57,7 @@ class System:
return self._demand_types
@property
def generation_systems(self) -> List[GenerationSystem]:
def generation_systems(self) -> Union[None, List[GenerationSystem]]:
"""
Get generation systems
:return: [GenerationSystem]
@ -88,20 +73,12 @@ class System:
return self._distribution_systems
@property
def emission_systems(self) -> Union[None, List[EmissionSystem]]:
def configuration_schema(self) -> Path:
"""
Get emission systems
:return: [EmissionSystem]
Get system configuration schema
:return: Path
"""
return self._emission_systems
@property
def energy_storage_systems(self) -> Union[None, List[ThermalStorageSystem], List[ElectricalStorageSystem]]:
"""
Get energy storage systems
:return: [EnergyStorageSystem]
"""
return self._energy_storage_systems
return self._configuration_schema
def to_dictionary(self):
"""Class content to dictionary"""
@ -110,19 +87,13 @@ class System:
_generation_systems.append(_generation.to_dictionary())
_distribution_systems = [_distribution.to_dictionary() for _distribution in
self.distribution_systems] if self.distribution_systems is not None else None
_emission_systems = [_emission.to_dictionary() for _emission in
self.emission_systems] if self.emission_systems is not None else None
_storage_systems = [_storage.to_dictionary() for _storage in
self.energy_storage_systems] if self.energy_storage_systems is not None else None
content = {'system': {'id': self.id,
'name': self.name,
'level of detail': self.lod,
'demand types': self.demand_types,
'generation system(s)': _generation_systems,
'distribution system(s)': _distribution_systems,
'emission system(s)': _emission_systems,
'energy storage system(s)': _storage_systems,
'configuration schema path': self.configuration_schema
}
}
return content

View File

@ -8,22 +8,34 @@ Code contributors: Saeed Ranjbar saeed.ranjbar@concordia.ca
from hub.catalog_factories.data_models.energy_systems.energy_storage_system import EnergyStorageSystem
from hub.catalog_factories.data_models.construction.layer import Layer
from hub.catalog_factories.data_models.construction.material import Material
class ThermalStorageSystem(EnergyStorageSystem):
""""
Energy Storage System Class
"""
def __init__(self, storage_id, name, model_name, manufacturer, storage_type, nominal_capacity, losses_ratio,
volume, height, layers, maximum_operating_temperature):
def __init__(self, storage_id, type_energy_stored=None, model_name=None, manufacturer=None, storage_type=None,
nominal_capacity=None, losses_ratio=None, volume=None, height=None, layers=None,
maximum_operating_temperature=None, storage_medium=None, heating_coil_capacity=None):
super().__init__(storage_id, name, model_name, manufacturer, nominal_capacity, losses_ratio)
super().__init__(storage_id, model_name, manufacturer, nominal_capacity, losses_ratio)
self._type_energy_stored = type_energy_stored
self._storage_type = storage_type
self._volume = volume
self._height = height
self._layers = layers
self._maximum_operating_temperature = maximum_operating_temperature
self._storage_medium = storage_medium
self._heating_coil_capacity = heating_coil_capacity
@property
def type_energy_stored(self):
"""
Get type of energy stored from ['electrical', 'thermal']
:return: string
"""
return self._type_energy_stored
@property
def storage_type(self):
@ -65,25 +77,50 @@ class ThermalStorageSystem(EnergyStorageSystem):
"""
return self._maximum_operating_temperature
@property
def storage_medium(self) -> Material:
"""
Get thermodynamic characteristics of the storage medium
:return: [material
"""
return self._storage_medium
@property
def heating_coil_capacity(self):
"""
Get heating coil capacity in Watts
:return: [material
"""
return self._heating_coil_capacity
def to_dictionary(self):
"""Class content to dictionary"""
_layers = None
_medias = None
if self.layers is not None:
_layers = []
for _layer in self.layers:
_layers.append(_layer.to_dictionary())
content = {'Storage component': {
'storage id': self.id,
'name': self.name,
'model name': self.model_name,
'manufacturer': self.manufacturer,
'storage type': self.storage_type,
'nominal capacity [J]': self.nominal_capacity,
'losses-ratio [J/J]': self.losses_ratio,
'volume [m3]': self.volume,
'height [m]': self.height,
'layers': _layers,
'maximum operating temperature [Celsius]': self.maximum_operating_temperature
}
if self.storage_medium is not None:
_medias = self.storage_medium.to_dictionary()
content = {
'Storage component':
{
'storage id': self.id,
'type of energy stored': self.type_energy_stored,
'model name': self.model_name,
'manufacturer': self.manufacturer,
'storage type': self.storage_type,
'nominal capacity [J]': self.nominal_capacity,
'losses-ratio [J/J]': self.losses_ratio,
'volume [m3]': self.volume,
'height [m]': self.height,
'layers': _layers,
'maximum operating temperature [Celsius]': self.maximum_operating_temperature,
'storage_medium': self.storage_medium.to_dictionary(),
'heating coil capacity [W]': self.heating_coil_capacity
}
}
return content

View File

@ -10,7 +10,8 @@ import xmltodict
from hub.catalog_factories.catalog import Catalog
from hub.catalog_factories.data_models.energy_systems.system import System
from hub.catalog_factories.data_models.energy_systems.content import Content
from hub.catalog_factories.data_models.energy_systems.generation_system import GenerationSystem
from hub.catalog_factories.data_models.energy_systems.non_pv_generation_system import NonPvGenerationSystem
from hub.catalog_factories.data_models.energy_systems.pv_generation_system import PvGenerationSystem
from hub.catalog_factories.data_models.energy_systems.distribution_system import DistributionSystem
from hub.catalog_factories.data_models.energy_systems.emission_system import EmissionSystem
from hub.catalog_factories.data_models.energy_systems.archetype import Archetype
@ -29,21 +30,18 @@ class MontrealCustomCatalog(Catalog):
self._archetypes = xmltodict.parse(xml.read(), force_list=('system', 'system_cluster', 'equipment',
'demand', 'system_id'))
self._lod = float(self._archetypes['catalog']['@lod'])
self._catalog_generation_equipments, self._catalog_storage_equipments = self._load_generation_and_storage_equipments()
self._catalog_distribution_equipments = self._load_distribution_equipments()
self._catalog_generation_equipments = self._load_generation_equipments()
self._catalog_emission_equipments = self._load_emission_equipments()
self._catalog_distribution_equipments = self._load_distribution_equipments()
self._catalog_systems = self._load_systems()
self._catalog_archetypes = self._load_archetypes()
# store the full catalog data model in self._content
self._content = Content(self._catalog_archetypes,
self._catalog_systems,
self._catalog_generation_equipments,
self._catalog_distribution_equipments,
self._catalog_emission_equipments,
None)
self._catalog_distribution_equipments)
def _load_generation_and_storage_equipments(self):
def _load_generation_equipments(self):
_equipments = []
_storages = []
equipments = self._archetypes['catalog']['generation_equipments']['equipment']
@ -51,7 +49,7 @@ class MontrealCustomCatalog(Catalog):
equipment_id = float(equipment['@id'])
equipment_type = equipment['@type']
fuel_type = equipment['@fuel_type']
name = equipment['name']
model_name = equipment['name']
heating_efficiency = None
if 'heating_efficiency' in equipment:
heating_efficiency = float(equipment['heating_efficiency'])
@ -61,49 +59,39 @@ class MontrealCustomCatalog(Catalog):
electricity_efficiency = None
if 'electrical_efficiency' in equipment:
electricity_efficiency = float(equipment['electrical_efficiency'])
# todo: this may be optionals instead?
generation_system = GenerationSystem(equipment_id,
name,
None,
None,
equipment_type,
fuel_type,
None,
None,
None,
None,
None,
heating_efficiency,
None,
None,
None,
cooling_efficiency,
electricity_efficiency,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None)
_equipments.append(generation_system)
storage_systems = None
storage = literal_eval(equipment['storage'].capitalize())
if storage:
if equipment_type == 'electricity generator':
storage_system = ElectricalStorageSystem(equipment_id, None, None, None, 'electrical', None, None, None, None,
None, None, None)
storage_system = ElectricalStorageSystem(equipment_id)
else:
storage_system = ThermalStorageSystem(equipment_id, None, None, None, 'thermal', None, None, None, None, None,
None)
_storages.append(storage_system)
storage_system = ThermalStorageSystem(equipment_id)
storage_systems = [storage_system]
if model_name == 'PV system':
system_type = 'Photovoltaic'
generation_system = PvGenerationSystem(equipment_id,
name=None,
system_type= system_type,
model_name=model_name,
electricity_efficiency=electricity_efficiency,
energy_storage_systems=storage_systems
)
else:
generation_system = NonPvGenerationSystem(equipment_id,
name=None,
model_name=model_name,
system_type=equipment_type,
fuel_type=fuel_type,
heat_efficiency=heating_efficiency,
cooling_efficiency=cooling_efficiency,
electricity_efficiency=electricity_efficiency,
energy_storage_systems=storage_systems,
domestic_hot_water=False
)
_equipments.append(generation_system)
return _equipments, _storages
return _equipments
def _load_distribution_equipments(self):
_equipments = []
@ -111,7 +99,7 @@ class MontrealCustomCatalog(Catalog):
for equipment in equipments:
equipment_id = float(equipment['@id'])
equipment_type = equipment['@type']
name = equipment['name']
model_name = equipment['name']
distribution_heat_losses = None
if 'distribution_heat_losses' in equipment:
distribution_heat_losses = float(equipment['distribution_heat_losses']['#text']) / 100
@ -123,13 +111,19 @@ class MontrealCustomCatalog(Catalog):
distribution_consumption_variable_flow = float(
equipment['distribution_consumption_variable_flow']['#text']) / 100
emission_equipment = equipment['dissipation_id']
_emission_equipments = None
for equipment_archetype in self._catalog_emission_equipments:
if int(equipment_archetype.id) == int(emission_equipment):
_emission_equipments = [equipment_archetype]
distribution_system = DistributionSystem(equipment_id,
name,
equipment_type,
None,
distribution_consumption_fix_flow,
distribution_consumption_variable_flow,
distribution_heat_losses)
model_name=model_name,
system_type=equipment_type,
distribution_consumption_fix_flow=distribution_consumption_fix_flow,
distribution_consumption_variable_flow=distribution_consumption_variable_flow,
heat_losses=distribution_heat_losses,
emission_systems=_emission_equipments)
_equipments.append(distribution_system)
return _equipments
@ -140,15 +134,15 @@ class MontrealCustomCatalog(Catalog):
for equipment in equipments:
equipment_id = float(equipment['@id'])
equipment_type = equipment['@type']
name = equipment['name']
parasitic_consumption = None
model_name = equipment['name']
parasitic_consumption = 0
if 'parasitic_consumption' in equipment:
parasitic_consumption = float(equipment['parasitic_consumption']['#text']) / 100
emission_system = EmissionSystem(equipment_id,
name,
equipment_type,
parasitic_consumption)
model_name=model_name,
system_type=equipment_type,
parasitic_energy_consumption=parasitic_consumption)
_equipments.append(emission_system)
return _equipments
@ -165,29 +159,17 @@ class MontrealCustomCatalog(Catalog):
for equipment_archetype in self._catalog_generation_equipments:
if int(equipment_archetype.id) == int(generation_equipment):
_generation_equipments = [equipment_archetype]
_storage_equipments = None
for equipment_archetype in self._catalog_storage_equipments:
if int(equipment_archetype.id) == int(generation_equipment):
_storage_equipments = [equipment_archetype]
distribution_equipment = system['equipments']['distribution_id']
_distribution_equipments = None
for equipment_archetype in self._catalog_distribution_equipments:
if int(equipment_archetype.id) == int(distribution_equipment):
_distribution_equipments = [equipment_archetype]
emission_equipment = system['equipments']['dissipation_id']
_emission_equipments = None
for equipment_archetype in self._catalog_emission_equipments:
if int(equipment_archetype.id) == int(emission_equipment):
_emission_equipments = [equipment_archetype]
_catalog_systems.append(System(self._lod,
system_id,
name,
_catalog_systems.append(System(system_id,
demands,
_generation_equipments,
_distribution_equipments,
_emission_equipments,
_storage_equipments))
name=name,
generation_systems=_generation_equipments,
distribution_systems=_distribution_equipments))
return _catalog_systems
def _load_archetypes(self):
@ -201,7 +183,7 @@ class MontrealCustomCatalog(Catalog):
for system_archetype in self._catalog_systems:
if int(system_archetype.id) == int(system):
_systems.append(system_archetype)
_catalog_archetypes.append(Archetype(self._lod, name, _systems))
_catalog_archetypes.append(Archetype(name, _systems))
return _catalog_archetypes
def names(self, category=None):
@ -217,11 +199,9 @@ class MontrealCustomCatalog(Catalog):
for system in self._content.systems:
_names['systems'].append(system.name)
for equipment in self._content.generation_equipments:
_names['generation_equipments'].append(equipment.name)
_names['generation_equipments'].append(equipment.model_name)
for equipment in self._content.distribution_equipments:
_names['distribution_equipments'].append(equipment.name)
for equipment in self._content.emission_equipments:
_names['emission_equipments'].append(equipment.name)
_names['distribution_equipments'].append(equipment.model_name)
else:
_names = {category: []}
if category.lower() == 'archetypes':
@ -232,13 +212,10 @@ class MontrealCustomCatalog(Catalog):
_names[category].append(system.name)
elif category.lower() == 'generation_equipments':
for system in self._content.generation_equipments:
_names[category].append(system.name)
_names[category].append(system.model_name)
elif category.lower() == 'distribution_equipments':
for system in self._content.distribution_equipments:
_names[category].append(system.name)
elif category.lower() == 'emission_equipments':
for system in self._content.emission_equipments:
_names[category].append(system.name)
_names[category].append(system.model_name)
else:
raise ValueError(f'Unknown category [{category}]')
return _names
@ -258,9 +235,6 @@ class MontrealCustomCatalog(Catalog):
return self._content.generation_equipments
if category.lower() == 'distribution_equipments':
return self._content.distribution_equipments
if category.lower() == 'emission_equipments':
return self._content.emission_equipments
raise ValueError(f'Unknown category [{category}]')
def get_entry(self, name):
"""
@ -274,12 +248,9 @@ class MontrealCustomCatalog(Catalog):
if entry.name.lower() == name.lower():
return entry
for entry in self._content.generation_equipments:
if entry.name.lower() == name.lower():
if entry.model_name.lower() == name.lower():
return entry
for entry in self._content.distribution_equipments:
if entry.name.lower() == name.lower():
return entry
for entry in self._content.emission_equipments:
if entry.name.lower() == name.lower():
if entry.model_name.lower() == name.lower():
return entry
raise IndexError(f"{name} doesn't exists in the catalog")

View File

@ -0,0 +1,559 @@
"""
Montreal future energy system catalog
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Saeed Ranjbar saeed.ranjbar@concordia.ca
"""
import xmltodict
from pathlib import Path
from hub.catalog_factories.catalog import Catalog
from hub.catalog_factories.data_models.energy_systems.distribution_system import DistributionSystem
from hub.catalog_factories.data_models.energy_systems.emission_system import EmissionSystem
from hub.catalog_factories.data_models.energy_systems.system import System
from hub.catalog_factories.data_models.energy_systems.content import Content
from hub.catalog_factories.data_models.energy_systems.non_pv_generation_system import NonPvGenerationSystem
from hub.catalog_factories.data_models.energy_systems.pv_generation_system import PvGenerationSystem
from hub.catalog_factories.data_models.energy_systems.thermal_storage_system import ThermalStorageSystem
from hub.catalog_factories.data_models.energy_systems.performance_curves import PerformanceCurves
from hub.catalog_factories.data_models.energy_systems.archetype import Archetype
from hub.catalog_factories.data_models.construction.material import Material
from hub.catalog_factories.data_models.construction.layer import Layer
class MontrealFutureSystemCatalogue(Catalog):
"""
North america energy system catalog class
"""
def __init__(self, path):
path = str(path / 'montreal_future_systems.xml')
with open(path, 'r', encoding='utf-8') as xml:
self._archetypes = xmltodict.parse(xml.read(),
force_list=['pv_generation_component', 'templateStorages', 'demand'])
self._storage_components = self._load_storage_components()
self._generation_components = self._load_generation_components()
self._energy_emission_components = self._load_emission_equipments()
self._distribution_components = self._load_distribution_equipments()
self._systems = self._load_systems()
self._system_archetypes = self._load_archetypes()
self._content = Content(self._system_archetypes,
self._systems,
generations=self._generation_components,
distributions=self._distribution_components)
def _load_generation_components(self):
generation_components = []
non_pv_generation_components = self._archetypes['EnergySystemCatalog']['energy_generation_components'][
'non_pv_generation_component']
if non_pv_generation_components is not None:
for non_pv in non_pv_generation_components:
system_id = non_pv['system_id']
name = non_pv['name']
system_type = non_pv['system_type']
model_name = non_pv['model_name']
manufacturer = non_pv['manufacturer']
fuel_type = non_pv['fuel_type']
distribution_systems = non_pv['distribution_systems']
energy_storage_systems = None
if non_pv['energy_storage_systems'] is not None:
storage_component = non_pv['energy_storage_systems']['storage_id']
storage_systems = self._search_storage_equipment(self._load_storage_components(), storage_component)
energy_storage_systems = storage_systems
nominal_heat_output = non_pv['nominal_heat_output']
maximum_heat_output = non_pv['maximum_heat_output']
minimum_heat_output = non_pv['minimum_heat_output']
source_medium = non_pv['source_medium']
supply_medium = non_pv['supply_medium']
heat_efficiency = non_pv['heat_efficiency']
nominal_cooling_output = non_pv['nominal_cooling_output']
maximum_cooling_output = non_pv['maximum_cooling_output']
minimum_cooling_output = non_pv['minimum_cooling_output']
cooling_efficiency = non_pv['cooling_efficiency']
electricity_efficiency = non_pv['electricity_efficiency']
source_temperature = non_pv['source_temperature']
source_mass_flow = non_pv['source_mass_flow']
nominal_electricity_output = non_pv['nominal_electricity_output']
maximum_heat_supply_temperature = non_pv['maximum_heat_supply_temperature']
minimum_heat_supply_temperature = non_pv['minimum_heat_supply_temperature']
maximum_cooling_supply_temperature = non_pv['maximum_cooling_supply_temperature']
minimum_cooling_supply_temperature = non_pv['minimum_cooling_supply_temperature']
heat_output_curve = None
heat_fuel_consumption_curve = None
heat_efficiency_curve = None
cooling_output_curve = None
cooling_fuel_consumption_curve = None
cooling_efficiency_curve = None
if non_pv['heat_output_curve'] is not None:
curve_type = non_pv['heat_output_curve']['curve_type']
dependant_variable = non_pv['heat_output_curve']['dependant_variable']
parameters = non_pv['heat_output_curve']['parameters']
coefficients = list(non_pv['heat_output_curve']['coefficients'].values())
heat_output_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
if non_pv['heat_fuel_consumption_curve'] is not None:
curve_type = non_pv['heat_fuel_consumption_curve']['curve_type']
dependant_variable = non_pv['heat_fuel_consumption_curve']['dependant_variable']
parameters = non_pv['heat_fuel_consumption_curve']['parameters']
coefficients = list(non_pv['heat_fuel_consumption_curve']['coefficients'].values())
heat_fuel_consumption_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
if non_pv['heat_efficiency_curve'] is not None:
curve_type = non_pv['heat_efficiency_curve']['curve_type']
dependant_variable = non_pv['heat_efficiency_curve']['dependant_variable']
parameters = non_pv['heat_efficiency_curve']['parameters']
coefficients = list(non_pv['heat_efficiency_curve']['coefficients'].values())
heat_efficiency_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
if non_pv['cooling_output_curve'] is not None:
curve_type = non_pv['cooling_output_curve']['curve_type']
dependant_variable = non_pv['cooling_output_curve']['dependant_variable']
parameters = non_pv['cooling_output_curve']['parameters']
coefficients = list(non_pv['cooling_output_curve']['coefficients'].values())
cooling_output_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
if non_pv['cooling_fuel_consumption_curve'] is not None:
curve_type = non_pv['cooling_fuel_consumption_curve']['curve_type']
dependant_variable = non_pv['cooling_fuel_consumption_curve']['dependant_variable']
parameters = non_pv['cooling_fuel_consumption_curve']['parameters']
coefficients = list(non_pv['cooling_fuel_consumption_curve']['coefficients'].values())
cooling_fuel_consumption_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
if non_pv['cooling_efficiency_curve'] is not None:
curve_type = non_pv['cooling_efficiency_curve']['curve_type']
dependant_variable = non_pv['cooling_efficiency_curve']['dependant_variable']
parameters = non_pv['cooling_efficiency_curve']['parameters']
coefficients = list(non_pv['cooling_efficiency_curve']['coefficients'].values())
cooling_efficiency_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
dhw = None
if non_pv['domestic_hot_water'] is not None:
if non_pv['domestic_hot_water'] == 'True':
dhw = True
else:
dhw = False
reversible = None
if non_pv['reversible'] is not None:
if non_pv['reversible'] == 'True':
reversible = True
else:
reversible = False
dual_supply = None
if non_pv['simultaneous_heat_cold'] is not None:
if non_pv['simultaneous_heat_cold'] == 'True':
dual_supply = True
else:
dual_supply = False
non_pv_component = NonPvGenerationSystem(system_id=system_id,
name=name,
system_type=system_type,
model_name=model_name,
manufacturer=manufacturer,
fuel_type=fuel_type,
nominal_heat_output=nominal_heat_output,
maximum_heat_output=maximum_heat_output,
minimum_heat_output=minimum_heat_output,
source_medium=source_medium,
supply_medium=supply_medium,
heat_efficiency=heat_efficiency,
nominal_cooling_output=nominal_cooling_output,
maximum_cooling_output=maximum_cooling_output,
minimum_cooling_output=minimum_cooling_output,
cooling_efficiency=cooling_efficiency,
electricity_efficiency=electricity_efficiency,
source_temperature=source_temperature,
source_mass_flow=source_mass_flow,
nominal_electricity_output=nominal_electricity_output,
maximum_heat_supply_temperature=maximum_heat_supply_temperature,
minimum_heat_supply_temperature=minimum_heat_supply_temperature,
maximum_cooling_supply_temperature=maximum_cooling_supply_temperature,
minimum_cooling_supply_temperature=minimum_cooling_supply_temperature,
heat_output_curve=heat_output_curve,
heat_fuel_consumption_curve=heat_fuel_consumption_curve,
heat_efficiency_curve=heat_efficiency_curve,
cooling_output_curve=cooling_output_curve,
cooling_fuel_consumption_curve=cooling_fuel_consumption_curve,
cooling_efficiency_curve=cooling_efficiency_curve,
distribution_systems=distribution_systems,
energy_storage_systems=energy_storage_systems,
domestic_hot_water=dhw,
reversible=reversible,
simultaneous_heat_cold=dual_supply)
generation_components.append(non_pv_component)
pv_generation_components = self._archetypes['EnergySystemCatalog']['energy_generation_components'][
'pv_generation_component']
if pv_generation_components is not None:
for pv in pv_generation_components:
system_id = pv['system_id']
name = pv['name']
system_type = pv['system_type']
model_name = pv['model_name']
manufacturer = pv['manufacturer']
electricity_efficiency = pv['electricity_efficiency']
nominal_electricity_output = pv['nominal_electricity_output']
nominal_ambient_temperature = pv['nominal_ambient_temperature']
nominal_cell_temperature = pv['nominal_cell_temperature']
nominal_radiation = pv['nominal_radiation']
standard_test_condition_cell_temperature = pv['standard_test_condition_cell_temperature']
standard_test_condition_maximum_power = pv['standard_test_condition_maximum_power']
standard_test_condition_radiation = pv['standard_test_condition_radiation']
cell_temperature_coefficient = pv['cell_temperature_coefficient']
width = pv['width']
height = pv['height']
distribution_systems = pv['distribution_systems']
energy_storage_systems = None
if pv['energy_storage_systems'] is not None:
storage_component = pv['energy_storage_systems']['storage_id']
storage_systems = self._search_storage_equipment(self._load_storage_components(), storage_component)
energy_storage_systems = storage_systems
pv_component = PvGenerationSystem(system_id=system_id,
name=name,
system_type=system_type,
model_name=model_name,
manufacturer=manufacturer,
electricity_efficiency=electricity_efficiency,
nominal_electricity_output=nominal_electricity_output,
nominal_ambient_temperature=nominal_ambient_temperature,
nominal_cell_temperature=nominal_cell_temperature,
nominal_radiation=nominal_radiation,
standard_test_condition_cell_temperature=
standard_test_condition_cell_temperature,
standard_test_condition_maximum_power=standard_test_condition_maximum_power,
standard_test_condition_radiation=standard_test_condition_radiation,
cell_temperature_coefficient=cell_temperature_coefficient,
width=width,
height=height,
distribution_systems=distribution_systems,
energy_storage_systems=energy_storage_systems)
generation_components.append(pv_component)
return generation_components
def _load_distribution_equipments(self):
_equipments = []
distribution_systems = self._archetypes['EnergySystemCatalog']['distribution_systems']['distribution_system']
if distribution_systems is not None:
for distribution_system in distribution_systems:
system_id = None
model_name = None
system_type = None
supply_temperature = None
distribution_consumption_fix_flow = None
distribution_consumption_variable_flow = None
heat_losses = None
generation_systems = None
energy_storage_systems = None
emission_systems = None
distribution_equipment = DistributionSystem(system_id=system_id,
model_name=model_name,
system_type=system_type,
supply_temperature=supply_temperature,
distribution_consumption_fix_flow=distribution_consumption_fix_flow,
distribution_consumption_variable_flow=
distribution_consumption_variable_flow,
heat_losses=heat_losses,
generation_systems=generation_systems,
energy_storage_systems=energy_storage_systems,
emission_systems=emission_systems
)
_equipments.append(distribution_equipment)
return _equipments
def _load_emission_equipments(self):
_equipments = []
dissipation_systems = self._archetypes['EnergySystemCatalog']['dissipation_systems']['dissipation_system']
if dissipation_systems is not None:
for dissipation_system in dissipation_systems:
system_id = None
model_name = None
system_type = None
parasitic_energy_consumption = 0
emission_system = EmissionSystem(system_id=system_id,
model_name=model_name,
system_type=system_type,
parasitic_energy_consumption=parasitic_energy_consumption)
_equipments.append(emission_system)
return _equipments
def _load_storage_components(self):
storage_components = []
thermal_storages = self._archetypes['EnergySystemCatalog']['energy_storage_components']['thermalStorages']
template_storages = self._archetypes['EnergySystemCatalog']['energy_storage_components']['templateStorages']
for tes in thermal_storages:
storage_id = tes['storage_id']
type_energy_stored = tes['type_energy_stored']
model_name = tes['model_name']
manufacturer = tes['manufacturer']
storage_type = tes['storage_type']
volume = tes['physical_characteristics']['volume']
height = tes['physical_characteristics']['height']
maximum_operating_temperature = tes['maximum_operating_temperature']
materials = self._load_materials()
insulation_material_id = tes['insulation']['material_id']
insulation_material = self._search_material(materials, insulation_material_id)
material_id = tes['physical_characteristics']['material_id']
tank_material = self._search_material(materials, material_id)
thickness = float(tes['insulation']['insulationThickness']) / 100 # from cm to m
insulation_layer = Layer(None, 'insulation', insulation_material, thickness)
thickness = float(tes['physical_characteristics']['tankThickness']) / 100 # from cm to m
tank_layer = Layer(None, 'tank', tank_material, thickness)
media = self._load_media()
media_id = tes['storage_medium']['medium_id']
medium = self._search_media(media, media_id)
layers = [insulation_layer, tank_layer]
nominal_capacity = tes['nominal_capacity']
losses_ratio = tes['losses_ratio']
heating_coil_capacity = tes['heating_coil_capacity']
storage_component = ThermalStorageSystem(storage_id=storage_id,
model_name=model_name,
type_energy_stored=type_energy_stored,
manufacturer=manufacturer,
storage_type=storage_type,
nominal_capacity=nominal_capacity,
losses_ratio=losses_ratio,
volume=volume,
height=height,
layers=layers,
maximum_operating_temperature=maximum_operating_temperature,
storage_medium=medium,
heating_coil_capacity=heating_coil_capacity)
storage_components.append(storage_component)
for template in template_storages:
storage_id = template['storage_id']
storage_type = template['storage_type']
type_energy_stored = template['type_energy_stored']
maximum_operating_temperature = template['maximum_operating_temperature']
height = float(template['physical_characteristics']['height'])
materials = self._load_materials()
insulation_material_id = template['insulation']['material_id']
insulation_material = self._search_material(materials, insulation_material_id)
material_id = template['physical_characteristics']['material_id']
tank_material = self._search_material(materials, material_id)
thickness = float(template['insulation']['insulationThickness']) / 100 # from cm to m
insulation_layer = Layer(None, 'insulation', insulation_material, thickness)
thickness = float(template['physical_characteristics']['tankThickness']) / 100 # from cm to m
tank_layer = Layer(None, 'tank', tank_material, thickness)
layers = [insulation_layer, tank_layer]
media = self._load_media()
media_id = template['storage_medium']['medium_id']
medium = self._search_media(media, media_id)
model_name = template['model_name']
manufacturer = template['manufacturer']
nominal_capacity = template['nominal_capacity']
losses_ratio = template['losses_ratio']
volume = template['physical_characteristics']['volume']
heating_coil_capacity = template['heating_coil_capacity']
storage_component = ThermalStorageSystem(storage_id=storage_id,
model_name=model_name,
type_energy_stored=type_energy_stored,
manufacturer=manufacturer,
storage_type=storage_type,
nominal_capacity=nominal_capacity,
losses_ratio=losses_ratio,
volume=volume,
height=height,
layers=layers,
maximum_operating_temperature=maximum_operating_temperature,
storage_medium=medium,
heating_coil_capacity=heating_coil_capacity)
storage_components.append(storage_component)
return storage_components
def _load_systems(self):
base_path = Path(Path(__file__).parent.parent.parent / 'data/energy_systems')
_catalog_systems = []
systems = self._archetypes['EnergySystemCatalog']['systems']['system']
for system in systems:
system_id = system['id']
name = system['name']
demands = system['demands']['demand']
generation_components = system['components']['generation_id']
generation_systems = self._search_generation_equipment(self._load_generation_components(), generation_components)
configuration_schema = Path(base_path / system['schema'])
energy_system = System(system_id=system_id,
name=name,
demand_types=demands,
generation_systems=generation_systems,
distribution_systems=None,
configuration_schema=configuration_schema)
_catalog_systems.append(energy_system)
return _catalog_systems
def _load_archetypes(self):
_system_archetypes = []
system_clusters = self._archetypes['EnergySystemCatalog']['system_archetypes']['system_archetype']
for system_cluster in system_clusters:
name = system_cluster['name']
systems = system_cluster['systems']['system_id']
integer_system_ids = [int(item) for item in systems]
_systems = []
for system_archetype in self._systems:
if int(system_archetype.id) in integer_system_ids:
_systems.append(system_archetype)
_system_archetypes.append(Archetype(name=name, systems=_systems))
return _system_archetypes
def _load_materials(self):
materials = []
_materials = self._archetypes['EnergySystemCatalog']['materials']['material']
for _material in _materials:
material_id = _material['material_id']
name = _material['name']
conductivity = _material['conductivity']
solar_absorptance = _material['solar_absorptance']
thermal_absorptance = _material['thermal_absorptance']
density = _material['density']
specific_heat = _material['specific_heat']
no_mass = _material['no_mass']
visible_absorptance = _material['visible_absorptance']
thermal_resistance = _material['thermal_resistance']
material = Material(material_id,
name,
solar_absorptance=solar_absorptance,
thermal_absorptance=thermal_absorptance,
density=density,
conductivity=conductivity,
thermal_resistance=thermal_resistance,
visible_absorptance=visible_absorptance,
no_mass=no_mass,
specific_heat=specific_heat)
materials.append(material)
return materials
@staticmethod
def _search_material(materials, material_id):
_material = None
for material in materials:
if int(material.id) == int(material_id):
_material = material
break
if _material is None:
raise ValueError(f'Material with the id = [{material_id}] not found in catalog ')
return _material
def _load_media(self):
media = []
_media = [self._archetypes['EnergySystemCatalog']['media']['medium']]
for _medium in _media:
medium_id = _medium['medium_id']
density = _medium['density']
name = _medium['name']
conductivity = _medium['conductivity']
solar_absorptance = _medium['solar_absorptance']
thermal_absorptance = _medium['thermal_absorptance']
specific_heat = _medium['specific_heat']
no_mass = _medium['no_mass']
visible_absorptance = _medium['visible_absorptance']
thermal_resistance = _medium['thermal_resistance']
medium = Material(material_id=medium_id,
name=name,
solar_absorptance=solar_absorptance,
thermal_absorptance=thermal_absorptance,
visible_absorptance=visible_absorptance,
no_mass=no_mass,
thermal_resistance=thermal_resistance,
conductivity=conductivity,
density=density,
specific_heat=specific_heat)
media.append(medium)
return media
@staticmethod
def _search_media(media, medium_id):
_medium = None
for medium in media:
if int(medium.id) == int(medium_id):
_medium = medium
break
if _medium is None:
raise ValueError(f'media with the id = [{medium_id}] not found in catalog ')
return _medium
@staticmethod
def _search_generation_equipment(generation_systems, generation_id):
_generation_systems = []
if isinstance(generation_id, list):
integer_ids = [int(item) for item in generation_id]
for generation in generation_systems:
if int(generation.id) in integer_ids:
_generation_systems.append(generation)
else:
integer_id = int(generation_id)
for generation in generation_systems:
if int(generation.id) == integer_id:
_generation_systems.append(generation)
if len(_generation_systems) == 0:
_generation_systems = None
raise ValueError(f'The system with the following id is not found in catalog [{generation_id}]')
return _generation_systems
@staticmethod
def _search_storage_equipment(storage_systems, storage_id):
_storage_systems = []
for storage in storage_systems:
if storage.id in storage_id:
_storage_systems.append(storage)
if len(_storage_systems) == 0:
_storage_systems = None
raise ValueError(f'The system with the following id is not found in catalog [{storage_id}]')
return _storage_systems
def names(self, category=None):
"""
Get the catalog elements names
:parm: optional category filter
"""
if category is None:
_names = {'archetypes': [], 'systems': [], 'generation_equipments': [], 'storage_equipments': []}
for archetype in self._content.archetypes:
_names['archetypes'].append(archetype.name)
for system in self._content.systems:
_names['systems'].append(system.name)
for equipment in self._content.generation_equipments:
_names['generation_equipments'].append(equipment.name)
else:
_names = {category: []}
if category.lower() == 'archetypes':
for archetype in self._content.archetypes:
_names[category].append(archetype.name)
elif category.lower() == 'systems':
for system in self._content.systems:
_names[category].append(system.name)
elif category.lower() == 'generation_equipments':
for system in self._content.generation_equipments:
_names[category].append(system.name)
else:
raise ValueError(f'Unknown category [{category}]')
return _names
def entries(self, category=None):
"""
Get the catalog elements
:parm: optional category filter
"""
if category is None:
return self._content
if category.lower() == 'archetypes':
return self._content.archetypes
if category.lower() == 'systems':
return self._content.systems
if category.lower() == 'generation_equipments':
return self._content.generation_equipments
raise ValueError(f'Unknown category [{category}]')
def get_entry(self, name):
"""
Get one catalog element by names
:parm: entry name
"""
for entry in self._content.archetypes:
if entry.name.lower() == name.lower():
return entry
for entry in self._content.systems:
if entry.name.lower() == name.lower():
return entry
for entry in self._content.generation_equipments:
if entry.name.lower() == name.lower():
return entry
raise IndexError(f"{name} doesn't exists in the catalog")

View File

@ -1,514 +0,0 @@
"""
North america energy system catalog
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Saeed Ranjbar saeed.ranjbar@concordia.ca
Code contributors: Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
"""
from pathlib import Path
import xmltodict
from hub.catalog_factories.catalog import Catalog
from hub.catalog_factories.data_models.energy_systems.system import System
from hub.catalog_factories.data_models.energy_systems.content import Content
from hub.catalog_factories.data_models.energy_systems.generation_system import GenerationSystem
from hub.catalog_factories.data_models.energy_systems.pv_generation_system import PvGenerationSystem
from hub.catalog_factories.data_models.energy_systems.thermal_storage_system import ThermalStorageSystem
from hub.catalog_factories.data_models.energy_systems.performance_curves import PerformanceCurves
from hub.catalog_factories.data_models.energy_systems.archetype import Archetype
from hub.catalog_factories.data_models.construction.material import Material
from hub.catalog_factories.data_models.construction.layer import Layer
class NorthAmericaEnergySystemCatalog(Catalog):
"""
North america energy system catalog class
"""
def __init__(self, path):
path = str(path / 'north_america_systems.xml')
with open(path, 'r', encoding='utf-8') as xml:
self._archetypes = xmltodict.parse(xml.read(), force_list=['photovoltaicModules', 'templateStorages'])
self._generation_components = self._load_generation_components()
self._storage_components = self._load_storage_components()
self._systems = self._load_systems()
self._system_archetypes = self._load_archetypes()
self._content = Content(self._system_archetypes,
self._systems,
self._generation_components,
None,
None,
self._storage_components)
def _load_generation_components(self):
generation_components = []
boilers = self._archetypes['EnergySystemCatalog']['energy_generation_components']['boilers']
heat_pumps = self._archetypes['EnergySystemCatalog']['energy_generation_components']['heatPumps']
photovoltaics = self._archetypes['EnergySystemCatalog']['energy_generation_components']['photovoltaicModules']
templates = self._archetypes['EnergySystemCatalog']['energy_generation_components']['templateGenerationEquipments']
for boiler in boilers:
boiler_id = boiler['@generation_id']
boiler_name = boiler['@name']
boiler_model_name = boiler['@modelName']
boiler_manufacturer = boiler['@manufacturer']
system_type = 'boiler'
boiler_fuel_type = boiler['@fuel']
boiler_nominal_thermal_output = float(boiler['@installedThermalPower'])
boiler_maximum_heat_output = float(boiler['@maximumHeatOutput'])
boiler_minimum_heat_output = float(boiler['@minimumHeatOutput'])
boiler_heat_efficiency = float(boiler['@nominalEfficiency'])
# todo: this may be optionals instead?
boiler_component = GenerationSystem(boiler_id,
boiler_name,
boiler_model_name,
boiler_manufacturer,
system_type,
boiler_fuel_type,
boiler_nominal_thermal_output,
boiler_maximum_heat_output,
boiler_minimum_heat_output,
None,
None,
boiler_heat_efficiency,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None)
generation_components.append(boiler_component)
for heat_pump in heat_pumps:
heat_pump_id = heat_pump['@generation_id']
heat_pump_name = heat_pump['@name']
heat_pump_model_name = heat_pump['@modelName']
heat_pump_manufacturer = heat_pump['@manufacturer']
system_type = 'heat pump'
heat_pump_fuel_type = heat_pump['@fuel']
heat_pump_nominal_thermal_output = float(heat_pump['@installedThermalPower'])
heat_pump_maximum_heat_output = float(heat_pump['@maximumHeatOutput'])
heat_pump_minimum_heat_output = float(heat_pump['@minimumHeatOutput'])
heat_pump_source_medium = heat_pump['@heatSource']
heat_pump_supply_medium = heat_pump['@supply_medium']
heat_pump_nominal_cop = float(heat_pump['@nominalCOP'])
heat_pump_maximum_heat_supply_temperature = float(heat_pump['@maxHeatingSupTemperature'])
heat_pump_minimum_heat_supply_temperature = float(heat_pump['@minHeatingSupTemperature'])
heat_pump_maximum_cooling_supply_temperature = float(heat_pump['@maxCoolingSupTemperature'])
heat_pump_minimum_cooling_supply_temperature = float(heat_pump['@minCoolingSupTemperature'])
cop_curve_type = heat_pump['performance_curve']['@curve_type']
dependant_variable = heat_pump['performance_curve']['dependant_variable']
parameters = heat_pump['performance_curve']['parameters']
coefficients = list(heat_pump['performance_curve']['coefficients'].values())
cop_curve = PerformanceCurves(cop_curve_type, dependant_variable, parameters, coefficients)
heat_pump_component = GenerationSystem(heat_pump_id,
heat_pump_name,
heat_pump_model_name,
heat_pump_manufacturer,
system_type,
heat_pump_fuel_type,
heat_pump_nominal_thermal_output,
heat_pump_maximum_heat_output,
heat_pump_minimum_heat_output,
heat_pump_source_medium,
heat_pump_supply_medium,
heat_pump_nominal_cop,
None,
None,
None,
None,
None,
None,
None,
None,
heat_pump_maximum_heat_supply_temperature,
heat_pump_minimum_heat_supply_temperature,
heat_pump_maximum_cooling_supply_temperature,
heat_pump_minimum_cooling_supply_temperature,
None,
None,
cop_curve,
None,
None,
None)
generation_components.append(heat_pump_component)
for pv in photovoltaics:
pv_id = pv['@generation_id']
pv_name = pv['@name']
pv_model_name = pv['@modelName']
pv_manufacturer = pv['@manufacturer']
pv_electricity_efficiency = pv['@nominalEfficiency']
pv_nominal_electricity_output = pv['@nominalPower']
nominal_ambient_temperature = float(pv['@nominalAmbientTemperature'])
nominal_cell_temperature = float(pv['@nominalCellTemperature'])
nominal_radiation = float(pv['@nominalRadiation'])
standard_test_condition_cell_temperature = float(pv['@STCCellTemperature'])
standard_test_condition_maximum_power = float(pv['@STCMaxPower'])
cell_temperature_coefficient = float(pv['@CellTemperatureCoefficient'])
width = float(pv['@width'])
height = float(pv['@height'])
pv_component = PvGenerationSystem(pv_id,
pv_name,
pv_model_name,
pv_manufacturer,
pv_electricity_efficiency,
pv_nominal_electricity_output,
nominal_ambient_temperature,
nominal_cell_temperature,
nominal_radiation,
standard_test_condition_cell_temperature,
standard_test_condition_maximum_power,
cell_temperature_coefficient,
width,
height)
generation_components.append(pv_component)
for template in templates:
system_id = template['@generation_id']
system_name = template['@name']
if "Boiler" in system_name:
system_type = 'boiler'
fuel_type = template['@fuel']
heat_efficiency = float(template['@nominalEfficiency'])
source_medium = None
supply_medium = None
boiler_template = GenerationSystem(system_id,
system_name,
None,
None,
system_type,
fuel_type,
None,
None,
None,
source_medium,
supply_medium,
heat_efficiency,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None)
generation_components.append(boiler_template)
elif "Heat Pump" in system_name:
system_type = 'heat pump'
fuel_type = template['@fuel']
heat_efficiency = template['@nominalCOP']
source_medium = template['@heatSource']
supply_medium = template['@supply_medium']
heat_pump_template = GenerationSystem(system_id,
system_name,
None,
None,
system_type,
fuel_type,
None,
None,
None,
source_medium,
supply_medium,
heat_efficiency,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None)
generation_components.append(heat_pump_template)
else:
electricity_efficiency = float(template['@nominalEfficiency'])
height = float(template['@height'])
width = float(template['@width'])
pv_template = PvGenerationSystem(system_id,
system_name,
None,
None,
electricity_efficiency,
None,
None,
None,
None,
None,
None,
None,
width,
height)
generation_components.append(pv_template)
return generation_components
def _load_storage_components(self):
storage_components = []
thermal_storages = self._archetypes['EnergySystemCatalog']['energy_storage_components']['thermalStorages']
template_storages = self._archetypes['EnergySystemCatalog']['energy_storage_components']['templateStorages']
for tes in thermal_storages:
storage_id = tes['@storage_id']
name = tes['@name']
model_name = tes['@modelName']
manufacturer = tes['@manufacturer']
storage_type = 'sensible'
volume = tes['physical_characteristics']['@volume']
height = tes['physical_characteristics']['@height']
maximum_operating_temperature = tes['@maxTemp']
materials = self._load_materials()
insulation_material_id = tes['insulation']['@material_id']
insulation_material = self._search_material(materials, insulation_material_id)
material_id = tes['physical_characteristics']['@material_id']
tank_material = self._search_material(materials, material_id)
thickness = float(tes['insulation']['@insulationThickness']) / 100 # from cm to m
insulation_layer = Layer(None, 'insulation', insulation_material, thickness)
thickness = float(tes['physical_characteristics']['@tankThickness']) / 100 # from cm to m
tank_layer = Layer(None, 'tank', tank_material, thickness)
# the convention is from outside to inside
layers = [insulation_layer, tank_layer]
storage_component = ThermalStorageSystem(storage_id,
name,
model_name,
manufacturer,
storage_type,
None,
None,
volume,
height,
layers,
maximum_operating_temperature)
storage_components.append(storage_component)
for template in template_storages:
storage_id = template['@storage_id']
name = template['@name']
storage_type = 'sensible'
maximum_temperature = template['@maxTemp']
height = template['physical_characteristics']['@height']
materials = self._load_materials()
insulation_material_id = template['insulation']['@material_id']
insulation_material = self._search_material(materials, insulation_material_id)
material_id = template['physical_characteristics']['@material_id']
tank_material = self._search_material(materials, material_id)
thickness = float(template['insulation']['@insulationThickness']) / 100 # from cm to m
insulation_layer = Layer(None, 'insulation', insulation_material, thickness)
thickness = float(template['physical_characteristics']['@tankThickness']) / 100 # from cm to m
tank_layer = Layer(None, 'tank', tank_material, thickness)
# the convention is from outside to inside
layers = [insulation_layer, tank_layer]
storage_component = ThermalStorageSystem(storage_id,
name,
None,
None,
storage_type,
None,
None,
None,
height,
layers,
maximum_temperature)
storage_components.append(storage_component)
return storage_components
def _load_systems(self):
_catalog_systems = []
systems = self._archetypes['EnergySystemCatalog']['systems']['system']
for system in systems:
system_id = system['@id']
name = system['name']
demands = system['demands']['demand']
generation_components = system['components']['generation_id']
generation_systems = self._search_generation_equipment(self._load_generation_components(), generation_components)
if 'storage_id' in system['components'].keys():
storage_components = system['components']['storage_id']
storage_systems = self._search_storage_equipment(self._load_storage_components(), storage_components)
else:
storage_systems = None
energy_system = System(None,
system_id,
name,
demands,
generation_systems,
None,
None,
storage_systems)
_catalog_systems.append(energy_system)
return _catalog_systems
def _load_archetypes(self):
base_path = Path(Path(__file__).parent.parent.parent / 'data/energy_systems')
_system_archetypes = []
system_clusters = self._archetypes['EnergySystemCatalog']['system_archetypes']['system_archetype']
for system_cluster in system_clusters:
name = system_cluster['name']
schema_path = Path(base_path / system_cluster['schema'])
systems = system_cluster['systems']['system_id']
integer_system_ids = [int(item) for item in systems]
_systems = []
for system_archetype in self._systems:
if int(system_archetype.id) in integer_system_ids:
_systems.append(system_archetype)
_system_archetypes.append(Archetype(None, name, schema_path, _systems))
return _system_archetypes
def _load_materials(self):
materials = []
_materials = self._archetypes['EnergySystemCatalog']['materials']['material']
for _material in _materials:
material_id = _material['@material_id']
name = _material['@name']
thermal_conductivity = _material['@thermalConductivity']
material = Material(material_id,
name,
None,
None,
None,
False,
None,
thermal_conductivity,
None,
None)
materials.append(material)
return materials
@staticmethod
def _search_material(materials, material_id):
_material = None
for material in materials:
if int(material.id) == int(material_id):
_material = material
break
if _material is None:
raise ValueError(f'Material with the id = [{material_id}] not found in catalog ')
return _material
@staticmethod
def _search_generation_equipment(generation_systems, generation_id):
_generation_systems = []
if isinstance(generation_id, list):
integer_ids = [int(item) for item in generation_id]
for generation in generation_systems:
if int(generation.id) in integer_ids:
_generation_systems.append(generation)
else:
integer_id = int(generation_id)
for generation in generation_systems:
if int(generation.id) == integer_id:
_generation_systems.append(generation)
if len(_generation_systems) == 0:
_generation_systems = None
raise ValueError(f'The system with the following id is not found in catalog [{generation_id}]')
return _generation_systems
@staticmethod
def _search_storage_equipment(storage_systems, storage_id):
_storage_systems = []
for storage in storage_systems:
if storage.id in storage_id:
_storage_systems.append(storage)
if len(_storage_systems) == 0:
_storage_systems_systems = None
raise ValueError(f'The system with the following id is not found in catalog [{storage_id}]')
return _storage_systems
def names(self, category=None):
"""
Get the catalog elements names
:parm: optional category filter
"""
if category is None:
_names = {'archetypes': [], 'systems': [], 'generation_equipments': [], 'storage_equipments': []}
for archetype in self._content.archetypes:
_names['archetypes'].append(archetype.name)
for system in self._content.systems:
_names['systems'].append(system.name)
for equipment in self._content.generation_equipments:
_names['generation_equipments'].append(equipment.name)
for equipment in self._content.storage_equipments:
_names['storage_equipments'].append(equipment.name)
else:
_names = {category: []}
if category.lower() == 'archetypes':
for archetype in self._content.archetypes:
_names[category].append(archetype.name)
elif category.lower() == 'systems':
for system in self._content.systems:
_names[category].append(system.name)
elif category.lower() == 'generation_equipments':
for system in self._content.generation_equipments:
_names[category].append(system.name)
elif category.lower() == 'storage_equipments':
for system in self._content.storage_equipments:
_names[category].append(system.name)
else:
raise ValueError(f'Unknown category [{category}]')
return _names
def entries(self, category=None):
"""
Get the catalog elements
:parm: optional category filter
"""
if category is None:
return self._content
if category.lower() == 'archetypes':
return self._content.archetypes
if category.lower() == 'systems':
return self._content.systems
if category.lower() == 'generation_equipments':
return self._content.generation_equipments
if category.lower() == 'storage_equipments':
return self._content.storage_equipments
raise ValueError(f'Unknown category [{category}]')
def get_entry(self, name):
"""
Get one catalog element by names
:parm: entry name
"""
for entry in self._content.archetypes:
if entry.name.lower() == name.lower():
return entry
for entry in self._content.systems:
if entry.name.lower() == name.lower():
return entry
for entry in self._content.generation_equipments:
if entry.name.lower() == name.lower():
return entry
for entry in self._content.storage_equipments:
if entry.name.lower() == name.lower():
return entry
raise IndexError(f"{name} doesn't exists in the catalog")

View File

@ -0,0 +1,520 @@
"""
Palma energy system catalog
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Saeed Ranjbar saeed.ranjbar@concordia.ca
"""
import xmltodict
from pathlib import Path
from hub.catalog_factories.catalog import Catalog
from hub.catalog_factories.data_models.energy_systems.distribution_system import DistributionSystem
from hub.catalog_factories.data_models.energy_systems.emission_system import EmissionSystem
from hub.catalog_factories.data_models.energy_systems.system import System
from hub.catalog_factories.data_models.energy_systems.content import Content
from hub.catalog_factories.data_models.energy_systems.non_pv_generation_system import NonPvGenerationSystem
from hub.catalog_factories.data_models.energy_systems.pv_generation_system import PvGenerationSystem
from hub.catalog_factories.data_models.energy_systems.thermal_storage_system import ThermalStorageSystem
from hub.catalog_factories.data_models.energy_systems.performance_curves import PerformanceCurves
from hub.catalog_factories.data_models.energy_systems.archetype import Archetype
from hub.catalog_factories.data_models.construction.material import Material
from hub.catalog_factories.data_models.construction.layer import Layer
class PalmaSystemCatalogue(Catalog):
"""
North america energy system catalog class
"""
def __init__(self, path):
path = str(path / 'palma_systems.xml')
with open(path, 'r', encoding='utf-8') as xml:
self._archetypes = xmltodict.parse(xml.read(),
force_list=['pv_generation_component', 'demand'])
self._storage_components = self._load_storage_components()
self._generation_components = self._load_generation_components()
self._energy_emission_components = self._load_emission_equipments()
self._distribution_components = self._load_distribution_equipments()
self._systems = self._load_systems()
self._system_archetypes = self._load_archetypes()
self._content = Content(self._system_archetypes,
self._systems,
generations=self._generation_components,
distributions=self._distribution_components)
def _load_generation_components(self):
generation_components = []
non_pv_generation_components = self._archetypes['EnergySystemCatalog']['energy_generation_components'][
'non_pv_generation_component']
if non_pv_generation_components is not None:
for non_pv in non_pv_generation_components:
system_id = non_pv['system_id']
name = non_pv['name']
system_type = non_pv['system_type']
model_name = non_pv['model_name']
manufacturer = non_pv['manufacturer']
fuel_type = non_pv['fuel_type']
distribution_systems = non_pv['distribution_systems']
energy_storage_systems = None
if non_pv['energy_storage_systems'] is not None:
storage_component = non_pv['energy_storage_systems']['storage_id']
storage_systems = self._search_storage_equipment(self._load_storage_components(), storage_component)
energy_storage_systems = storage_systems
nominal_heat_output = non_pv['nominal_heat_output']
maximum_heat_output = non_pv['maximum_heat_output']
minimum_heat_output = non_pv['minimum_heat_output']
source_medium = non_pv['source_medium']
supply_medium = non_pv['supply_medium']
heat_efficiency = non_pv['heat_efficiency']
nominal_cooling_output = non_pv['nominal_cooling_output']
maximum_cooling_output = non_pv['maximum_cooling_output']
minimum_cooling_output = non_pv['minimum_cooling_output']
cooling_efficiency = non_pv['cooling_efficiency']
electricity_efficiency = non_pv['electricity_efficiency']
source_temperature = non_pv['source_temperature']
source_mass_flow = non_pv['source_mass_flow']
nominal_electricity_output = non_pv['nominal_electricity_output']
maximum_heat_supply_temperature = non_pv['maximum_heat_supply_temperature']
minimum_heat_supply_temperature = non_pv['minimum_heat_supply_temperature']
maximum_cooling_supply_temperature = non_pv['maximum_cooling_supply_temperature']
minimum_cooling_supply_temperature = non_pv['minimum_cooling_supply_temperature']
heat_output_curve = None
heat_fuel_consumption_curve = None
heat_efficiency_curve = None
cooling_output_curve = None
cooling_fuel_consumption_curve = None
cooling_efficiency_curve = None
if non_pv['heat_output_curve'] is not None:
curve_type = non_pv['heat_output_curve']['curve_type']
dependant_variable = non_pv['heat_output_curve']['dependant_variable']
parameters = non_pv['heat_output_curve']['parameters']
coefficients = list(non_pv['heat_output_curve']['coefficients'].values())
heat_output_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
if non_pv['heat_fuel_consumption_curve'] is not None:
curve_type = non_pv['heat_fuel_consumption_curve']['curve_type']
dependant_variable = non_pv['heat_fuel_consumption_curve']['dependant_variable']
parameters = non_pv['heat_fuel_consumption_curve']['parameters']
coefficients = list(non_pv['heat_fuel_consumption_curve']['coefficients'].values())
heat_fuel_consumption_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
if non_pv['heat_efficiency_curve'] is not None:
curve_type = non_pv['heat_efficiency_curve']['curve_type']
dependant_variable = non_pv['heat_efficiency_curve']['dependant_variable']
parameters = non_pv['heat_efficiency_curve']['parameters']
coefficients = list(non_pv['heat_efficiency_curve']['coefficients'].values())
heat_efficiency_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
if non_pv['cooling_output_curve'] is not None:
curve_type = non_pv['cooling_output_curve']['curve_type']
dependant_variable = non_pv['cooling_output_curve']['dependant_variable']
parameters = non_pv['cooling_output_curve']['parameters']
coefficients = list(non_pv['cooling_output_curve']['coefficients'].values())
cooling_output_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
if non_pv['cooling_fuel_consumption_curve'] is not None:
curve_type = non_pv['cooling_fuel_consumption_curve']['curve_type']
dependant_variable = non_pv['cooling_fuel_consumption_curve']['dependant_variable']
parameters = non_pv['cooling_fuel_consumption_curve']['parameters']
coefficients = list(non_pv['cooling_fuel_consumption_curve']['coefficients'].values())
cooling_fuel_consumption_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
if non_pv['cooling_efficiency_curve'] is not None:
curve_type = non_pv['cooling_efficiency_curve']['curve_type']
dependant_variable = non_pv['cooling_efficiency_curve']['dependant_variable']
parameters = non_pv['cooling_efficiency_curve']['parameters']
coefficients = list(non_pv['cooling_efficiency_curve']['coefficients'].values())
cooling_efficiency_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
dhw = None
if non_pv['domestic_hot_water'] is not None:
if non_pv['domestic_hot_water'] == 'True':
dhw = True
else:
dhw = False
reversible = None
if non_pv['reversible'] is not None:
if non_pv['reversible'] == 'True':
reversible = True
else:
reversible = False
dual_supply = None
if non_pv['simultaneous_heat_cold'] is not None:
if non_pv['simultaneous_heat_cold'] == 'True':
dual_supply = True
else:
dual_supply = False
non_pv_component = NonPvGenerationSystem(system_id=system_id,
name=name,
system_type=system_type,
model_name=model_name,
manufacturer=manufacturer,
fuel_type=fuel_type,
nominal_heat_output=nominal_heat_output,
maximum_heat_output=maximum_heat_output,
minimum_heat_output=minimum_heat_output,
source_medium=source_medium,
supply_medium=supply_medium,
heat_efficiency=heat_efficiency,
nominal_cooling_output=nominal_cooling_output,
maximum_cooling_output=maximum_cooling_output,
minimum_cooling_output=minimum_cooling_output,
cooling_efficiency=cooling_efficiency,
electricity_efficiency=electricity_efficiency,
source_temperature=source_temperature,
source_mass_flow=source_mass_flow,
nominal_electricity_output=nominal_electricity_output,
maximum_heat_supply_temperature=maximum_heat_supply_temperature,
minimum_heat_supply_temperature=minimum_heat_supply_temperature,
maximum_cooling_supply_temperature=maximum_cooling_supply_temperature,
minimum_cooling_supply_temperature=minimum_cooling_supply_temperature,
heat_output_curve=heat_output_curve,
heat_fuel_consumption_curve=heat_fuel_consumption_curve,
heat_efficiency_curve=heat_efficiency_curve,
cooling_output_curve=cooling_output_curve,
cooling_fuel_consumption_curve=cooling_fuel_consumption_curve,
cooling_efficiency_curve=cooling_efficiency_curve,
distribution_systems=distribution_systems,
energy_storage_systems=energy_storage_systems,
domestic_hot_water=dhw,
reversible=reversible,
simultaneous_heat_cold=dual_supply)
generation_components.append(non_pv_component)
pv_generation_components = self._archetypes['EnergySystemCatalog']['energy_generation_components'][
'pv_generation_component']
if pv_generation_components is not None:
for pv in pv_generation_components:
system_id = pv['system_id']
name = pv['name']
system_type = pv['system_type']
model_name = pv['model_name']
manufacturer = pv['manufacturer']
electricity_efficiency = pv['electricity_efficiency']
nominal_electricity_output = pv['nominal_electricity_output']
nominal_ambient_temperature = pv['nominal_ambient_temperature']
nominal_cell_temperature = pv['nominal_cell_temperature']
nominal_radiation = pv['nominal_radiation']
standard_test_condition_cell_temperature = pv['standard_test_condition_cell_temperature']
standard_test_condition_maximum_power = pv['standard_test_condition_maximum_power']
standard_test_condition_radiation = pv['standard_test_condition_radiation']
cell_temperature_coefficient = pv['cell_temperature_coefficient']
width = pv['width']
height = pv['height']
distribution_systems = pv['distribution_systems']
energy_storage_systems = None
if pv['energy_storage_systems'] is not None:
storage_component = pv['energy_storage_systems']['storage_id']
storage_systems = self._search_storage_equipment(self._load_storage_components(), storage_component)
energy_storage_systems = storage_systems
pv_component = PvGenerationSystem(system_id=system_id,
name=name,
system_type=system_type,
model_name=model_name,
manufacturer=manufacturer,
electricity_efficiency=electricity_efficiency,
nominal_electricity_output=nominal_electricity_output,
nominal_ambient_temperature=nominal_ambient_temperature,
nominal_cell_temperature=nominal_cell_temperature,
nominal_radiation=nominal_radiation,
standard_test_condition_cell_temperature=
standard_test_condition_cell_temperature,
standard_test_condition_maximum_power=standard_test_condition_maximum_power,
standard_test_condition_radiation=standard_test_condition_radiation,
cell_temperature_coefficient=cell_temperature_coefficient,
width=width,
height=height,
distribution_systems=distribution_systems,
energy_storage_systems=energy_storage_systems)
generation_components.append(pv_component)
return generation_components
def _load_distribution_equipments(self):
_equipments = []
distribution_systems = self._archetypes['EnergySystemCatalog']['distribution_systems']['distribution_system']
if distribution_systems is not None:
for distribution_system in distribution_systems:
system_id = None
model_name = None
system_type = None
supply_temperature = None
distribution_consumption_fix_flow = None
distribution_consumption_variable_flow = None
heat_losses = None
generation_systems = None
energy_storage_systems = None
emission_systems = None
distribution_equipment = DistributionSystem(system_id=system_id,
model_name=model_name,
system_type=system_type,
supply_temperature=supply_temperature,
distribution_consumption_fix_flow=distribution_consumption_fix_flow,
distribution_consumption_variable_flow=
distribution_consumption_variable_flow,
heat_losses=heat_losses,
generation_systems=generation_systems,
energy_storage_systems=energy_storage_systems,
emission_systems=emission_systems
)
_equipments.append(distribution_equipment)
return _equipments
def _load_emission_equipments(self):
_equipments = []
dissipation_systems = self._archetypes['EnergySystemCatalog']['dissipation_systems']['dissipation_system']
if dissipation_systems is not None:
for dissipation_system in dissipation_systems:
system_id = None
model_name = None
system_type = None
parasitic_energy_consumption = 0
emission_system = EmissionSystem(system_id=system_id,
model_name=model_name,
system_type=system_type,
parasitic_energy_consumption=parasitic_energy_consumption)
_equipments.append(emission_system)
return _equipments
def _load_storage_components(self):
storage_components = []
thermal_storages = self._archetypes['EnergySystemCatalog']['energy_storage_components']['thermalStorages']
for tes in thermal_storages:
storage_id = tes['storage_id']
type_energy_stored = tes['type_energy_stored']
model_name = tes['model_name']
manufacturer = tes['manufacturer']
storage_type = tes['storage_type']
volume = tes['physical_characteristics']['volume']
height = tes['physical_characteristics']['height']
maximum_operating_temperature = tes['maximum_operating_temperature']
materials = self._load_materials()
insulation_material_id = tes['insulation']['material_id']
insulation_material = self._search_material(materials, insulation_material_id)
material_id = tes['physical_characteristics']['material_id']
tank_material = self._search_material(materials, material_id)
thickness = float(tes['insulation']['insulationThickness']) / 100 # from cm to m
insulation_layer = Layer(None, 'insulation', insulation_material, thickness)
thickness = float(tes['physical_characteristics']['tankThickness']) / 100 # from cm to m
tank_layer = Layer(None, 'tank', tank_material, thickness)
media = self._load_media()
media_id = tes['storage_medium']['medium_id']
medium = self._search_media(media, media_id)
layers = [insulation_layer, tank_layer]
nominal_capacity = tes['nominal_capacity']
losses_ratio = tes['losses_ratio']
heating_coil_capacity = tes['heating_coil_capacity']
storage_component = ThermalStorageSystem(storage_id=storage_id,
model_name=model_name,
type_energy_stored=type_energy_stored,
manufacturer=manufacturer,
storage_type=storage_type,
nominal_capacity=nominal_capacity,
losses_ratio=losses_ratio,
volume=volume,
height=height,
layers=layers,
maximum_operating_temperature=maximum_operating_temperature,
storage_medium=medium,
heating_coil_capacity=heating_coil_capacity)
storage_components.append(storage_component)
return storage_components
def _load_systems(self):
base_path = Path(Path(__file__).parent.parent.parent / 'data/energy_systems')
_catalog_systems = []
systems = self._archetypes['EnergySystemCatalog']['systems']['system']
for system in systems:
system_id = system['id']
name = system['name']
demands = system['demands']['demand']
generation_components = system['components']['generation_id']
generation_systems = self._search_generation_equipment(self._load_generation_components(), generation_components)
configuration_schema = None
if system['schema'] is not None:
configuration_schema = Path(base_path / system['schema'])
energy_system = System(system_id=system_id,
name=name,
demand_types=demands,
generation_systems=generation_systems,
distribution_systems=None,
configuration_schema=configuration_schema)
_catalog_systems.append(energy_system)
return _catalog_systems
def _load_archetypes(self):
_system_archetypes = []
system_clusters = self._archetypes['EnergySystemCatalog']['system_archetypes']['system_archetype']
for system_cluster in system_clusters:
name = system_cluster['name']
systems = system_cluster['systems']['system_id']
integer_system_ids = [int(item) for item in systems]
_systems = []
for system_archetype in self._systems:
if int(system_archetype.id) in integer_system_ids:
_systems.append(system_archetype)
_system_archetypes.append(Archetype(name=name, systems=_systems))
return _system_archetypes
def _load_materials(self):
materials = []
_materials = self._archetypes['EnergySystemCatalog']['materials']['material']
for _material in _materials:
material_id = _material['material_id']
name = _material['name']
conductivity = _material['conductivity']
solar_absorptance = _material['solar_absorptance']
thermal_absorptance = _material['thermal_absorptance']
density = _material['density']
specific_heat = _material['specific_heat']
no_mass = _material['no_mass']
visible_absorptance = _material['visible_absorptance']
thermal_resistance = _material['thermal_resistance']
material = Material(material_id,
name,
solar_absorptance=solar_absorptance,
thermal_absorptance=thermal_absorptance,
density=density,
conductivity=conductivity,
thermal_resistance=thermal_resistance,
visible_absorptance=visible_absorptance,
no_mass=no_mass,
specific_heat=specific_heat)
materials.append(material)
return materials
@staticmethod
def _search_material(materials, material_id):
_material = None
for material in materials:
if int(material.id) == int(material_id):
_material = material
break
if _material is None:
raise ValueError(f'Material with the id = [{material_id}] not found in catalog ')
return _material
def _load_media(self):
media = []
_media = [self._archetypes['EnergySystemCatalog']['media']['medium']]
for _medium in _media:
medium_id = _medium['medium_id']
density = _medium['density']
name = _medium['name']
conductivity = _medium['conductivity']
solar_absorptance = _medium['solar_absorptance']
thermal_absorptance = _medium['thermal_absorptance']
specific_heat = _medium['specific_heat']
no_mass = _medium['no_mass']
visible_absorptance = _medium['visible_absorptance']
thermal_resistance = _medium['thermal_resistance']
medium = Material(material_id=medium_id,
name=name,
solar_absorptance=solar_absorptance,
thermal_absorptance=thermal_absorptance,
visible_absorptance=visible_absorptance,
no_mass=no_mass,
thermal_resistance=thermal_resistance,
conductivity=conductivity,
density=density,
specific_heat=specific_heat)
media.append(medium)
return media
@staticmethod
def _search_media(media, medium_id):
_medium = None
for medium in media:
if int(medium.id) == int(medium_id):
_medium = medium
break
if _medium is None:
raise ValueError(f'media with the id = [{medium_id}] not found in catalog ')
return _medium
@staticmethod
def _search_generation_equipment(generation_systems, generation_id):
_generation_systems = []
if isinstance(generation_id, list):
integer_ids = [int(item) for item in generation_id]
for generation in generation_systems:
if int(generation.id) in integer_ids:
_generation_systems.append(generation)
else:
integer_id = int(generation_id)
for generation in generation_systems:
if int(generation.id) == integer_id:
_generation_systems.append(generation)
if len(_generation_systems) == 0:
_generation_systems = None
raise ValueError(f'The system with the following id is not found in catalog [{generation_id}]')
return _generation_systems
@staticmethod
def _search_storage_equipment(storage_systems, storage_id):
_storage_systems = []
for storage in storage_systems:
if storage.id in storage_id:
_storage_systems.append(storage)
if len(_storage_systems) == 0:
_storage_systems = None
raise ValueError(f'The system with the following id is not found in catalog [{storage_id}]')
return _storage_systems
def names(self, category=None):
"""
Get the catalog elements names
:parm: optional category filter
"""
if category is None:
_names = {'archetypes': [], 'systems': [], 'generation_equipments': [], 'storage_equipments': []}
for archetype in self._content.archetypes:
_names['archetypes'].append(archetype.name)
for system in self._content.systems:
_names['systems'].append(system.name)
for equipment in self._content.generation_equipments:
_names['generation_equipments'].append(equipment.name)
else:
_names = {category: []}
if category.lower() == 'archetypes':
for archetype in self._content.archetypes:
_names[category].append(archetype.name)
elif category.lower() == 'systems':
for system in self._content.systems:
_names[category].append(system.name)
elif category.lower() == 'generation_equipments':
for system in self._content.generation_equipments:
_names[category].append(system.name)
else:
raise ValueError(f'Unknown category [{category}]')
return _names
def entries(self, category=None):
"""
Get the catalog elements
:parm: optional category filter
"""
if category is None:
return self._content
if category.lower() == 'archetypes':
return self._content.archetypes
if category.lower() == 'systems':
return self._content.systems
if category.lower() == 'generation_equipments':
return self._content.generation_equipments
raise ValueError(f'Unknown category [{category}]')
def get_entry(self, name):
"""
Get one catalog element by names
:parm: entry name
"""
for entry in self._content.archetypes:
if entry.name.lower() == name.lower():
return entry
for entry in self._content.systems:
if entry.name.lower() == name.lower():
return entry
for entry in self._content.generation_equipments:
if entry.name.lower() == name.lower():
return entry
raise IndexError(f"{name} doesn't exists in the catalog")

View File

@ -9,7 +9,8 @@ from pathlib import Path
from typing import TypeVar
from hub.catalog_factories.energy_systems.montreal_custom_catalog import MontrealCustomCatalog
from hub.catalog_factories.energy_systems.north_america_energy_system_catalog import NorthAmericaEnergySystemCatalog
from hub.catalog_factories.energy_systems.montreal_future_system_catalogue import MontrealFutureSystemCatalogue
from hub.catalog_factories.energy_systems.palma_system_catalgue import PalmaSystemCatalogue
from hub.helpers.utils import validate_import_export_type
Catalog = TypeVar('Catalog')
@ -34,11 +35,18 @@ class EnergySystemsCatalogFactory:
return MontrealCustomCatalog(self._path)
@property
def _north_america(self):
def _montreal_future(self):
"""
Retrieve North American catalog
"""
return NorthAmericaEnergySystemCatalog(self._path)
return MontrealFutureSystemCatalogue(self._path)
@property
def _palma(self):
"""
Retrieve Palma catalog
"""
return PalmaSystemCatalogue(self._path)
@property
def catalog(self) -> Catalog:

View File

@ -190,14 +190,14 @@ class ComnetCatalog(Catalog):
schedules_key = {}
for j in range(0, number_usage_types-1):
usage_parameters = _extracted_data.iloc[j]
usage_type = usage_parameters[0]
lighting_data[usage_type] = usage_parameters[1:6].values.tolist()
plug_loads_data[usage_type] = usage_parameters[8:13].values.tolist()
occupancy_data[usage_type] = usage_parameters[17:20].values.tolist()
ventilation_rate[usage_type] = usage_parameters[20:21].item()
water_heating[usage_type] = usage_parameters[23:24].item()
process_data[usage_type] = usage_parameters[24:26].values.tolist()
schedules_key[usage_type] = usage_parameters[27:28].item()
usage_type = usage_parameters.iloc[0]
lighting_data[usage_type] = usage_parameters.iloc[1:6].values.tolist()
plug_loads_data[usage_type] = usage_parameters.iloc[8:13].values.tolist()
occupancy_data[usage_type] = usage_parameters.iloc[17:20].values.tolist()
ventilation_rate[usage_type] = usage_parameters.iloc[20:21].item()
water_heating[usage_type] = usage_parameters.iloc[23:24].item()
process_data[usage_type] = usage_parameters.iloc[24:26].values.tolist()
schedules_key[usage_type] = usage_parameters.iloc[27:28].item()
return {'lighting': lighting_data,
'plug loads': plug_loads_data,

View File

@ -188,7 +188,7 @@ class EilatCatalog(Catalog):
schedules_key = {}
for j in range(0, number_usage_types):
usage_parameters = _extracted_data.iloc[j]
usage_type = usage_parameters[0]
usage_type = usage_parameters.iloc[0]
lighting_data[usage_type] = usage_parameters[1:6].values.tolist()
plug_loads_data[usage_type] = usage_parameters[8:13].values.tolist()
occupancy_data[usage_type] = usage_parameters[17:20].values.tolist()

View File

@ -8,6 +8,8 @@ Code contributors: Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concord
import json
import urllib.request
from pathlib import Path
import xmltodict
import hub.helpers.constants as cte
@ -28,12 +30,11 @@ class NrcanCatalog(Catalog):
Nrcan catalog class
"""
def __init__(self, path):
path = str(path / 'nrcan.xml')
self._schedules_path = Path(path / 'nrcan_schedules.json').resolve()
self._space_types_path = Path(path / 'nrcan_space_types.json').resolve()
self._space_compliance_path = Path(path / 'nrcan_space_compliance_2015.json').resolve()
self._content = None
self._schedules = {}
with open(path, 'r', encoding='utf-8') as xml:
self._metadata = xmltodict.parse(xml.read())
self._base_url = self._metadata['nrcan']['@base_url']
self._load_schedules()
self._content = Content(self._load_archetypes())
@ -55,11 +56,9 @@ class NrcanCatalog(Catalog):
return Schedule(hub_type, raw['values'], data_type, time_step, time_range, day_types)
def _load_schedules(self):
usage = self._metadata['nrcan']
url = f'{self._base_url}{usage["schedules"]}'
_schedule_types = []
with urllib.request.urlopen(url) as json_file:
schedules_type = json.load(json_file)
with open(self._schedules_path, 'r') as f:
schedules_type = json.load(f)
for schedule_type in schedules_type['tables']['schedules']['table']:
schedule = NrcanCatalog._extract_schedule(schedule_type)
if schedule_type['name'] not in _schedule_types:
@ -80,14 +79,11 @@ class NrcanCatalog(Catalog):
def _load_archetypes(self):
usages = []
name = self._metadata['nrcan']
url_1 = f'{self._base_url}{name["space_types"]}'
url_2 = f'{self._base_url}{name["space_types_compliance"]}'
with urllib.request.urlopen(url_1) as json_file:
space_types = json.load(json_file)['tables']['space_types']['table']
with open(self._space_types_path, 'r') as f:
space_types = json.load(f)['tables']['space_types']['table']
space_types = [st for st in space_types if st['space_type'] == 'WholeBuilding']
with urllib.request.urlopen(url_2) as json_file:
space_types_compliance = json.load(json_file)['tables']['space_compliance']['table']
with open(self._space_compliance_path, 'r') as f:
space_types_compliance = json.load(f)['tables']['space_compliance']['table']
space_types_compliance = [st for st in space_types_compliance if st['space_type'] == 'WholeBuilding']
space_types_dictionary = {}
for space_type in space_types_compliance:

View File

@ -0,0 +1,227 @@
"""
Palma usage catalog
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Cecilia Pérez cperez@irec.cat
"""
import json
import urllib.request
from pathlib import Path
import xmltodict
import hub.helpers.constants as cte
from hub.catalog_factories.catalog import Catalog
from hub.catalog_factories.data_models.usages.appliances import Appliances
from hub.catalog_factories.data_models.usages.content import Content
from hub.catalog_factories.data_models.usages.lighting import Lighting
from hub.catalog_factories.data_models.usages.occupancy import Occupancy
from hub.catalog_factories.data_models.usages.domestic_hot_water import DomesticHotWater
from hub.catalog_factories.data_models.usages.schedule import Schedule
from hub.catalog_factories.data_models.usages.thermal_control import ThermalControl
from hub.catalog_factories.data_models.usages.usage import Usage
from hub.catalog_factories.usage.usage_helper import UsageHelper
class PalmaCatalog(Catalog):
"""
Palma catalog class
"""
def __init__(self, path):
self._schedules_path = Path(path / 'palma_schedules.json').resolve()
self._space_types_path = Path(path / 'palma_space_types.json').resolve()
self._space_compliance_path = Path(path / 'palma_space_compliance.json').resolve()
self._content = None
self._schedules = {}
self._load_schedules()
self._content = Content(self._load_archetypes())
@staticmethod
def _extract_schedule(raw):
nrcan_schedule_type = raw['category']
if 'Heating' in raw['name'] and 'Water' not in raw['name']:
nrcan_schedule_type = f'{nrcan_schedule_type} Heating'
elif 'Cooling' in raw['name']:
nrcan_schedule_type = f'{nrcan_schedule_type} Cooling'
if nrcan_schedule_type not in UsageHelper().nrcan_schedule_type_to_hub_schedule_type:
return None
hub_type = UsageHelper().nrcan_schedule_type_to_hub_schedule_type[nrcan_schedule_type]
data_type = UsageHelper().nrcan_data_type_to_hub_data_type[raw['units']]
time_step = UsageHelper().nrcan_time_to_hub_time[raw['type']]
# nrcan only uses daily range for the schedules
time_range = cte.DAY
day_types = UsageHelper().nrcan_day_type_to_hub_days[raw['day_types']]
return Schedule(hub_type, raw['values'], data_type, time_step, time_range, day_types)
def _load_schedules(self):
_schedule_types = []
with open(self._schedules_path, 'r') as f:
schedules_type = json.load(f)
for schedule_type in schedules_type['tables']['schedules']['table']:
schedule = PalmaCatalog._extract_schedule(schedule_type)
if schedule_type['name'] not in _schedule_types:
_schedule_types.append(schedule_type['name'])
if schedule is not None:
self._schedules[schedule_type['name']] = [schedule]
else:
if schedule is not None:
_schedules = self._schedules[schedule_type['name']]
_schedules.append(schedule)
self._schedules[schedule_type['name']] = _schedules
def _get_schedules(self, name):
schedule = None
if name in self._schedules:
schedule = self._schedules[name]
return schedule
def _load_archetypes(self):
usages = []
with open(self._space_types_path, 'r') as f:
space_types = json.load(f)['tables']['space_types']['table']
space_types = [st for st in space_types if st['space_type'] == 'WholeBuilding']
with open(self._space_compliance_path, 'r') as f:
space_types_compliance = json.load(f)['tables']['space_compliance']['table']
space_types_compliance = [st for st in space_types_compliance if st['space_type'] == 'WholeBuilding']
space_types_dictionary = {}
for space_type in space_types_compliance:
usage_type = space_type['building_type']
# people/m2
occupancy_density = space_type['occupancy_per_area_people_per_m2']
# W/m2
lighting_density = space_type['lighting_per_area_w_per_m2']
# W/m2
appliances_density = space_type['electric_equipment_per_area_w_per_m2']
# peak flow in gallons/h/m2
domestic_hot_water_peak_flow = (
space_type['service_water_heating_peak_flow_per_area'] *
cte.GALLONS_TO_QUBIC_METERS / cte.HOUR_TO_SECONDS
)
space_types_dictionary[usage_type] = {'occupancy_per_area': occupancy_density,
'lighting_per_area': lighting_density,
'electric_equipment_per_area': appliances_density,
'service_water_heating_peak_flow_per_area': domestic_hot_water_peak_flow
}
for space_type in space_types:
usage_type = space_type['building_type']
space_type_compliance = space_types_dictionary[usage_type]
occupancy_density = space_type_compliance['occupancy_per_area']
sensible_convective_internal_gain = space_type['sensible_convective_internal_gain']
sensible_radiative_internal_gain = space_type['sensible_radiative_internal_gain']
latent_internal_gain = space_type['latent_internal_gain']
lighting_density = space_type_compliance['lighting_per_area']
appliances_density = space_type_compliance['electric_equipment_per_area']
domestic_hot_water_peak_flow = space_type_compliance['service_water_heating_peak_flow_per_area']
occupancy_schedule_name = space_type['occupancy_schedule']
lighting_schedule_name = space_type['lighting_schedule']
appliance_schedule_name = space_type['electric_equipment_schedule']
hvac_schedule_name = space_type['exhaust_schedule']
if hvac_schedule_name and 'FAN' in hvac_schedule_name:
hvac_schedule_name = hvac_schedule_name.replace('FAN', 'Fan')
if not hvac_schedule_name:
hvac_schedule_name = 'default_HVAC_schedule'
heating_setpoint_schedule_name = space_type['heating_setpoint_schedule']
cooling_setpoint_schedule_name = space_type['cooling_setpoint_schedule']
domestic_hot_water_schedule_name = space_type['service_water_heating_schedule']
occupancy_schedule = self._get_schedules(occupancy_schedule_name)
lighting_schedule = self._get_schedules(lighting_schedule_name)
appliance_schedule = self._get_schedules(appliance_schedule_name)
heating_schedule = self._get_schedules(heating_setpoint_schedule_name)
cooling_schedule = self._get_schedules(cooling_setpoint_schedule_name)
hvac_availability = self._get_schedules(hvac_schedule_name)
domestic_hot_water_load_schedule = self._get_schedules(domestic_hot_water_schedule_name)
# ACH -> 1/s
mechanical_air_change = space_type['ventilation_air_changes'] / cte.HOUR_TO_SECONDS
# cfm/ft2 to m3/m2.s
ventilation_rate = space_type['ventilation_per_area'] / (cte.METERS_TO_FEET * cte.MINUTES_TO_SECONDS)
# cfm/person to m3/m2.s
ventilation_rate += space_type['ventilation_per_person'] / (
pow(cte.METERS_TO_FEET, 3) * cte.MINUTES_TO_SECONDS
) * occupancy_density
lighting_radiative_fraction = space_type['lighting_fraction_radiant']
lighting_convective_fraction = 0
if lighting_radiative_fraction is not None:
lighting_convective_fraction = 1 - lighting_radiative_fraction
lighting_latent_fraction = 0
appliances_radiative_fraction = space_type['electric_equipment_fraction_radiant']
appliances_latent_fraction = space_type['electric_equipment_fraction_latent']
appliances_convective_fraction = 0
if appliances_radiative_fraction is not None and appliances_latent_fraction is not None:
appliances_convective_fraction = 1 - appliances_radiative_fraction - appliances_latent_fraction
domestic_hot_water_service_temperature = space_type['service_water_heating_target_temperature']
occupancy = Occupancy(occupancy_density,
sensible_convective_internal_gain,
sensible_radiative_internal_gain,
latent_internal_gain,
occupancy_schedule)
lighting = Lighting(lighting_density,
lighting_convective_fraction,
lighting_radiative_fraction,
lighting_latent_fraction,
lighting_schedule)
appliances = Appliances(appliances_density,
appliances_convective_fraction,
appliances_radiative_fraction,
appliances_latent_fraction,
appliance_schedule)
thermal_control = ThermalControl(None,
None,
None,
hvac_availability,
heating_schedule,
cooling_schedule)
domestic_hot_water = DomesticHotWater(None,
domestic_hot_water_peak_flow,
domestic_hot_water_service_temperature,
domestic_hot_water_load_schedule)
hours_day = None
days_year = None
usages.append(Usage(usage_type,
hours_day,
days_year,
mechanical_air_change,
ventilation_rate,
occupancy,
lighting,
appliances,
thermal_control,
domestic_hot_water))
return usages
def names(self, category=None):
"""
Get the catalog elements names
:parm: for usage catalog category filter does nothing as there is only one category (usages)
"""
_names = {'usages': []}
for usage in self._content.usages:
_names['usages'].append(usage.name)
return _names
def entries(self, category=None):
"""
Get the catalog elements
:parm: for usage catalog category filter does nothing as there is only one category (usages)
"""
return self._content
def get_entry(self, name):
"""
Get one catalog element by names
:parm: entry name
"""
for usage in self._content.usages:
if usage.name.lower() == name.lower():
return usage
raise IndexError(f"{name} doesn't exists in the catalog")

View File

@ -11,6 +11,7 @@ from typing import TypeVar
from hub.catalog_factories.usage.comnet_catalog import ComnetCatalog
from hub.catalog_factories.usage.nrcan_catalog import NrcanCatalog
from hub.catalog_factories.usage.eilat_catalog import EilatCatalog
from hub.catalog_factories.usage.palma_catalog import PalmaCatalog
from hub.helpers.utils import validate_import_export_type
Catalog = TypeVar('Catalog')
@ -42,6 +43,13 @@ class UsageCatalogFactory:
# nrcan retrieves the data directly from github
return NrcanCatalog(self._path)
@property
def _palma(self):
"""
Retrieve Palma catalog
"""
return PalmaCatalog(self._path)
@property
def _eilat(self):
"""

View File

@ -27,7 +27,6 @@ class Building(CityObject):
"""
Building(CityObject) class
"""
def __init__(self, name, surfaces, year_of_construction, function, terrains=None, city=None):
super().__init__(name, surfaces)
self._city = city
@ -91,6 +90,9 @@ class Building(CityObject):
self._interior_slabs.append(surface)
else:
logging.error('Building %s [%s] has an unexpected surface type %s.', self.name, self.aliases, surface.type)
self._domestic_hot_water_peak_load = None
self._fuel_consumption_breakdown = {}
self._pv_generation = {}
@property
def shell(self) -> Polyhedron:
@ -290,7 +292,10 @@ class Building(CityObject):
"""
if self._storeys_above_ground is None:
if self.eave_height is not None and self.average_storey_height is not None:
self._storeys_above_ground = int(self.eave_height / self.average_storey_height)
storeys_above_ground = int(self.eave_height / self.average_storey_height)
if storeys_above_ground == 0:
storeys_above_ground += 1
self._storeys_above_ground = storeys_above_ground
return self._storeys_above_ground
@storeys_above_ground.setter
@ -449,8 +454,8 @@ class Building(CityObject):
monthly_values = PeakLoads(self).heating_peak_loads_from_methodology
if monthly_values is None:
return None
results[cte.MONTH] = [x * cte.WATTS_HOUR_TO_JULES for x in monthly_values]
results[cte.YEAR] = [max(monthly_values)]
results[cte.MONTH] = [x / cte.WATTS_HOUR_TO_JULES for x in monthly_values]
results[cte.YEAR] = [max(monthly_values) / cte.WATTS_HOUR_TO_JULES]
return results
@property
@ -466,8 +471,24 @@ class Building(CityObject):
monthly_values = PeakLoads(self).cooling_peak_loads_from_methodology
if monthly_values is None:
return None
results[cte.MONTH] = [x * cte.WATTS_HOUR_TO_JULES for x in monthly_values]
results[cte.YEAR] = [max(monthly_values)]
results[cte.MONTH] = [x / cte.WATTS_HOUR_TO_JULES for x in monthly_values]
results[cte.YEAR] = [max(monthly_values) / cte.WATTS_HOUR_TO_JULES]
return results
@property
def domestic_hot_water_peak_load(self) -> Union[None, dict]:
"""
Get cooling peak load in W
:return: dict{[float]}
"""
results = {}
monthly_values = None
if cte.HOUR in self.domestic_hot_water_heat_demand:
monthly_values = PeakLoads().peak_loads_from_hourly(self.domestic_hot_water_heat_demand[cte.HOUR])
if monthly_values is None:
return None
results[cte.MONTH] = [x / cte.WATTS_HOUR_TO_JULES for x in monthly_values]
results[cte.YEAR] = [max(monthly_values) / cte.WATTS_HOUR_TO_JULES]
return results
@property
@ -703,6 +724,7 @@ class Building(CityObject):
Get total electricity consumption for distribution and emission systems in J
return: dict
"""
_distribution_systems_electrical_consumption = {}
if len(self._distribution_systems_electrical_consumption) != 0:
return self._distribution_systems_electrical_consumption
_peak_load = self.heating_peak_load[cte.YEAR][0]
@ -716,22 +738,21 @@ class Building(CityObject):
if self.energy_systems is None:
return self._distribution_systems_electrical_consumption
for energy_system in self.energy_systems:
energy_emission_systems = energy_system.emission_systems
energy_distribution_systems = energy_system.distribution_systems
for energy_emission_system in energy_distribution_systems:
emission_system = energy_emission_system.generic_emission_system
parasitic_energy_consumption = 0
if emission_system is not None:
parasitic_energy_consumption = emission_system.parasitic_energy_consumption
for energy_distribution_system in energy_emission_systems:
distribution_system = energy_distribution_system.generic_distribution_system
distribution_systems = energy_system.distribution_systems
if distribution_systems is not None:
for distribution_system in distribution_systems:
emission_systems = distribution_system.emission_systems
parasitic_energy_consumption = 0
if emission_systems is not None:
for emission_system in emission_systems:
parasitic_energy_consumption += emission_system.parasitic_energy_consumption
consumption_variable_flow = distribution_system.distribution_consumption_variable_flow
for demand_type in energy_system.demand_types:
if demand_type.lower() == cte.HEATING.lower():
if _peak_load_type == cte.HEATING.lower():
_consumption_fix_flow = distribution_system.distribution_consumption_fix_flow
for heating_demand_key in self.heating_demand:
_consumption = [0] * len(self.heating_demand[heating_demand_key])
_consumption = [0]*len(self.heating_demand[heating_demand_key])
_demand = self.heating_demand[heating_demand_key]
for i, _ in enumerate(_consumption):
_consumption[i] += (parasitic_energy_consumption + consumption_variable_flow) * _demand[i]
@ -746,10 +767,15 @@ class Building(CityObject):
_consumption[i] += (parasitic_energy_consumption + consumption_variable_flow) * _demand[i]
self._distribution_systems_electrical_consumption[demand_key] = _consumption
for key, item in self._distribution_systems_electrical_consumption.items():
for i in range(0, len(item)):
self._distribution_systems_electrical_consumption[key][i] += _peak_load * _consumption_fix_flow \
* _working_hours[key] * cte.WATTS_HOUR_TO_JULES
for key, item in self._distribution_systems_electrical_consumption.items():
for i in range(0, len(item)):
_working_hours_value = _working_hours[key]
if len(item) == 12:
_working_hours_value = _working_hours[key][i]
self._distribution_systems_electrical_consumption[key][i] += (
_peak_load * _consumption_fix_flow * _working_hours_value * cte.WATTS_HOUR_TO_JULES
)
return self._distribution_systems_electrical_consumption
def _calculate_consumption(self, consumption_type, demand):
@ -758,26 +784,28 @@ class Building(CityObject):
if self.energy_systems is None:
return None
for energy_system in self.energy_systems:
energy_system_generation_systems = energy_system.generation_systems
generation_systems = energy_system.generation_systems
for demand_type in energy_system.demand_types:
if demand_type.lower() == consumption_type.lower():
if consumption_type in (cte.HEATING, cte.DOMESTIC_HOT_WATER):
for generation_system in energy_system_generation_systems:
coefficient_of_performance = generation_system.generic_generation_system.heat_efficiency
for generation_system in generation_systems:
if generation_system.heat_efficiency is not None:
coefficient_of_performance = float(generation_system.heat_efficiency)
elif consumption_type == cte.COOLING:
for generation_system in energy_system_generation_systems:
coefficient_of_performance = generation_system.generic_generation_system.cooling_efficiency
for generation_system in generation_systems:
if generation_system.cooling_efficiency is not None:
coefficient_of_performance = float(generation_system.cooling_efficiency)
elif consumption_type == cte.ELECTRICITY:
for generation_system in energy_system_generation_systems:
coefficient_of_performance = \
generation_system.generic_generation_system.electricity_efficiency
for generation_system in generation_systems:
if generation_system.electricity_efficiency is not None:
coefficient_of_performance = float(generation_system.electricity_efficiency)
if coefficient_of_performance == 0:
values = [0] * len(demand)
values = [0]*len(demand)
final_energy_consumed = values
else:
final_energy_consumed = []
for demand_value in demand:
final_energy_consumed.append(demand_value / float(coefficient_of_performance))
final_energy_consumed.append(demand_value / coefficient_of_performance)
return final_energy_consumed
@property
@ -801,10 +829,12 @@ class Building(CityObject):
if self.energy_systems is None:
return self._onsite_electrical_production
for energy_system in self.energy_systems:
energy_system_generation_systems = energy_system.generation_systems
for generation_system in energy_system_generation_systems:
if generation_system.generic_generation_system.type == cte.PHOTOVOLTAIC:
_efficiency = generation_system.generic_generation_system.electricity_efficiency
for generation_system in energy_system.generation_systems:
if generation_system.system_type == cte.PHOTOVOLTAIC:
if generation_system.electricity_efficiency is not None:
_efficiency = float(generation_system.electricity_efficiency)
else:
_efficiency = 0
self._onsite_electrical_production = {}
for _key in self.roofs[0].global_irradiance.keys():
_results = [0 for _ in range(0, len(self.roofs[0].global_irradiance[_key]))]
@ -816,3 +846,74 @@ class Building(CityObject):
orientation_losses_factor[_key]['south'])]
self._onsite_electrical_production[_key] = _results
return self._onsite_electrical_production
@property
def lower_corner(self):
"""
Get building lower corner.
"""
return [self._min_x, self._min_y, self._min_z]
@property
def upper_corner(self):
"""
Get building upper corner.
"""
return [self._max_x, self._max_y, self._max_z]
@property
def energy_consumption_breakdown(self) -> dict:
"""
Get energy consumption of different sectors
return: dict
"""
fuel_breakdown = {cte.ELECTRICITY: {cte.LIGHTING: self.lighting_electrical_demand[cte.YEAR][0],
cte.APPLIANCES: self.appliances_electrical_demand[cte.YEAR][0]}}
energy_systems = self.energy_systems
for energy_system in energy_systems:
demand_types = energy_system.demand_types
generation_systems = energy_system.generation_systems
for demand_type in demand_types:
for generation_system in generation_systems:
if generation_system.system_type != cte.PHOTOVOLTAIC:
if generation_system.fuel_type not in fuel_breakdown:
fuel_breakdown[generation_system.fuel_type] = {}
if demand_type in generation_system.energy_consumption:
fuel_breakdown[f'{generation_system.fuel_type}'][f'{demand_type}'] = (
generation_system.energy_consumption)[f'{demand_type}'][cte.YEAR][0]
storage_systems = generation_system.energy_storage_systems
if storage_systems:
for storage_system in storage_systems:
if storage_system.type_energy_stored == 'thermal' and storage_system.heating_coil_energy_consumption:
fuel_breakdown[cte.ELECTRICITY][f'{demand_type}'] += storage_system.heating_coil_energy_consumption[cte.YEAR][0]
#TODO: When simulation models of all energy system archetypes are created, this part can be removed
heating_fuels = []
dhw_fuels = []
for energy_system in self.energy_systems:
if cte.HEATING in energy_system.demand_types:
for generation_system in energy_system.generation_systems:
heating_fuels.append(generation_system.fuel_type)
if cte.DOMESTIC_HOT_WATER in energy_system.demand_types:
for generation_system in energy_system.generation_systems:
dhw_fuels.append(generation_system.fuel_type)
for key in fuel_breakdown:
if key == cte.ELECTRICITY and cte.COOLING not in fuel_breakdown[key]:
for energy_system in energy_systems:
if cte.COOLING in energy_system.demand_types and cte.COOLING not in fuel_breakdown[key]:
for generation_system in energy_system.generation_systems:
fuel_breakdown[generation_system.fuel_type][cte.COOLING] = self.cooling_consumption[cte.YEAR][0]
for fuel in heating_fuels:
if cte.HEATING not in fuel_breakdown[fuel]:
for energy_system in energy_systems:
if cte.HEATING in energy_system.demand_types:
for generation_system in energy_system.generation_systems:
fuel_breakdown[generation_system.fuel_type][cte.HEATING] = self.heating_consumption[cte.YEAR][0]
for fuel in dhw_fuels:
if cte.DOMESTIC_HOT_WATER not in fuel_breakdown[fuel]:
for energy_system in energy_systems:
if cte.DOMESTIC_HOT_WATER in energy_system.demand_types:
for generation_system in energy_system.generation_systems:
fuel_breakdown[generation_system.fuel_type][cte.DOMESTIC_HOT_WATER] = self.domestic_hot_water_consumption[cte.YEAR][0]
self._fuel_consumption_breakdown = fuel_breakdown
return self._fuel_consumption_breakdown

View File

@ -132,7 +132,11 @@ class InternalZone:
_thermal_boundary = ThermalBoundary(surface, surface.solid_polygon.area, windows_areas)
surface.associated_thermal_boundaries = [_thermal_boundary]
_thermal_boundaries.append(_thermal_boundary)
if self.thermal_archetype is None:
return None # there are no archetype
_number_of_storeys = int(self.volume / self.area / self.thermal_archetype.average_storey_height)
if _number_of_storeys == 0:
_number_of_storeys = 1
_thermal_zone = ThermalZone(_thermal_boundaries, self, self.volume, self.area, _number_of_storeys)
for thermal_boundary in _thermal_zone.thermal_boundaries:
thermal_boundary.thermal_zones = [_thermal_zone]

View File

@ -16,7 +16,7 @@ class Layer:
def __init__(self):
self._thickness = None
self._id = None
self._name = None
self._material_name = None
self._conductivity = None
self._specific_heat = None
self._density = None
@ -54,22 +54,20 @@ class Layer:
self._thickness = float(value)
@property
def name(self):
def material_name(self):
"""
Get material name
:return: str
"""
# todo: this should be named material_name instead
return self._name
return self._material_name
@name.setter
def name(self, value):
@material_name.setter
def material_name(self, value):
"""
Set material name
:param value: string
"""
# todo: this should be named material_name instead
self._name = str(value)
self._material_name = str(value)
@property
def conductivity(self) -> Union[None, float]:

View File

@ -18,6 +18,7 @@ from hub.city_model_structure.attributes.point import Point
from hub.city_model_structure.greenery.vegetation import Vegetation
from hub.city_model_structure.building_demand.thermal_boundary import ThermalBoundary
import hub.helpers.constants as cte
from hub.helpers.configuration_helper import ConfigurationHelper
class Surface:
@ -41,10 +42,12 @@ class Surface:
self._short_wave_reflectance = None
self._long_wave_emittance = None
self._inverse = None
self._associated_thermal_boundaries = []
self._associated_thermal_boundaries = None
self._vegetation = None
self._percentage_shared = None
self._solar_collectors_area_reduction_factor = None
self._global_irradiance_tilted = {}
self._installed_solar_collector_area = None
@property
def name(self):
@ -177,7 +180,7 @@ class Surface:
@property
def global_irradiance(self) -> dict:
"""
Get global irradiance on surface in J/m2
Get global irradiance on surface in W/m2
:return: dict
"""
return self._global_irradiance
@ -185,7 +188,7 @@ class Surface:
@global_irradiance.setter
def global_irradiance(self, value):
"""
Set global irradiance on surface in J/m2
Set global irradiance on surface in W/m2
:param value: dict
"""
self._global_irradiance = value
@ -383,3 +386,35 @@ class Surface:
:param value: float
"""
self._solar_collectors_area_reduction_factor = value
@property
def global_irradiance_tilted(self) -> dict:
"""
Get global irradiance on a tilted surface in W/m2
:return: dict
"""
return self._global_irradiance_tilted
@global_irradiance_tilted.setter
def global_irradiance_tilted(self, value):
"""
Set global irradiance on a tilted surface in W/m2
:param value: dict
"""
self._global_irradiance_tilted = value
@property
def installed_solar_collector_area(self):
"""
Get installed solar collector area in m2
:return: dict
"""
return self._installed_solar_collector_area
@installed_solar_collector_area.setter
def installed_solar_collector_area(self, value):
"""
Set installed solar collector area in m2
:return: dict
"""
self._installed_solar_collector_area = value

View File

@ -20,6 +20,8 @@ class ThermalArchetype:
self._indirect_heated_ratio = None
self._infiltration_rate_for_ventilation_system_off = None
self._infiltration_rate_for_ventilation_system_on = None
self._infiltration_rate_area_for_ventilation_system_off=None
self._infiltration_rate_area_for_ventilation_system_on=None
@property
def constructions(self) -> [Construction]:
@ -132,3 +134,35 @@ class ThermalArchetype:
:param value: float
"""
self._infiltration_rate_for_ventilation_system_on = value
@property
def infiltration_rate_area_for_ventilation_system_off(self):
"""
Get infiltration rate for ventilation system off in l/s/m2
:return: float
"""
return self._infiltration_rate_for_ventilation_system_off
@infiltration_rate_area_for_ventilation_system_off.setter
def infiltration_rate_area_for_ventilation_system_off(self, value):
"""
Set infiltration rate for ventilation system off in l/s/m2
:param value: float
"""
self._infiltration_rate_for_ventilation_system_off = value
@property
def infiltration_rate_area_for_ventilation_system_on(self):
"""
Get infiltration rate for ventilation system on in l/s/m2
:return: float
"""
return self._infiltration_rate_for_ventilation_system_on
@infiltration_rate_area_for_ventilation_system_on.setter
def infiltration_rate_area_for_ventilation_system_on(self, value):
"""
Set infiltration rate for ventilation system on in l/s/m2
:param value: float
"""
self._infiltration_rate_for_ventilation_system_on = value

View File

@ -44,6 +44,8 @@ class ThermalZone:
self._indirectly_heated_area_ratio = None
self._infiltration_rate_system_on = None
self._infiltration_rate_system_off = None
self._infiltration_rate_area_system_on = None
self._infiltration_rate_area_system_off = None
self._volume = volume
self._ordinate_number = None
self._view_factors_matrix = None
@ -166,6 +168,24 @@ class ThermalZone:
self._infiltration_rate_system_off = self._parent_internal_zone.thermal_archetype.infiltration_rate_for_ventilation_system_off
return self._infiltration_rate_system_off
@property
def infiltration_rate_area_system_on(self):
"""
Get thermal zone infiltration rate system on in air changes per second (1/s)
:return: None or float
"""
self._infiltration_rate_area_system_on = self._parent_internal_zone.thermal_archetype.infiltration_rate_area_for_ventilation_system_on
return self._infiltration_rate_area_system_on
@property
def infiltration_rate_area_system_off(self):
"""
Get thermal zone infiltration rate system off in air changes per second (1/s)
:return: None or float
"""
self._infiltration_rate_area_system_off = self._parent_internal_zone.thermal_archetype.infiltration_rate_area_for_ventilation_system_off
return self._infiltration_rate_area_system_off
@property
def volume(self):
"""

View File

@ -62,7 +62,6 @@ class City:
self._level_of_detail = LevelOfDetail()
self._city_objects_dictionary = {}
self._city_objects_alias_dictionary = {}
self._energy_systems_connection_table = None
self._generic_energy_systems = None
def _get_location(self) -> Location:
@ -505,24 +504,6 @@ class City:
"""
return self._level_of_detail
@property
def energy_systems_connection_table(self) -> Union[None, DataFrame]:
"""
Get energy systems connection table which includes at least two columns: energy_system_type and associated_building
and may also include dimensioned_energy_system and connection_building_to_dimensioned_energy_system
:return: DataFrame
"""
return self._energy_systems_connection_table
@energy_systems_connection_table.setter
def energy_systems_connection_table(self, value):
"""
Set energy systems connection table which includes at least two columns: energy_system_type and associated_building
and may also include dimensioned_energy_system and connection_building_to_dimensioned_energy_system
:param value: DataFrame
"""
self._energy_systems_connection_table = value
@property
def generic_energy_systems(self) -> dict:
"""

View File

@ -41,9 +41,10 @@ class CityObject:
self._ground_temperature = {}
self._global_horizontal = {}
self._diffuse = {}
self._beam = {}
self._direct_normal = {}
self._sensors = []
self._neighbours = None
self._beam = {}
@property
def level_of_detail(self) -> LevelOfDetail:
@ -238,20 +239,20 @@ class CityObject:
self._diffuse = value
@property
def beam(self) -> dict:
def direct_normal(self) -> dict:
"""
Get beam radiation surrounding the city object in J/m2
:return: dict{dict{[float]}}
"""
return self._beam
return self._direct_normal
@beam.setter
def beam(self, value):
@direct_normal.setter
def direct_normal(self, value):
"""
Set beam radiation surrounding the city object in J/m2
:param value: dict{dict{[float]}}
"""
self._beam = value
self._direct_normal = value
@property
def lower_corner(self):
@ -302,3 +303,19 @@ class CityObject:
Set the list of neighbour_objects and their properties associated to the current city_object
"""
self._neighbours = value
@property
def beam(self) -> dict:
"""
Get beam radiation surrounding the city object in J/m2
:return: dict{dict{[float]}}
"""
return self._beam
@beam.setter
def beam(self, value):
"""
Set beam radiation surrounding the city object in J/m2
:param value: dict{dict{[float]}}
"""
self._beam = value

View File

@ -5,7 +5,12 @@ Copyright © 2023 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
"""
from hub.city_model_structure.energy_systems.generic_distribution_system import GenericDistributionSystem
from typing import Union, List, TypeVar
from hub.city_model_structure.energy_systems.emission_system import EmissionSystem
from hub.city_model_structure.energy_systems.energy_storage_system import EnergyStorageSystem
GenerationSystem = TypeVar('GenerationSystem')
class DistributionSystem:
@ -13,20 +18,158 @@ class DistributionSystem:
DistributionSystem class
"""
def __init__(self):
self._generic_distribution_system = None
self._model_name = None
self._type = None
self._supply_temperature = None
self._distribution_consumption_fix_flow = None
self._distribution_consumption_variable_flow = None
self._heat_losses = None
self._generation_systems = None
self._energy_storage_systems = None
self._emission_systems = None
@property
def generic_distribution_system(self) -> GenericDistributionSystem:
def model_name(self):
"""
Get generic_distribution_system
:return: GenericDistributionSystem
Get model name
:return: string
"""
return self._generic_distribution_system
return self._model_name
@generic_distribution_system.setter
def generic_distribution_system(self, value):
@model_name.setter
def model_name(self, value):
"""
Set associated generic_distribution_system
:param value: GenericDistributionSystem
Set model name
:param value: string
"""
self._generic_distribution_system = value
self._model_name = value
@property
def type(self):
"""
Get type from [air, water, refrigerant]
:return: string
"""
return self._type
@type.setter
def type(self, value):
"""
Set type from [air, water, refrigerant]
:param value: string
"""
self._type = value
@property
def supply_temperature(self):
"""
Get supply_temperature in degree Celsius
:return: float
"""
return self._supply_temperature
@supply_temperature.setter
def supply_temperature(self, value):
"""
Set supply_temperature in degree Celsius
:param value: float
"""
self._supply_temperature = value
@property
def distribution_consumption_fix_flow(self):
"""
Get distribution_consumption if the pump or fan work at fix mass or volume flow in ratio over peak power (W/W)
:return: float
"""
return self._distribution_consumption_fix_flow
@distribution_consumption_fix_flow.setter
def distribution_consumption_fix_flow(self, value):
"""
Set distribution_consumption if the pump or fan work at fix mass or volume flow in ratio over peak power (W/W)
:return: float
"""
self._distribution_consumption_fix_flow = value
@property
def distribution_consumption_variable_flow(self):
"""
Get distribution_consumption if the pump or fan work at variable mass or volume flow in ratio
over energy produced (J/J)
:return: float
"""
return self._distribution_consumption_variable_flow
@distribution_consumption_variable_flow.setter
def distribution_consumption_variable_flow(self, value):
"""
Set distribution_consumption if the pump or fan work at variable mass or volume flow in ratio
over energy produced (J/J)
:return: float
"""
self._distribution_consumption_variable_flow = value
@property
def heat_losses(self):
"""
Get heat_losses in ratio over energy produced
:return: float
"""
return self._heat_losses
@heat_losses.setter
def heat_losses(self, value):
"""
Set heat_losses in ratio over energy produced
:param value: float
"""
self._heat_losses = value
@property
def generation_systems(self) -> Union[None, List[GenerationSystem]]:
"""
Get generation systems connected to the distribution system
:return: [GenerationSystem]
"""
return self._generation_systems
@generation_systems.setter
def generation_systems(self, value):
"""
Set generation systems connected to the distribution system
:param value: [GenerationSystem]
"""
self._generation_systems = value
@property
def energy_storage_systems(self) -> Union[None, List[EnergyStorageSystem]]:
"""
Get energy storage systems connected to this distribution system
:return: [EnergyStorageSystem]
"""
return self._energy_storage_systems
@energy_storage_systems.setter
def energy_storage_systems(self, value):
"""
Set energy storage systems connected to this distribution system
:param value: [EnergyStorageSystem]
"""
self._energy_storage_systems = value
@property
def emission_systems(self) -> Union[None, List[EmissionSystem]]:
"""
Get energy emission systems connected to this distribution system
:return: [EmissionSystem]
"""
return self._emission_systems
@emission_systems.setter
def emission_systems(self, value):
"""
Set energy emission systems connected to this distribution system
:param value: [EmissionSystem]
"""
self._emission_systems = value

View File

@ -1,83 +1,32 @@
"""
Energy System catalog heat generation system
Electrical storage system
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Saeed Ranjbar saeed.ranjbar@concordia.ca
Code contributors: Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
"""
from __future__ import annotations
from hub.city_model_structure.energy_systems.generic_storage_system import GenericStorageSystem
from hub.city_model_structure.energy_systems.energy_storage_system import EnergyStorageSystem
class ElectricalStorageSystem:
"""
Electrical Storage system class
class ElectricalStorageSystem(EnergyStorageSystem):
""""
Electrical Storage System Class
"""
def __init__(self):
self._model_name = None
self._manufacturer = None
self._generic_storage_system = None
super().__init__()
self._rated_output_power = None
self._nominal_efficiency = None
self._battery_voltage = None
self._depth_of_discharge = None
self._self_discharge_rate = None
@property
def model_name(self):
"""
Get the model name
:return: string
"""
return self._model_name
@model_name.setter
def model_name(self, value):
"""
Set the model name
:return: string
"""
self._model_name = value
@property
def manufacturer(self):
"""
Get the manufacturer name
:return: string
"""
return self._manufacturer
@manufacturer.setter
def manufacturer(self, value):
"""
Set the manufacturer name
:return: string
"""
self._manufacturer = value
@property
def generic_storage_system(self) -> GenericStorageSystem:
"""
Get associated generic_storage_system
:return: GenericStorageSystem
"""
return self._generic_storage_system
@generic_storage_system.setter
def generic_storage_system(self, value):
"""
Set associated generic_storage_system
:param value: GenericStorageSystem
"""
self._generic_storage_system = value
@property
def rated_output_power(self):
"""
Get the rated output power in Watts
Get the rated output power of storage system in Watts
:return: float
"""
return self._rated_output_power
@ -85,15 +34,15 @@ class ElectricalStorageSystem:
@rated_output_power.setter
def rated_output_power(self, value):
"""
Set the rated output power in Watts
:return: float
Set the rated output power of storage system in Watts
:param value: float
"""
self._rated_output_power = value
@property
def nominal_efficiency(self):
"""
Get the nominal efficiency
Get the nominal efficiency of the storage system
:return: float
"""
return self._nominal_efficiency
@ -101,8 +50,8 @@ class ElectricalStorageSystem:
@nominal_efficiency.setter
def nominal_efficiency(self, value):
"""
Set the nominal efficiency
:return: float
Set the nominal efficiency of the storage system
:param value: float
"""
self._nominal_efficiency = value
@ -117,8 +66,8 @@ class ElectricalStorageSystem:
@battery_voltage.setter
def battery_voltage(self, value):
"""
Get the battery voltage in Volts
:return: float
Set the battery voltage in Volts
:param value: float
"""
self._battery_voltage = value
@ -134,7 +83,7 @@ class ElectricalStorageSystem:
def depth_of_discharge(self, value):
"""
Set the depth of discharge as a percentage
:return: float
:param value: float
"""
self._depth_of_discharge = value
@ -149,7 +98,7 @@ class ElectricalStorageSystem:
@self_discharge_rate.setter
def self_discharge_rate(self, value):
"""
Get the self discharge rate of battery as a percentage
:return: float
Set the self discharge rate of battery as a percentage
:param value: float
"""
self._self_discharge_rate = value

View File

@ -1,32 +1,64 @@
"""
Energy emission system definition
Emission system module
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
"""
from hub.city_model_structure.energy_systems.generic_emission_system import GenericEmissionSystem
class EmissionSystem:
"""
EmissionSystem class
"""
def __init__(self):
self._generic_emission_system = None
self._model_name = None
self._type = None
self._parasitic_energy_consumption = 0
@property
def generic_emission_system(self) -> GenericEmissionSystem:
def model_name(self):
"""
Get associated generic_emission_system
:return: GenericEmissionSystem
Get model name
:return: string
"""
return self._generic_emission_system
return self._model_name
@generic_emission_system.setter
def generic_emission_system(self, value):
@model_name.setter
def model_name(self, value):
"""
Set associated
:param value: GenericEmissionSystem
Set model name
:param value: string
"""
self._generic_emission_system = value
self._model_name = value
@property
def type(self):
"""
Get type
:return: string
"""
return self._type
@type.setter
def type(self, value):
"""
Set type
:param value: string
"""
self._type = value
@property
def parasitic_energy_consumption(self):
"""
Get parasitic_energy_consumption in ratio (W/W)
:return: float
"""
return self._parasitic_energy_consumption
@parasitic_energy_consumption.setter
def parasitic_energy_consumption(self, value):
"""
Set parasitic_energy_consumption in ratio (W/W)
:param value: float
"""
self._parasitic_energy_consumption = value

View File

@ -1,27 +1,46 @@
"""
Energy System catalog heat generation system
Energy storage system. Abstract class
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Saeed Ranjbar saeed.ranjbar@concordia.ca
Code contributors: Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
"""
from __future__ import annotations
from abc import ABC
class GenericStorageSystem:
class EnergyStorageSystem(ABC):
"""
Generic storage System class
Energy storage System class
"""
def __init__(self):
self._type_energy_stored = None
self._storage_type = None
self._model_name = None
self._manufacturer = None
self._nominal_capacity = None
self._losses_ratio = None
@property
def type_energy_stored(self):
"""
Get type of energy stored from ['electrical', 'thermal']
:return: string
"""
return self._type_energy_stored
@type_energy_stored.setter
def type_energy_stored(self, value):
"""
Set type of energy stored from ['electrical', 'thermal']
:return: string
"""
self._type_energy_stored = value
@property
def storage_type(self):
"""
Get the type of storage system from [sensible, latent, lithium_ion, NiCd, lead_acid]
Get storage type
:return: string
"""
return self._storage_type
@ -29,11 +48,43 @@ class GenericStorageSystem:
@storage_type.setter
def storage_type(self, value):
"""
Set the type of storage system from [sensible, latent, lithium_ion, NiCd, lead_acid]
:return: string
Get storage type
:param value: string
"""
self._storage_type = value
@property
def model_name(self):
"""
Get system model
:return: string
"""
return self._model_name
@model_name.setter
def model_name(self, value):
"""
Set system model
:param value: string
"""
self._model_name = value
@property
def manufacturer(self):
"""
Get name of manufacturer
:return: string
"""
return self._manufacturer
@manufacturer.setter
def manufacturer(self, value):
"""
Set name of manufacturer
:param value: string
"""
self._manufacturer = value
@property
def nominal_capacity(self):
"""

View File

@ -6,13 +6,12 @@ Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
"""
from typing import Union, List
from pathlib import Path
from hub.city_model_structure.energy_systems.generation_system import GenerationSystem
from hub.city_model_structure.energy_systems.distribution_system import DistributionSystem
from hub.city_model_structure.energy_systems.emission_system import EmissionSystem
from hub.city_model_structure.energy_systems.non_pv_generation_system import NonPvGenerationSystem
from hub.city_model_structure.energy_systems.pv_generation_system import PvGenerationSystem
from hub.city_model_structure.energy_systems.control_system import ControlSystem
from hub.city_model_structure.energy_systems.thermal_storage_system import ThermalStorageSystem
from hub.city_model_structure.energy_systems.electrical_storage_system import ElectricalStorageSystem
from hub.city_model_structure.city_object import CityObject
@ -21,30 +20,13 @@ class EnergySystem:
EnergySystem class
"""
def __init__(self):
self._name = None
self._demand_types = None
self._name = None
self._generation_systems = None
self._distribution_systems = None
self._emission_systems = None
self._configuration_schema = None
self._connected_city_objects = None
self._control_system = None
self._energy_storage_systems = None
@property
def name(self):
"""
Get energy system name
:return: str
"""
return self._name
@name.setter
def name(self, value):
"""
Set energy system name
:param value:
"""
self._name = value
@property
def demand_types(self):
@ -63,58 +45,74 @@ class EnergySystem:
self._demand_types = value
@property
def generation_systems(self) -> List[GenerationSystem]:
def name(self):
"""
Get energy system name
:return: str
"""
return self._name
@name.setter
def name(self, value):
"""
Set energy system name
:param value:
"""
self._name = value
@property
def generation_systems(self) -> Union[List[NonPvGenerationSystem], List[PvGenerationSystem]]:
"""
Get generation systems
:return: GenerationSystem
:return: [GenerationSystem]
"""
return self._generation_systems
@generation_systems.setter
def generation_systems(self, value):
"""
Set generation system
:param value: GenerationSystem
Set generation systems
:return: [GenerationSystem]
"""
self._generation_systems = value
@property
def distribution_systems(self) -> Union[None, List[DistributionSystem]]:
"""
Get distribution system
:return: DistributionSystem
Get distribution systems
:return: [DistributionSystem]
"""
return self._distribution_systems
@distribution_systems.setter
def distribution_systems(self, value):
"""
Set distribution system
:param value: DistributionSystem
Set distribution systems
:param value: [DistributionSystem]
"""
self._distribution_systems = value
@property
def emission_systems(self) -> Union[None, List[EmissionSystem]]:
def configuration_schema(self) -> Path:
"""
Get emission system
:return: EmissionSystem
Get the schema of the system configuration
:return: Path
"""
return self._emission_systems
return self._configuration_schema
@emission_systems.setter
def emission_systems(self, value):
@configuration_schema.setter
def configuration_schema(self, value):
"""
Set emission system
:param value: EmissionSystem
Set the schema of the system configuration
:param value: Path
"""
self._emission_systems = value
self._configuration_schema = value
@property
def connected_city_objects(self) -> Union[None, List[CityObject]]:
"""
Get list of city objects that are connected to this energy system
:return: List[CityObject]
:return: [CityObject]
"""
return self._connected_city_objects
@ -122,7 +120,7 @@ class EnergySystem:
def connected_city_objects(self, value):
"""
Set list of city objects that are connected to this energy system
:param value: List[CityObject]
:param value: [CityObject]
"""
self._connected_city_objects = value
@ -141,19 +139,3 @@ class EnergySystem:
:param value: ControlSystem
"""
self._control_system = value
@property
def energy_storage_systems(self) -> Union[None, List[ThermalStorageSystem], List[ElectricalStorageSystem]]:
"""
Get energy storage systems
:return: [EnergyStorageSystem]
"""
return self._energy_storage_systems
@energy_storage_systems.setter
def energy_storage_systems(self, value):
"""
Set storage system
:param value: [EnergyStorageSystem]
"""
self._energy_storage_systems = value

View File

@ -1,135 +1,70 @@
"""
Energy generation system definition
Energy generation system (abstract class)
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
Code contributors: Saeed Ranjbar saeed.ranjbar@concordia.ca
"""
from __future__ import annotations
from typing import Union
from abc import ABC
from typing import Union, List
from hub.city_model_structure.energy_systems.generic_generation_system import GenericGenerationSystem
from hub.city_model_structure.energy_systems.distribution_system import DistributionSystem
from hub.city_model_structure.energy_systems.thermal_storage_system import ThermalStorageSystem
from hub.city_model_structure.energy_systems.electrical_storage_system import ElectricalStorageSystem
class GenerationSystem:
class GenerationSystem(ABC):
"""
GenerationSystem class
"""
def __init__(self):
self._heat_power = None
self._cooling_power = None
self._electricity_power = None
self._storage_capacity = None
self._generic_generation_system = None
self._auxiliary_equipment = None
self._system_type = None
self._name = None
self._model_name = None
self._manufacturer = None
self._maximum_heat_output = None
self._minimum_heat_output = None
self._maximum_cooling_output = None
self._minimum_cooling_output = None
self._fuel_type = None
self._distribution_systems = None
self._energy_storage_systems = None
self._number_of_units = None
@property
def generic_generation_system(self) -> GenericGenerationSystem:
def system_type(self):
"""
Get associated generic_generation_system
:return: GenericGenerationSystem
Get type
:return: string
"""
return self._generic_generation_system
return self._system_type
@generic_generation_system.setter
def generic_generation_system(self, value):
@system_type.setter
def system_type(self, value):
"""
Set associated generic_generation_system
:param value: GenericGenerationSystem
Set type
:param value: string
"""
self._generic_generation_system = value
self._system_type = value
@property
def heat_power(self):
def name(self):
"""
Get heat_power in W
:return: float
Get name
:return: string
"""
return self._heat_power
return self._name
@heat_power.setter
def heat_power(self, value):
@name.setter
def name(self, value):
"""
Set heat_power in W
:param value: float
Set name
:param value: string
"""
self._heat_power = value
@property
def cooling_power(self):
"""
Get cooling_power in W
:return: float
"""
return self._cooling_power
@cooling_power.setter
def cooling_power(self, value):
"""
Set cooling_power in W
:param value: float
"""
self._cooling_power = value
@property
def electricity_power(self):
"""
Get electricity_power in W
:return: float
"""
return self._electricity_power
@electricity_power.setter
def electricity_power(self, value):
"""
Set electricity_power in W
:param value: float
"""
self._electricity_power = value
@property
def storage_capacity(self):
"""
Get storage_capacity in J
:return: float
"""
return self._storage_capacity
@storage_capacity.setter
def storage_capacity(self, value):
"""
Set storage_capacity in J
:param value: float
"""
self._storage_capacity = value
@property
def auxiliary_equipment(self) -> Union[None, GenerationSystem]:
"""
Get auxiliary_equipment
:return: GenerationSystem
"""
return self._auxiliary_equipment
@auxiliary_equipment.setter
def auxiliary_equipment(self, value):
"""
Set auxiliary_equipment
:param value: GenerationSystem
"""
self._auxiliary_equipment = value
self._name = value
@property
def model_name(self):
"""
Get the model name
Get model name
:return: string
"""
return self._model_name
@ -137,15 +72,15 @@ class GenerationSystem:
@model_name.setter
def model_name(self, value):
"""
Set the model name
:return: string
Set model name
:param value: string
"""
self._model_name = value
@property
def manufacturer(self):
"""
Get the manufacturer name
Get manufacturer's name
:return: string
"""
return self._manufacturer
@ -153,72 +88,71 @@ class GenerationSystem:
@manufacturer.setter
def manufacturer(self, value):
"""
Set the manufacturer name
:return: string
Set manufacturer's name
:param value: string
"""
self._manufacturer = value
@property
def maximum_heat_output(self):
def fuel_type(self):
"""
Get maximum heat output in W
:return: float
Get fuel_type from [Renewable, Gas, Diesel, Electricity, Wood, Coal]
:return: string
"""
return self._maximum_heat_output
return self._fuel_type
@maximum_heat_output.setter
def maximum_heat_output(self, value):
@fuel_type.setter
def fuel_type(self, value):
"""
Set maximum heat output in W
:return: float
Set fuel_type from [Renewable, Gas, Diesel, Electricity, Wood, Coal]
:param value: string
"""
self._maximum_heat_output = value
self._fuel_type = value
@property
def minimum_heat_output(self):
def distribution_systems(self) -> Union[None, List[DistributionSystem]]:
"""
Get minimum heat output in W
:return: float
Get distributions systems connected to this generation system
:return: [DistributionSystem]
"""
return self._minimum_heat_output
return self._distribution_systems
@minimum_heat_output.setter
def minimum_heat_output(self, value):
@distribution_systems.setter
def distribution_systems(self, value):
"""
Set minimum heat output in W
:return: float
Set distributions systems connected to this generation system
:param value: [DistributionSystem]
"""
self._minimum_heat_output = value
self._distribution_systems = value
@property
def maximum_cooling_output(self):
def energy_storage_systems(self) -> Union[None, List[ThermalStorageSystem], List[ElectricalStorageSystem]]:
"""
Get maximum cooling output in W
:return: float
Get energy storage systems connected to this generation system
:return: [EnergyStorageSystem]
"""
return self._maximum_cooling_output
return self._energy_storage_systems
@maximum_cooling_output.setter
def maximum_cooling_output(self, value):
@energy_storage_systems.setter
def energy_storage_systems(self, value):
"""
Set maximum cooling output in W
:return: float
Set energy storage systems connected to this generation system
:param value: [EnergyStorageSystem]
"""
self._maximum_cooling_output = value
self._energy_storage_systems = value
@property
def minimum_cooling_output(self):
def number_of_units(self):
"""
Get minimum cooling output in W
:return: float
Get number of a specific generation unit
:return: int
"""
return self._minimum_cooling_output
return self._number_of_units
@minimum_cooling_output.setter
def minimum_cooling_output(self, value):
@number_of_units.setter
def number_of_units(self, value):
"""
Set minimum cooling output in W
:return: float
Set number of a specific generation unit
:return: int
"""
self._minimum_cooling_output = value
self._number_of_units = value

View File

@ -1,100 +0,0 @@
"""
Generic energy distribution system definition
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
"""
class GenericDistributionSystem:
"""
GenericDistributionSystem class
"""
def __init__(self):
self._type = None
self._supply_temperature = None
self._distribution_consumption_fix_flow = None
self._distribution_consumption_variable_flow = None
self._heat_losses = None
@property
def type(self):
"""
Get type from [air, water, refrigerant]
:return: string
"""
return self._type
@type.setter
def type(self, value):
"""
Set type from [air, water, refrigerant]
:param value: string
"""
self._type = value
@property
def supply_temperature(self):
"""
Get supply_temperature in degree Celsius
:return: float
"""
return self._supply_temperature
@supply_temperature.setter
def supply_temperature(self, value):
"""
Set supply_temperature in degree Celsius
:param value: float
"""
self._supply_temperature = value
@property
def distribution_consumption_fix_flow(self):
"""
Get distribution_consumption if the pump or fan work at fix mass or volume flow in ratio over peak power (W/W)
:return: float
"""
return self._distribution_consumption_fix_flow
@distribution_consumption_fix_flow.setter
def distribution_consumption_fix_flow(self, value):
"""
Set distribution_consumption if the pump or fan work at fix mass or volume flow in ratio over peak power (W/W)
:return: float
"""
self._distribution_consumption_fix_flow = value
@property
def distribution_consumption_variable_flow(self):
"""
Get distribution_consumption if the pump or fan work at variable mass or volume flow in ratio
over energy produced (J/J)
:return: float
"""
return self._distribution_consumption_variable_flow
@distribution_consumption_variable_flow.setter
def distribution_consumption_variable_flow(self, value):
"""
Set distribution_consumption if the pump or fan work at variable mass or volume flow in ratio
over energy produced (J/J)
:return: float
"""
self._distribution_consumption_variable_flow = value
@property
def heat_losses(self):
"""
Get heat_losses in ratio over energy produced
:return: float
"""
return self._heat_losses
@heat_losses.setter
def heat_losses(self, value):
"""
Set heat_losses in ratio over energy produced
:param value: float
"""
self._heat_losses = value

View File

@ -1,30 +0,0 @@
"""
Generic energy emission system module
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
"""
class GenericEmissionSystem:
"""
GenericEmissionSystem class
"""
def __init__(self):
self._parasitic_energy_consumption = None
@property
def parasitic_energy_consumption(self):
"""
Get parasitic_energy_consumption in ratio (W/W)
:return: float
"""
return self._parasitic_energy_consumption
@parasitic_energy_consumption.setter
def parasitic_energy_consumption(self, value):
"""
Set parasitic_energy_consumption in ratio (W/W)
:param value: float
"""
self._parasitic_energy_consumption = value

View File

@ -1,123 +0,0 @@
"""
Generic energy system definition
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
"""
from typing import Union, List
from hub.city_model_structure.energy_systems.generic_distribution_system import GenericDistributionSystem
from hub.city_model_structure.energy_systems.generic_emission_system import GenericEmissionSystem
from hub.city_model_structure.energy_systems.generic_generation_system import GenericGenerationSystem
from hub.city_model_structure.energy_systems.generic_storage_system import GenericStorageSystem
class GenericEnergySystem:
"""
GenericEnergySystem class
"""
def __init__(self):
self._name = None
self._demand_types = None
self._generation_system = None
self._distribution_system = None
self._emission_system = None
self._connected_city_objects = None
self._energy_storage_system = None
@property
def name(self):
"""
Get energy system name
:return: str
"""
return self._name
@name.setter
def name(self, value):
"""
Set energy system name
:param value:
"""
self._name = value
@property
def demand_types(self):
"""
Get demand able to cover from [Heating, Cooling, Domestic Hot Water, Electricity]
:return: [string]
"""
return self._demand_types
@demand_types.setter
def demand_types(self, value):
"""
Set demand able to cover from [Heating, Cooling, Domestic Hot Water, Electricity]
:param value: [string]
"""
self._demand_types = value
@property
def generation_systems(self) -> List[GenericGenerationSystem]:
"""
Get generation system
:return: GenerationSystem
"""
return self._generation_system
@generation_systems.setter
def generation_systems(self, value):
"""
Set generation system
:return: GenerationSystem
"""
self._generation_system = value
@property
def distribution_systems(self) -> Union[None, List[GenericDistributionSystem]]:
"""
Get distribution system
:return: DistributionSystem
"""
return self._distribution_system
@distribution_systems.setter
def distribution_systems(self, value):
"""
Set distribution system
:param value: DistributionSystem
"""
self._distribution_system = value
@property
def emission_systems(self) -> Union[None, List[GenericEmissionSystem]]:
"""
Get emission system
:return: EmissionSystem
"""
return self._emission_system
@emission_systems.setter
def emission_systems(self, value):
"""
Set emission system
:param value: EmissionSystem
"""
self._emission_system = value
@property
def energy_storage_systems(self) -> Union[None, List[GenericStorageSystem]]:
"""
Get storage system
:return: EnergyStorageSystem
"""
return self._energy_storage_system
@energy_storage_systems.setter
def energy_storage_systems(self, value):
"""
Set storage system
:return: EnergyStorageSystem
"""
self._energy_storage_system = value

View File

@ -1,64 +0,0 @@
"""
heat_pump module defines a heat pump
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Peter Yefi peteryefi@gmail.com
"""
from typing import List
from pandas.core.series import Series
class HeatPump:
"""
HeatPump class
"""
def __init__(self):
self._model = None
self._hp_monthly_fossil_consumption = None
self._hp_monthly_electricity_demand = None
@property
def model(self) -> str:
"""
Get model name
:return: str
"""
return self._model
@model.setter
def model(self, value):
"""
Set model (name, indicated in capacity)
:param value: str
"""
if self._model is None:
self._model = value
@property
def hp_monthly_fossil_consumption(self) -> List:
"""
Fossil fuel consumption that results from insel simulation
":return: []
:return:
"""
return self._hp_monthly_fossil_consumption
@hp_monthly_fossil_consumption.setter
def hp_monthly_fossil_consumption(self, value):
if isinstance(value, Series):
self._hp_monthly_fossil_consumption = value
@property
def hp_monthly_electricity_demand(self) -> List:
"""
Electricity demand that results from insel simulation
":return: []
:return:
"""
return self._hp_monthly_electricity_demand
@hp_monthly_electricity_demand.setter
def hp_monthly_electricity_demand(self, value):
if isinstance(value, Series):
self._hp_monthly_electricity_demand = value

View File

@ -1,32 +0,0 @@
"""
HvacTerminalUnit module
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
"""
from typing import Union
class HvacTerminalUnit:
"""
HvacTerminalUnit class
"""
def __init__(self):
self._type = None
@property
def type(self) -> Union[None, str]:
"""
Get type of hvac terminal unit defined for a thermal zone
:return: None or str
"""
return self._type
@type.setter
def type(self, value):
"""
Set type of hvac terminal unit defined for a thermal zone
:param value: str
"""
if value is not None:
self._type = str(value)

View File

@ -1,31 +1,36 @@
"""
Energy System catalog heat generation system
Non PV energy generation system
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Saeed Ranjbar saeed.ranjbar@concordia.ca
Code contributors: Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
Code contributors: Saeed Ranjbar saeed.ranjbar@concordia.ca
"""
from __future__ import annotations
from typing import Union
from hub.city_model_structure.energy_systems.generation_system import GenerationSystem
from hub.city_model_structure.energy_systems.performance_curve import PerformanceCurves
class GenericGenerationSystem:
class NonPvGenerationSystem(GenerationSystem):
"""
GenericGenerationSystem class
NonPvGenerationSystem class
"""
def __init__(self):
self._type = None
self._fuel_type = None
self._source_types = None
super().__init__()
self._nominal_heat_output = None
self._maximum_heat_output = None
self._minimum_heat_output = None
self._heat_efficiency = None
self._nominal_cooling_output = None
self._maximum_cooling_output = None
self._minimum_cooling_output = None
self._cooling_efficiency = None
self._electricity_efficiency = None
self._nominal_electricity_output = None
self._source_medium = None
self._source_temperature = None
self._source_mass_flow = None
self._storage = None
self._auxiliary_equipment = None
self._supply_medium = None
self._maximum_heat_supply_temperature = None
self._minimum_heat_supply_temperature = None
@ -37,54 +42,92 @@ class GenericGenerationSystem:
self._cooling_output_curve = None
self._cooling_fuel_consumption_curve = None
self._cooling_efficiency_curve = None
self._domestic_hot_water = None
self._heat_supply_temperature = None
self._cooling_supply_temperature = None
self._reversible = None
self._simultaneous_heat_cold = None
self._energy_consumption = {}
@property
def type(self):
def nominal_heat_output(self):
"""
Get system type
Get nominal heat output of heat generation devices in W
:return: float
"""
return self._nominal_heat_output
@nominal_heat_output.setter
def nominal_heat_output(self, value):
"""
Set nominal heat output of heat generation devices in W
:param value: float
"""
self._nominal_heat_output = value
@property
def maximum_heat_output(self):
"""
Get maximum heat output of heat generation devices in W
:return: float
"""
return self._maximum_heat_output
@maximum_heat_output.setter
def maximum_heat_output(self, value):
"""
Set maximum heat output of heat generation devices in W
:param value: float
"""
self._maximum_heat_output = value
@property
def minimum_heat_output(self):
"""
Get minimum heat output of heat generation devices in W
:return: float
"""
return self._minimum_heat_output
@minimum_heat_output.setter
def minimum_heat_output(self, value):
"""
Set minimum heat output of heat generation devices in W
:param value: float
"""
self._minimum_heat_output = value
@property
def source_medium(self):
"""
Get source_type from [air, water, ground, district_heating, grid, on_site_electricity]
:return: string
"""
return self._type
return self._source_medium
@type.setter
def type(self, value):
@source_medium.setter
def source_medium(self, value):
"""
Set system type
:param value: string
"""
self._type = value
@property
def fuel_type(self):
"""
Get fuel_type from [Renewable, Gas, Diesel, Electricity, Wood, Coal]
:return: string
"""
return self._fuel_type
@fuel_type.setter
def fuel_type(self, value):
"""
Set fuel_type from [Renewable, Gas, Diesel, Electricity, Wood, Coal]
:param value: string
"""
self._fuel_type = value
@property
def source_types(self):
"""
Get source_type from [Air, Water, Geothermal, District Heating, Grid, Onsite Electricity]
:return: [string]
"""
return self._source_types
@source_types.setter
def source_types(self, value):
"""
Set source_type from [Air, Water, Geothermal, District Heating, Grid, Onsite Electricity]
Set source medium from [Air, Water, Geothermal, District Heating, Grid, Onsite Electricity]
:param value: [string]
"""
self._source_types = value
self._source_medium = value
@property
def supply_medium(self):
"""
Get the supply medium from ['air', 'water']
:return: string
"""
return self._supply_medium
@supply_medium.setter
def supply_medium(self, value):
"""
Set the supply medium from ['air', 'water']
:param value: string
"""
self._supply_medium = value
@property
def heat_efficiency(self):
@ -102,6 +145,54 @@ class GenericGenerationSystem:
"""
self._heat_efficiency = value
@property
def nominal_cooling_output(self):
"""
Get nominal cooling output of heat generation devices in W
:return: float
"""
return self._nominal_cooling_output
@nominal_cooling_output.setter
def nominal_cooling_output(self, value):
"""
Set nominal cooling output of heat generation devices in W
:param value: float
"""
self._nominal_cooling_output = value
@property
def maximum_cooling_output(self):
"""
Get maximum heat output of heat generation devices in W
:return: float
"""
return self._maximum_cooling_output
@maximum_cooling_output.setter
def maximum_cooling_output(self, value):
"""
Set maximum heat output of heat generation devices in W
:param value: float
"""
self._maximum_cooling_output = value
@property
def minimum_cooling_output(self):
"""
Get minimum heat output of heat generation devices in W
:return: float
"""
return self._minimum_cooling_output
@minimum_cooling_output.setter
def minimum_cooling_output(self, value):
"""
Set minimum heat output of heat generation devices in W
:param value: float
"""
self._minimum_cooling_output = value
@property
def cooling_efficiency(self):
"""
@ -167,60 +258,28 @@ class GenericGenerationSystem:
self._source_mass_flow = value
@property
def storage(self):
def nominal_electricity_output(self):
"""
Get boolean storage exists
:return: bool
Get nominal_power_output of electricity generation devices or inverters in W
:return: float
"""
return self._storage
return self._nominal_electricity_output
@storage.setter
def storage(self, value):
@nominal_electricity_output.setter
def nominal_electricity_output(self, value):
"""
Set boolean storage exists
:return: bool
Get nominal_power_output of electricity generation devices or inverters in W
:param value: float
"""
self._storage = value
@property
def auxiliary_equipment(self) -> Union[None, GenericGenerationSystem]:
"""
Get auxiliary_equipment
:return: GenerationSystem
"""
return self._auxiliary_equipment
@auxiliary_equipment.setter
def auxiliary_equipment(self, value):
"""
Set auxiliary_equipment
:return: GenerationSystem
"""
self._auxiliary_equipment = value
@property
def supply_medium(self):
"""
Get the supply medium from ['air', 'water']
:return: string
"""
return self._supply_medium
@supply_medium.setter
def supply_medium(self, value):
"""
Set the supply medium from ['air', 'water']
:param value: string
"""
self._supply_medium = value
self._nominal_electricity_output = value
@property
def maximum_heat_supply_temperature(self):
"""
Get maximum heating supply temperature in degree Celsius
Get the maximum heat supply temperature in degree Celsius
:return: float
"""
return self._maximum_heat_supply_temperature
return self._minimum_heat_supply_temperature
@maximum_heat_supply_temperature.setter
def maximum_heat_supply_temperature(self, value):
@ -233,7 +292,7 @@ class GenericGenerationSystem:
@property
def minimum_heat_supply_temperature(self):
"""
Get minimum heating supply temperature in degree Celsius
Get the minimum heat supply temperature in degree Celsius
:return: float
"""
return self._minimum_heat_supply_temperature
@ -249,7 +308,7 @@ class GenericGenerationSystem:
@property
def maximum_cooling_supply_temperature(self):
"""
Get maximum cooling supply temperature in degree Celsius
Get the maximum cooling supply temperature in degree Celsius
:return: float
"""
return self._maximum_cooling_supply_temperature
@ -265,7 +324,7 @@ class GenericGenerationSystem:
@property
def minimum_cooling_supply_temperature(self):
"""
Get minimum cooling supply temperature in degree Celsius
Get the minimum cooling supply temperature in degree Celsius
:return: float
"""
return self._minimum_cooling_supply_temperature
@ -329,7 +388,7 @@ class GenericGenerationSystem:
@property
def cooling_output_curve(self) -> Union[None, PerformanceCurves]:
"""
Get the cooling output curve of the heat generation device
Get the heat output curve of the heat generation device
:return: PerformanceCurve
"""
return self._cooling_output_curve
@ -373,3 +432,108 @@ class GenericGenerationSystem:
:return: PerformanceCurve
"""
self._cooling_efficiency_curve = value
@property
def domestic_hot_water(self):
"""
Get the capability of generating domestic hot water
:return: bool
"""
return self._domestic_hot_water
@domestic_hot_water.setter
def domestic_hot_water(self, value):
"""
Set the capability of generating domestic hot water
:return: bool
"""
self._domestic_hot_water = value
@property
def heat_supply_temperature(self):
"""
Get the hourly heat supply temperature
:return: list
"""
return self._heat_supply_temperature
@heat_supply_temperature.setter
def heat_supply_temperature(self, value):
"""
set the hourly heat supply temperature
:param value:
:return: list
"""
self._heat_supply_temperature = value
@property
def cooling_supply_temperature(self):
"""
Get the hourly cooling supply temperature
:return: list
"""
return self._heat_supply_temperature
@cooling_supply_temperature.setter
def cooling_supply_temperature(self, value):
"""
set the hourly cooling supply temperature
:param value:
:return: list
"""
self._cooling_supply_temperature = value
@property
def reversibility(self):
"""
Get the capability of generating both heating and cooling
:return: bool
"""
return self._reversible
@reversibility.setter
def reversibility(self, value):
"""
Set the capability of generating domestic hot water
:return: bool
"""
self._reversible = value
@property
def simultaneous_heat_cold(self):
"""
Get the capability of generating both heating and cooling at the same time
:return: bool
"""
return self._simultaneous_heat_cold
@simultaneous_heat_cold.setter
def simultaneous_heat_cold(self, value):
"""
Set the capability of generating domestic hot water at the same time
:return: bool
"""
self._simultaneous_heat_cold = value
@property
def energy_consumption(self) -> dict:
"""
Get energy consumption in W
:return: dict{[float]}
"""
return self._energy_consumption
@energy_consumption.setter
def energy_consumption(self, value):
"""
Set energy consumption in W
:param value: dict{[float]}
"""
self._energy_consumption = value

View File

@ -24,28 +24,29 @@ class PerformanceCurves:
def curve_type(self):
"""
Get the type of the fit function from the following
Linear =>>> y = a*x + b
Linear =>>> y = a + b*x
Exponential =>>> y = a*(b**x)
Polynomial =>>> y = a*(x**2) + b*x + c
Second degree polynomial =>>> y = a + b*x + c*(x**2)
Power =>>> y = a*(x**b)
Second degree multivariable =>>> y = a*(x**2) + b*x + c*x*z + d*z + e*(z**2) + f
Bi-Quadratic =>>> y = a + b*x + c*(x**2) + d*z + e*(z**2) + f*x*z
Get the type of function from ['linear', 'exponential', 'polynomial', 'power', 'second degree multivariable']
Get the type of function from ['linear', 'exponential', 'second degree polynomial', 'power', 'bi-quadratic']
:return: string
"""
return self._curve_type
@curve_type.setter
def curve_type(self, value):
"""
Set the type of the fit function from the following
Linear =>>> y = a*x + b
Linear =>>> y = a + b*x
Exponential =>>> y = a*(b**x)
Polynomial =>>> y = a*(x**2) + b*x + c
Second degree polynomial =>>> y = a + b*x + c*(x**2)
Power =>>> y = a*(x**b)
Second degree multivariable =>>> y = a*(x**2) + b*x + c*x*z + d*z + e*(z**2) + f
Bi-Quadratic =>>> y = a + b*x + c*(x**2) + d*z + e*(z**2) + f*x*z
Get the type of function from ['linear', 'exponential', 'polynomial', 'power', 'second degree multivariable']
Get the type of function from ['linear', 'exponential', 'second degree polynomial', 'power', 'bi-quadratic']
:return: string
"""
self._curve_type = value

View File

@ -0,0 +1,257 @@
"""
PV energy generation system
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
Code contributors: Saeed Ranjbar saeed.ranjbar@concordia.ca
"""
from hub.city_model_structure.energy_systems.generation_system import GenerationSystem
class PvGenerationSystem(GenerationSystem):
"""
PvGenerationSystem class
"""
def __init__(self):
super().__init__()
self._electricity_efficiency = None
self._nominal_electricity_output = None
self._nominal_ambient_temperature = None
self._nominal_cell_temperature = None
self._nominal_radiation = None
self._standard_test_condition_cell_temperature = None
self._standard_test_condition_maximum_power = None
self._standard_test_condition_radiation = None
self._cell_temperature_coefficient = None
self._width = None
self._height = None
self._electricity_power_output = {}
self._tilt_angle = None
self._surface_azimuth = None
self._solar_altitude_angle = None
self._solar_azimuth_angle = None
@property
def nominal_electricity_output(self):
"""
Get nominal_power_output of electricity generation devices or inverters in W
:return: float
"""
return self._nominal_electricity_output
@nominal_electricity_output.setter
def nominal_electricity_output(self, value):
"""
Set nominal_power_output of electricity generation devices or inverters in W
:param value: float
"""
self._nominal_electricity_output = value
@property
def electricity_efficiency(self):
"""
Get electricity_efficiency
:return: float
"""
return self._electricity_efficiency
@electricity_efficiency.setter
def electricity_efficiency(self, value):
"""
Set electricity_efficiency
:param value: float
"""
self._electricity_efficiency = value
@property
def nominal_ambient_temperature(self):
"""
Get nominal ambient temperature of PV panels in degree Celsius
:return: float
"""
return self._nominal_ambient_temperature
@nominal_ambient_temperature.setter
def nominal_ambient_temperature(self, value):
"""
Set nominal ambient temperature of PV panels in degree Celsius
:param value: float
"""
self._nominal_ambient_temperature = value
@property
def nominal_cell_temperature(self):
"""
Get nominal cell temperature of PV panels in degree Celsius
:return: float
"""
return self._nominal_cell_temperature
@nominal_cell_temperature.setter
def nominal_cell_temperature(self, value):
"""
Set nominal cell temperature of PV panels in degree Celsius
:param value: float
"""
self._nominal_cell_temperature = value
@property
def nominal_radiation(self):
"""
Get nominal radiation of PV panels
:return: float
"""
return self._nominal_radiation
@nominal_radiation.setter
def nominal_radiation(self, value):
"""
Set nominal radiation of PV panels
:param value: float
"""
self._nominal_radiation = value
@property
def standard_test_condition_cell_temperature(self):
"""
Get standard test condition cell temperature of PV panels in degree Celsius
:return: float
"""
return self._standard_test_condition_cell_temperature
@standard_test_condition_cell_temperature.setter
def standard_test_condition_cell_temperature(self, value):
"""
Set standard test condition cell temperature of PV panels in degree Celsius
:param value: float
"""
self._standard_test_condition_cell_temperature = value
@property
def standard_test_condition_maximum_power(self):
"""
Get standard test condition maximum power of PV panels in W
:return: float
"""
return self._standard_test_condition_maximum_power
@standard_test_condition_maximum_power.setter
def standard_test_condition_maximum_power(self, value):
"""
Set standard test condition maximum power of PV panels in W
:param value: float
"""
self._standard_test_condition_maximum_power = value
@property
def standard_test_condition_radiation(self):
"""
Get standard test condition radiation in W/m2
:return: float
"""
return self._standard_test_condition_radiation
@standard_test_condition_radiation.setter
def standard_test_condition_radiation(self, value):
"""
Set standard test condition radiation in W/m2
:param value: float
"""
self._standard_test_condition_radiation = value
@property
def cell_temperature_coefficient(self):
"""
Get cell temperature coefficient of PV module
:return: float
"""
return self._cell_temperature_coefficient
@cell_temperature_coefficient.setter
def cell_temperature_coefficient(self, value):
"""
Set cell temperature coefficient of PV module
:param value: float
"""
self._cell_temperature_coefficient = value
@property
def width(self):
"""
Get PV module width in m
:return: float
"""
return self._width
@width.setter
def width(self, value):
"""
Set PV module width in m
:param value: float
"""
self._width = value
@property
def height(self):
"""
Get PV module height in m
:return: float
"""
return self._height
@height.setter
def height(self, value):
"""
Set PV module height in m
:param value: float
"""
self._height = value
@property
def electricity_power_output(self):
"""
Get electricity_power in W
:return: float
"""
return self._electricity_power_output
@electricity_power_output.setter
def electricity_power_output(self, value):
"""
Set electricity_power in W
:param value: float
"""
self._electricity_power_output = value
@property
def tilt_angle(self):
"""
Get tilt angle of PV system in degrees
:return: float
"""
return self._tilt_angle
@tilt_angle.setter
def tilt_angle(self, value):
"""
Set PV system tilt angle in degrees
:param value: float
"""
self._tilt_angle = value
@property
def surface_azimuth(self):
"""
Get surface azimuth angle of PV system in degrees. 0 is North
:return: float
"""
return self._surface_azimuth
@surface_azimuth.setter
def surface_azimuth(self, value):
"""
Set PV system tilt angle in degrees
:param value: float
"""
self._surface_azimuth = value

View File

@ -1,64 +1,35 @@
"""
Energy System catalog heat generation system
Thermal storage system
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Saeed Ranjbar saeed.ranjbar@concordia.ca
Code contributors: Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
Code contributors: Saeed Ranjbar saeed.ranjbar@concordia.ca
"""
from __future__ import annotations
from hub.city_model_structure.energy_systems.generic_storage_system import GenericStorageSystem
from hub.city_model_structure.energy_systems.energy_storage_system import EnergyStorageSystem
from hub.city_model_structure.building_demand.layer import Layer
class ThermalStorageSystem:
class ThermalStorageSystem(EnergyStorageSystem):
""""
Thermal Storage System Class
"""
def __init__(self):
self._model_name = None
self._manufacturer = None
super().__init__()
self._volume = None
self._height = None
self._layers = None
self._maximum_operating_temperature = None
self._generic_storage_system = None
@property
def model_name(self):
"""
Get the model name
:return: string
"""
return self._model_name
@model_name.setter
def model_name(self, value):
"""
Set the model name
:return: string
"""
self._model_name = value
@property
def manufacturer(self):
"""
Get the manufacturer name
:return: string
"""
return self._manufacturer
@manufacturer.setter
def manufacturer(self, value):
"""
Set the manufacturer name
:return: string
"""
self._manufacturer = value
self._heating_coil_capacity = None
self._temperature = None
self._heating_coil_energy_consumption = None
@property
def volume(self):
"""
Get the volume of thermal storage in m3
Get the physical volume of the storage system in cubic meters
:return: float
"""
return self._volume
@ -66,15 +37,15 @@ class ThermalStorageSystem:
@volume.setter
def volume(self, value):
"""
Set the thermal storage volume in m3
:return: float
Set the physical volume of the storage system in cubic meters
:param value: float
"""
self._volume = value
@property
def height(self):
"""
Get the storage height in m
Get the diameter of the storage system in meters
:return: float
"""
return self._height
@ -82,31 +53,31 @@ class ThermalStorageSystem:
@height.setter
def height(self, value):
"""
Set the storage height in m
:return: float
Set the diameter of the storage system in meters
:param value: float
"""
self._height = value
@property
def generic_storage_system(self) -> GenericStorageSystem:
def layers(self) -> [Layer]:
"""
Get associated generic_storage_system
:return: GenericStorageSystem
Get construction layers
:return: [layer]
"""
return self._generic_storage_system
return self._layers
@generic_storage_system.setter
def generic_storage_system(self, value):
@layers.setter
def layers(self, value):
"""
Set associated generic_storage_system
:param value: GenericStorageSystem
Set construction layers
:param value: [layer]
"""
self._generic_storage_system = value
self._layers = value
@property
def maximum_operating_temperature(self):
"""
Get the storage maximum operating temperature in degree Celsius
Get maximum operating temperature of the storage system in degree Celsius
:return: float
"""
return self._maximum_operating_temperature
@ -114,23 +85,55 @@ class ThermalStorageSystem:
@maximum_operating_temperature.setter
def maximum_operating_temperature(self, value):
"""
Set the storage maximum operating temperature in degree Celsius
:return: float
Set maximum operating temperature of the storage system in degree Celsius
:param value: float
"""
self._maximum_operating_temperature = value
@property
def layers(self) -> [Layer]:
def heating_coil_capacity(self):
"""
Get the storage system layers
:return: Layer
Get heating coil capacity in Watts
:return: float
"""
return self._layers
return self._heating_coil_capacity
@layers.setter
def layers(self, value):
@heating_coil_capacity.setter
def heating_coil_capacity(self, value):
"""
Set the storage system layers
:return: Layer
Set heating coil capacity in Watts
:param value: float
"""
self._layers = value
self._heating_coil_capacity = value
@property
def temperature(self) -> dict:
"""
Get fuel consumption in W, m3, or kg
:return: dict{[float]}
"""
return self._temperature
@temperature.setter
def temperature(self, value):
"""
Set fuel consumption in W, m3, or kg
:param value: dict{[float]}
"""
self._temperature = value
@property
def heating_coil_energy_consumption(self) -> dict:
"""
Get fuel consumption in W, m3, or kg
:return: dict{[float]}
"""
return self._heating_coil_energy_consumption
@heating_coil_energy_consumption.setter
def heating_coil_energy_consumption(self, value):
"""
Set fuel consumption in W, m3, or kg
:param value: dict{[float]}
"""
self._heating_coil_energy_consumption = value

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,774 @@
{
"archetypes": [
{
"function": "Large multifamily building",
"period_of_construction": "2021_2050",
"climate_zone": "B3",
"average_storey_height": 3.57,
"thermal_capacity": 83.018,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.0005,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT",
"transparent_surface_name": "PA1_PA2_2021_2050_WIN1",
"transparent_ratio": {
"north": "60",
"east": "5",
"south": "60",
"west": "5"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_ROOF",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOOR"
},
"GroundWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT"
},
"GroundRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOORINT"
}
}
},
{
"function": "Medium multifamily building",
"period_of_construction": "2021_2050",
"climate_zone": "B3",
"average_storey_height": 3.57,
"thermal_capacity": 83.018,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.0005,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT",
"transparent_surface_name": "PA1_PA2_2021_2050_WIN1",
"transparent_ratio": {
"north": "60",
"east": "5",
"south": "60",
"west": "5"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_ROOF",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOOR"
},
"GroundWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT"
},
"GroundRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOORINT"
}
}
},
{
"function": "Small multifamily building",
"period_of_construction": "2021_2050",
"climate_zone": "B3",
"average_storey_height": 3.57,
"thermal_capacity": 83.018,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.0005,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT",
"transparent_surface_name": "PA1_PA2_2021_2050_WIN1",
"transparent_ratio": {
"north": "60",
"east": "5",
"south": "60",
"west": "5"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_ROOF",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOOR"
},
"GroundWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT"
},
"GroundRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOORINT"
}
}
},
{
"function": "Single-family building",
"period_of_construction": "2021_2050",
"climate_zone": "B3",
"average_storey_height": 3.57,
"thermal_capacity": 83.018,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.0005,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT",
"transparent_surface_name": "PA1_PA2_2021_2050_WIN1",
"transparent_ratio": {
"north": "60",
"east": "5",
"south": "60",
"west": "5"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_ROOF",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOOR"
},
"GroundWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT"
},
"GroundRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOORINT"
}
}
},
{
"function": "Large multifamily building",
"period_of_construction": "1961_1980",
"climate_zone": "B3",
"average_storey_height": 3.57,
"thermal_capacity": 3000,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.0045,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_1961_1980_FACEXT1",
"transparent_surface_name": "PA1_PA2_1961_1980_WIN1",
"transparent_ratio": {
"north": "60",
"east": "60",
"south": "60",
"west": "60"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_1961_1980_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_1961_1980_FLOOR1"
},
"GroundWall": {
"opaque_surface_name": "PA1_PA2_1961_1980_FACEXT1"
},
"GroundRoofCeiling": {
"opaque_surface_name": "PA1_PA2_1961_1980_FLOOR4"
}
}
},
{
"function": "Large multifamily building",
"period_of_construction": "1981_2007",
"climate_zone": "B3",
"average_storey_height": 3.2,
"thermal_capacity": 3179,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.003,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "E_1981_2007_FACEXT1",
"transparent_surface_name": "E_1981_2007_WIN1",
"transparent_ratio": {
"north": "45",
"east": "45",
"south": "45",
"west": "45"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "E_1981_2007_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "E_1981_2007_FLOORGR1"
}
}
},
{
"function": "Medium multifamily building",
"period_of_construction": "1800_1900",
"climate_zone": "B3",
"average_storey_height": 4.39,
"thermal_capacity": 3330,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.006,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "A_B1900_FACEXT1",
"transparent_surface_name": "A_B1900_WIN2",
"transparent_ratio": {
"north": "20",
"east": "20",
"south": "20",
"west": "20"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "A_B1900_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "A_B1900_FLOORGR1"
}
}
},
{
"function": "Medium multifamily building",
"period_of_construction": "1901_1940",
"climate_zone": "B3",
"average_storey_height": 3.65,
"thermal_capacity": 3420,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.006,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "B_1901_1940_FACEXT1",
"transparent_surface_name": "B_1901_1940_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "B_1901_1940_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "B_1901_1940_FLOORGR1"
}
}
},
{
"function": "Medium multifamily building",
"period_of_construction": "1941_1960",
"climate_zone": "B3",
"average_storey_height": 3.6,
"thermal_capacity": 3000,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.0055,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": " C_1941_1960_FACEXT1",
"transparent_surface_name": "C_1941_1960_WIN1",
"transparent_ratio": {
"north": "30",
"east": "30",
"south": "30",
"west": "30"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "C_1941_1960_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "C_1941_1960_FLOORGR1"
}
}
},
{
"function": "Medium multifamily building",
"period_of_construction": "1961_1980",
"climate_zone": "B3",
"average_storey_height": 4.5,
"thermal_capacity": 3540,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.0045,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_1961_1980_FACEXT1",
"transparent_surface_name": "PA1_PA2_1961_1980_WIN1",
"transparent_ratio": {
"north": "55",
"east": "55",
"south": "55",
"west": "55"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_1961_1980_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_1961_1980_FLOOR1"
}
}
},
{
"function": "Medium multifamily building",
"period_of_construction": "1981_2007",
"climate_zone": "B3",
"average_storey_height": 3.2,
"thermal_capacity": 3179,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.003,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "E_1981_2007_FACEXT1",
"transparent_surface_name": "E_1981_2007_WIN1",
"transparent_ratio": {
"north": "45",
"east": "45",
"south": "45",
"west": "45"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "E_1981_2007_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "E_1981_2007_FLOORGR1"
}
}
},
{
"function": "Medium multifamily building",
"period_of_construction": "2008_2014",
"climate_zone": "B3",
"average_storey_height": 2.75,
"thermal_capacity": 3290,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.0015,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "F_2008_2014_FACEXT1",
"transparent_surface_name": "F_2008_2014_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "F_2008_2014_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "F_2008_2014_FLOORGR1"
}
}
},
{
"function": "Small multifamily building",
"period_of_construction": "1800_1980",
"climate_zone": "B3",
"average_storey_height": 3.8,
"thermal_capacity": 3527.9,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.006,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA3_PA4_1901_1940_FACEXT1",
"transparent_surface_name": "PA3_PA4_1901_1940_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA3_PA4_1901_1940_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA3_PA4_1901_1940_FLOORGR1"
}
}
},
{
"function": "Small multifamily building",
"period_of_construction": "1981_2007",
"climate_zone": "B3",
"average_storey_height": 3.2,
"thermal_capacity": 3179,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.003,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "E_1981_2007_FACEXT1",
"transparent_surface_name": "E_1981_2007_WIN1",
"transparent_ratio": {
"north": "45",
"east": "45",
"south": "45",
"west": "45"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "E_1981_2007_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "E_1981_2007_FLOORGR1"
}
}
},
{
"function": "Small multifamily building",
"period_of_construction": "2008_2014",
"climate_zone": "B3",
"average_storey_height": 2.75,
"thermal_capacity": 3290,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.0015,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "F_2008_2014_FACEXT1",
"transparent_surface_name": "F_2008_2014_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "F_2008_2014_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "F_2008_2014_FLOORGR1"
}
}
},
{
"function": "Small multifamily building",
"period_of_construction": "2015_2019",
"climate_zone": "B3",
"average_storey_height": 2.75,
"thermal_capacity": 3290,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.0005,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "G_2015_2019_FACEXT1",
"transparent_surface_name": "G_2015_2019_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "G_2015_2019_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "G_2015_2019_FLOORGR1"
}
}
},
{
"function": "Single-family building",
"period_of_construction": "1800_1980",
"climate_zone": "B3",
"average_storey_height": 3.68,
"thermal_capacity": 4400,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.006,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA3_PA4_1901_1940_FACEXT1",
"transparent_surface_name": "PA3_PA4_1901_1940_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA3_PA4_1901_1940_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA3_PA4_1901_1940_FLOORGR1"
}
}
},
{
"function": "Single-family building",
"period_of_construction": "1981_2007",
"climate_zone": "B3",
"average_storey_height": 3.2,
"thermal_capacity": 3179,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.003,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "E_1981_2007_FACEXT1",
"transparent_surface_name": "E_1981_2007_WIN1",
"transparent_ratio": {
"north": "45",
"east": "45",
"south": "45",
"west": "45"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "E_1981_2007_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "E_1981_2007_FLOORGR1"
}
}
},
{
"function": "Single-family building",
"period_of_construction": "2008_2014",
"climate_zone": "B3",
"average_storey_height": 3.75,
"thermal_capacity": 3200,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.0015,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "F_2008_2014_FACEXT1",
"transparent_surface_name": "F_2008_2014_WIN1",
"transparent_ratio": {
"north": "60",
"east": "60",
"south": "60",
"west": "60"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "F_2008_2014_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "F_2008_2014_FLOORGR1"
}
}
},
{
"function": "Single-family building",
"period_of_construction": "2015_2019",
"climate_zone": "B3",
"average_storey_height": 3.75,
"thermal_capacity": 3200,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0.0005,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "G_2015_2019_FACEXT1",
"transparent_surface_name": "G_2015_2019_WIN1",
"transparent_ratio": {
"north": "60",
"east": "60",
"south": "60",
"west": "60"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "G_2015_2019_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "G_2015_2019_FLOORGR1"
}
}
}
]
}

View File

@ -0,0 +1,774 @@
{
"archetypes": [
{
"function": "Large multifamily building",
"period_of_construction": "2021_2050",
"climate_zone": "B3",
"average_storey_height": 3.57,
"thermal_capacity": 83.018,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT",
"transparent_surface_name": "PA1_PA2_2021_2050_WIN1",
"transparent_ratio": {
"north": "60",
"east": "5",
"south": "60",
"west": "5"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_ROOF",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOOR"
},
"GroundWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT"
},
"GroundRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOORINT"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Medium multifamily building",
"period_of_construction": "2021_2050",
"climate_zone": "B3",
"average_storey_height": 3.57,
"thermal_capacity": 83.018,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT",
"transparent_surface_name": "PA1_PA2_2021_2050_WIN1",
"transparent_ratio": {
"north": "60",
"east": "5",
"south": "60",
"west": "5"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_ROOF",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOOR"
},
"GroundWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT"
},
"GroundRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOORINT"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Small multifamily building",
"period_of_construction": "2021_2050",
"climate_zone": "B3",
"average_storey_height": 3.57,
"thermal_capacity": 83.018,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT",
"transparent_surface_name": "PA1_PA2_2021_2050_WIN1",
"transparent_ratio": {
"north": "60",
"east": "5",
"south": "60",
"west": "5"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_ROOF",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOOR"
},
"GroundWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT"
},
"GroundRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOORINT"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Single-family building",
"period_of_construction": "2021_2050",
"climate_zone": "B3",
"average_storey_height": 3.57,
"thermal_capacity": 83.018,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT",
"transparent_surface_name": "PA1_PA2_2021_2050_WIN1",
"transparent_ratio": {
"north": "60",
"east": "5",
"south": "60",
"west": "5"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_ROOF",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOOR"
},
"GroundWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT"
},
"GroundRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOORINT"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Large multifamily building",
"period_of_construction": "1961_1980",
"climate_zone": "B3",
"average_storey_height": 3.57,
"thermal_capacity": 3000,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_1961_1980_FACEXT1",
"transparent_surface_name": "PA1_PA2_1961_1980_WIN1",
"transparent_ratio": {
"north": "60",
"east": "60",
"south": "60",
"west": "60"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_1961_1980_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_1961_1980_FLOOR1"
},
"GroundWall": {
"opaque_surface_name": "PA1_PA2_1961_1980_FACEXT1"
},
"GroundRoofCeiling": {
"opaque_surface_name": "PA1_PA2_1961_1980_FLOOR4"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Large multifamily building",
"period_of_construction": "1981_2007",
"climate_zone": "B3",
"average_storey_height": 3.2,
"thermal_capacity": 3179,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "E_1981_2007_FACEXT1",
"transparent_surface_name": "E_1981_2007_WIN1",
"transparent_ratio": {
"north": "45",
"east": "45",
"south": "45",
"west": "45"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "E_1981_2007_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "E_1981_2007_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Medium multifamily building",
"period_of_construction": "1800_1900",
"climate_zone": "B3",
"average_storey_height": 4.39,
"thermal_capacity": 3330,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "A_B1900_FACEXT1",
"transparent_surface_name": "A_B1900_WIN2",
"transparent_ratio": {
"north": "20",
"east": "20",
"south": "20",
"west": "20"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "A_B1900_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "A_B1900_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Medium multifamily building",
"period_of_construction": "1901_1940",
"climate_zone": "B3",
"average_storey_height": 3.65,
"thermal_capacity": 3420,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "B_1901_1940_FACEXT1",
"transparent_surface_name": "B_1901_1940_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "B_1901_1940_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "B_1901_1940_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Medium multifamily building",
"period_of_construction": "1941_1960",
"climate_zone": "B3",
"average_storey_height": 3.6,
"thermal_capacity": 3000,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": " C_1941_1960_FACEXT1",
"transparent_surface_name": "C_1941_1960_WIN1",
"transparent_ratio": {
"north": "30",
"east": "30",
"south": "30",
"west": "30"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "C_1941_1960_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "C_1941_1960_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Medium multifamily building",
"period_of_construction": "1961_1980",
"climate_zone": "B3",
"average_storey_height": 4.5,
"thermal_capacity": 3540,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_1961_1980_FACEXT1",
"transparent_surface_name": "PA1_PA2_1961_1980_WIN1",
"transparent_ratio": {
"north": "55",
"east": "55",
"south": "55",
"west": "55"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_1961_1980_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_1961_1980_FLOOR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Medium multifamily building",
"period_of_construction": "1981_2007",
"climate_zone": "B3",
"average_storey_height": 3.2,
"thermal_capacity": 3179,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "E_1981_2007_FACEXT1",
"transparent_surface_name": "E_1981_2007_WIN1",
"transparent_ratio": {
"north": "45",
"east": "45",
"south": "45",
"west": "45"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "E_1981_2007_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "E_1981_2007_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Medium multifamily building",
"period_of_construction": "2008_2014",
"climate_zone": "B3",
"average_storey_height": 2.75,
"thermal_capacity": 3290,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "F_2008_2014_FACEXT1",
"transparent_surface_name": "F_2008_2014_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "F_2008_2014_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "F_2008_2014_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Small multifamily building",
"period_of_construction": "1800_1980",
"climate_zone": "B3",
"average_storey_height": 3.8,
"thermal_capacity": 3527.9,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA3_PA4_1901_1940_FACEXT1",
"transparent_surface_name": "PA3_PA4_1901_1940_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA3_PA4_1901_1940_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA3_PA4_1901_1940_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Small multifamily building",
"period_of_construction": "1981_2007",
"climate_zone": "B3",
"average_storey_height": 3.2,
"thermal_capacity": 3179,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "E_1981_2007_FACEXT1",
"transparent_surface_name": "E_1981_2007_WIN1",
"transparent_ratio": {
"north": "45",
"east": "45",
"south": "45",
"west": "45"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "E_1981_2007_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "E_1981_2007_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Small multifamily building",
"period_of_construction": "2008_2014",
"climate_zone": "B3",
"average_storey_height": 2.75,
"thermal_capacity": 3290,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "F_2008_2014_FACEXT1",
"transparent_surface_name": "F_2008_2014_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "F_2008_2014_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "F_2008_2014_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Small multifamily building",
"period_of_construction": "2015_2019",
"climate_zone": "B3",
"average_storey_height": 2.75,
"thermal_capacity": 3290,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "G_2015_2019_FACEXT1",
"transparent_surface_name": "G_2015_2019_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "G_2015_2019_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "G_2015_2019_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Single-family building",
"period_of_construction": "1800_1980",
"climate_zone": "B3",
"average_storey_height": 3.68,
"thermal_capacity": 4400,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA3_PA4_1901_1940_FACEXT1",
"transparent_surface_name": "PA3_PA4_1901_1940_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA3_PA4_1901_1940_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA3_PA4_1901_1940_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Single-family building",
"period_of_construction": "1981_2007",
"climate_zone": "B3",
"average_storey_height": 3.2,
"thermal_capacity": 3179,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "E_1981_2007_FACEXT1",
"transparent_surface_name": "E_1981_2007_WIN1",
"transparent_ratio": {
"north": "45",
"east": "45",
"south": "45",
"west": "45"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "E_1981_2007_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "E_1981_2007_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Single-family building",
"period_of_construction": "2008_2014",
"climate_zone": "B3",
"average_storey_height": 3.75,
"thermal_capacity": 3200,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "F_2008_2014_FACEXT1",
"transparent_surface_name": "F_2008_2014_WIN1",
"transparent_ratio": {
"north": "60",
"east": "60",
"south": "60",
"west": "60"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "F_2008_2014_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "F_2008_2014_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Single-family building",
"period_of_construction": "2015_2019",
"climate_zone": "B3",
"average_storey_height": 3.75,
"thermal_capacity": 3200,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "G_2015_2019_FACEXT1",
"transparent_surface_name": "G_2015_2019_WIN1",
"transparent_ratio": {
"north": "60",
"east": "60",
"south": "60",
"west": "60"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "G_2015_2019_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "G_2015_2019_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
}
]
}

File diff suppressed because it is too large Load Diff

View File

@ -38,53 +38,96 @@
</equipment>
</generation_equipments>
<distribution_equipments>
<equipment id="1" type="Water distribution heating">
<equipment id="1" type="Water distribution heating with baseboards">
<name>Water distribution heating</name>
<distribution_heat_losses units="%">10</distribution_heat_losses>
<distribution_consumption_fix_flow units="%">2</distribution_consumption_fix_flow>
<distribution_consumption_variable_flow units="%">0</distribution_consumption_variable_flow>
<dissipation_id>1</dissipation_id>
</equipment>
<equipment id="2" type="Water distribution cooling">
<equipment id="2" type="Water distribution heating with fan-coils">
<name>Water distribution heating</name>
<distribution_heat_losses units="%">10</distribution_heat_losses>
<distribution_consumption_fix_flow units="%">2</distribution_consumption_fix_flow>
<distribution_consumption_variable_flow units="%">0</distribution_consumption_variable_flow>
<dissipation_id>2</dissipation_id>
</equipment>
<equipment id="3" type="Water distribution heating with inductors">
<name>Water distribution heating</name>
<distribution_heat_losses units="%">10</distribution_heat_losses>
<distribution_consumption_fix_flow units="%">2</distribution_consumption_fix_flow>
<distribution_consumption_variable_flow units="%">0</distribution_consumption_variable_flow>
<dissipation_id>3</dissipation_id>
</equipment>
<equipment id="4" type="Water distribution cooling with fan-coils">
<name>Water distribution cooling</name>
<distribution_heat_losses units="%">5</distribution_heat_losses>
<distribution_consumption_fix_flow units="%">4</distribution_consumption_fix_flow>
<distribution_consumption_variable_flow units="%">0</distribution_consumption_variable_flow>
<dissipation_id>2</dissipation_id>
</equipment>
<equipment id="3" type="Central air distribution heating">
<equipment id="5" type="Central air distribution heating with fan-coils">
<name>Central air distribution heating</name>
<distribution_heat_losses units="%">10</distribution_heat_losses>
<distribution_consumption_fix_flow units="%">0</distribution_consumption_fix_flow>
<distribution_consumption_variable_flow units="%">13</distribution_consumption_variable_flow>
<dissipation_id>2</dissipation_id>
</equipment>
<equipment id="4" type="Central air distribution cooling">
<equipment id="6" type="Central air distribution heating with inductors">
<name>Central air distribution heating</name>
<distribution_heat_losses units="%">10</distribution_heat_losses>
<distribution_consumption_fix_flow units="%">0</distribution_consumption_fix_flow>
<distribution_consumption_variable_flow units="%">13</distribution_consumption_variable_flow>
<dissipation_id>3</dissipation_id>
</equipment>
<equipment id="7" type="Central air distribution cooling with fan-coils">
<name>Central air distribution cooling</name>
<distribution_heat_losses units="%">5</distribution_heat_losses>
<distribution_consumption_fix_flow units="%">0</distribution_consumption_fix_flow>
<distribution_consumption_variable_flow units="%">13</distribution_consumption_variable_flow>
<dissipation_id>2</dissipation_id>
</equipment>
<equipment id="5" type="Local air distribution heating">
<equipment id="8" type="Local air distribution heating with baseboards">
<name>Local air distribution heating</name>
<distribution_heat_losses units="%">5</distribution_heat_losses>
<distribution_consumption_fix_flow units="%">8</distribution_consumption_fix_flow>
<distribution_consumption_variable_flow units="%">0</distribution_consumption_variable_flow>
<dissipation_id>1</dissipation_id>
</equipment>
<equipment id="6" type="Local air distribution cooling">
<equipment id="9" type="Local air distribution heating with inductors">
<name>Local air distribution heating</name>
<distribution_heat_losses units="%">5</distribution_heat_losses>
<distribution_consumption_fix_flow units="%">8</distribution_consumption_fix_flow>
<distribution_consumption_variable_flow units="%">0</distribution_consumption_variable_flow>
<dissipation_id>3</dissipation_id>
</equipment>
<equipment id="10" type="Local air distribution cooling with inductors">
<name>Local air distribution cooling</name>
<distribution_heat_losses units="%">2</distribution_heat_losses>
<distribution_consumption_fix_flow units="%">8</distribution_consumption_fix_flow>
<distribution_consumption_variable_flow units="%">0</distribution_consumption_variable_flow>
<dissipation_id>3</dissipation_id>
</equipment>
<equipment id="7" type="Refrigerant distribution">
<equipment id="11" type="Refrigerant distribution with fan-coils">
<name>Refrigerant distribution</name>
<distribution_heat_losses units="%">1</distribution_heat_losses>
<distribution_consumption_fix_flow units="%">1</distribution_consumption_fix_flow>
<distribution_consumption_variable_flow units="%">0</distribution_consumption_variable_flow>
<dissipation_id>2</dissipation_id>
</equipment>
<equipment id="8" type="No distribution">
<equipment id="12" type="No distribution with baseboards">
<name>No distribution</name>
<distribution_heat_losses units="%">0</distribution_heat_losses>
<distribution_consumption_fix_flow units="%">0</distribution_consumption_fix_flow>
<distribution_consumption_variable_flow units="%">0</distribution_consumption_variable_flow>
<dissipation_id>1</dissipation_id>
</equipment>
<equipment id="13" type="No distribution with inductors">
<name>No distribution</name>
<distribution_heat_losses units="%">0</distribution_heat_losses>
<distribution_consumption_fix_flow units="%">0</distribution_consumption_fix_flow>
<distribution_consumption_variable_flow units="%">0</distribution_consumption_variable_flow>
<dissipation_id>3</dissipation_id>
</equipment>
</distribution_equipments>
<dissipation_equipments>
@ -111,7 +154,6 @@
<equipments>
<generation_id>1</generation_id>
<distribution_id>1</distribution_id>
<dissipation_id>1</dissipation_id>
</equipments>
</system>
<system id = "16">
@ -122,8 +164,7 @@
</demands>
<equipments>
<generation_id>2</generation_id>
<distribution_id>8</distribution_id>
<dissipation_id>1</dissipation_id>
<distribution_id>12</distribution_id>
</equipments>
</system>
<system id = "2">
@ -134,8 +175,7 @@
</demands>
<equipments>
<generation_id>1</generation_id>
<distribution_id>1</distribution_id>
<dissipation_id>2</dissipation_id>
<distribution_id>2</distribution_id>
</equipments>
</system>
<system id="3">
@ -146,8 +186,7 @@
</demands>
<equipments>
<generation_id>2</generation_id>
<distribution_id>1</distribution_id>
<dissipation_id>2</dissipation_id>
<distribution_id>2</distribution_id>
</equipments>
</system>
<system id="4">
@ -158,9 +197,8 @@
</demands>
<equipments>
<generation_id>3</generation_id>
<distribution_id>5</distribution_id>
<dissipation_id>1</dissipation_id>
</equipments>
<distribution_id>8</distribution_id>
g </equipments>
</system>
<system id="5">
<name>Single zone packaged rooftop unit with electrical resistance furnace and baseboards and fuel boiler for acs</name>
@ -170,8 +208,7 @@
</demands>
<equipments>
<generation_id>4</generation_id>
<distribution_id>5</distribution_id>
<dissipation_id>1</dissipation_id>
<distribution_id>8</distribution_id>
</equipments>
</system>
<system id="6">
@ -183,7 +220,6 @@
<equipments>
<generation_id>1</generation_id>
<distribution_id>1</distribution_id>
<dissipation_id>1</dissipation_id>
</equipments>
</system>
<system id="7">
@ -194,8 +230,7 @@
</demands>
<equipments>
<generation_id>2</generation_id>
<distribution_id>8</distribution_id>
<dissipation_id>3</dissipation_id>
<distribution_id>13</distribution_id>
</equipments>
</system>
<system id="8">
@ -206,8 +241,7 @@
</demands>
<equipments>
<generation_id>2</generation_id>
<distribution_id>1</distribution_id>
<dissipation_id>3</dissipation_id>
<distribution_id>3</distribution_id>
</equipments>
</system>
<system id="9">
@ -218,8 +252,7 @@
</demands>
<equipments>
<generation_id>2</generation_id>
<distribution_id>8</distribution_id>
<dissipation_id>3</dissipation_id>
<distribution_id>13</distribution_id>
</equipments>
</system>
<system id="10">
@ -229,8 +262,7 @@
</demands>
<equipments>
<generation_id>5</generation_id>
<distribution_id>6</distribution_id>
<dissipation_id>3</dissipation_id>
<distribution_id>10</distribution_id>
</equipments>
</system>
<system id="11">
@ -240,8 +272,7 @@
</demands>
<equipments>
<generation_id>5</generation_id>
<distribution_id>2</distribution_id>
<dissipation_id>2</dissipation_id>
<distribution_id>4</distribution_id>
</equipments>
</system>
<system id="12">
@ -251,8 +282,7 @@
</demands>
<equipments>
<generation_id>5</generation_id>
<distribution_id>6</distribution_id>
<dissipation_id>3</dissipation_id>
<distribution_id>10</distribution_id>
</equipments>
</system>
<system id="13">
@ -262,8 +292,7 @@
</demands>
<equipments>
<generation_id>5</generation_id>
<distribution_id>6</distribution_id>
<dissipation_id>3</dissipation_id>
<distribution_id>10</distribution_id>
</equipments>
</system>
<system id="14">
@ -273,8 +302,7 @@
</demands>
<equipments>
<generation_id>5</generation_id>
<distribution_id>3</distribution_id>
<dissipation_id>3</dissipation_id>
<distribution_id>6</distribution_id>
</equipments>
</system>
<system id="15">
@ -284,8 +312,7 @@
</demands>
<equipments>
<generation_id>6</generation_id>
<distribution_id>5</distribution_id>
<dissipation_id>3</dissipation_id>
<distribution_id>9</distribution_id>
</equipments>
</system>
<system id="17">
@ -296,8 +323,7 @@
</demands>
<equipments>
<generation_id>7</generation_id>
<distribution_id>3</distribution_id>
<dissipation_id>2</dissipation_id>
<distribution_id>5</distribution_id>
</equipments>
</system>
<system id="18">
@ -307,8 +333,7 @@
</demands>
<equipments>
<generation_id>7</generation_id>
<distribution_id>4</distribution_id>
<dissipation_id>2</dissipation_id>
<distribution_id>7</distribution_id>
</equipments>
</system>
</systems>

File diff suppressed because it is too large Load Diff

View File

@ -1,232 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<EnergySystemCatalog>
<medias>
<media media_id="1" media_name="Water" density="981.0" heatCapacity="4180.0" evaporationTemperature="100.0"/>
</medias>
<energy_generation_components>
<boilers generation_id="1" name="Natural-Gas Boiler" modelName="ALP080B" manufacturer="Alpine" installedThermalPower="21.0" minimumHeatOutput="4.7" maximumHeatOutput="23.5" modulationRange="0.88" nominalEfficiency="0.95" combi="true" fuel="natural gas"/>
<boilers generation_id="2" name="Natural-Gas Boiler" modelName="ALP105B" manufacturer="Alpine" installedThermalPower="28.0" minimumHeatOutput="6.15" maximumHeatOutput="30.8" modulationRange="0.88" nominalEfficiency="0.95" combi="true" fuel="natural gas"/>
<boilers generation_id="3" name="Natural-Gas Boiler" modelName="ALP150B" manufacturer="Alpine" installedThermalPower="40.0" minimumHeatOutput="8.8" maximumHeatOutput="44" modulationRange="0.88" nominalEfficiency="0.95" combi="true" fuel="natural gas"/>
<boilers generation_id="4" name="Natural-Gas Boiler" modelName="ALP210B" manufacturer="Alpine" installedThermalPower="57.0" minimumHeatOutput="12.3" maximumHeatOutput="61.5" modulationRange="0.87" nominalEfficiency="0.95" combi="true" fuel="natural gas"/>
<boilers generation_id="5" name="Natural-Gas Boiler" modelName="ALTAC-136" manufacturer="Alta" installedThermalPower="33.0" minimumHeatOutput="4.0" maximumHeatOutput="35.2" modulationRange="0.95" nominalEfficiency="0.95" combi="true" fuel="natural gas"/>
<boilers generation_id="6" name="Natural-Gas Boiler" modelName="ALTA-120" manufacturer="Alta" installedThermalPower="33.0" minimumHeatOutput="4.0" maximumHeatOutput="35.2" modulationRange="0.95" nominalEfficiency="0.95" combi="false" fuel="natural gas"/>
<boilers generation_id="7" name="Natural-Gas Boiler" modelName="ASPN-085" manufacturer="Aspen" installedThermalPower="23.15" minimumHeatOutput="2.5" maximumHeatOutput="25.0" modulationRange="0.97" nominalEfficiency="0.96" fuel="natural gas"/>
<boilers generation_id="8" name="Natural-Gas Boiler" modelName="ASPN-110" manufacturer="Aspen" installedThermalPower="30.19" minimumHeatOutput="3.2" maximumHeatOutput="32.0" modulationRange="0.96" nominalEfficiency="0.96" fuel="natural gas"/>
<boilers generation_id="9" name="Natural-Gas Boiler" modelName="ASPNC-155" manufacturer="Aspen" installedThermalPower="42.5" minimumHeatOutput="4.5" maximumHeatOutput="45.0" modulationRange="0.96" nominalEfficiency="0.95" combi="true" fuel="natural gas"/>
<boilers generation_id="10" name="Natural-Gas Boiler" modelName="K2WTC-135B" manufacturer="K2" installedThermalPower="32.8" minimumHeatOutput="3.5" maximumHeatOutput="35.0" modulationRange="0.96" nominalEfficiency="0.95" combi="true" fuel="natural gas"/>
<boilers generation_id="11" name="Natural-Gas Boiler" modelName="K2WTC-180B" manufacturer="K2" installedThermalPower="49.5" minimumHeatOutput="5.3" maximumHeatOutput="53.0" modulationRange="0.96" nominalEfficiency="0.95" combi="true" fuel="natural gas"/>
<photovoltaicModules generation_id="12" name="Photovoltaic Module" modelName="445MS" manufacturer="Canadian Solar" nominalPower="334.0" nominalEfficiency="0.201" nominalRadiation="800.0" STCRadiation="1000.0" nominalCellTemperature="41.0" STCCellTemperature="26.0" nominalAmbientTemperature="20.0" STCMaxPower="445.0" CellTemperatureCoefficient="-0.0034" height="1.048" width="2.01"/>
<heatPumps generation_id="13" name="Air-to-Water Heat Pump" modelName="CMAA 012" description="A second degree equation is used in form of A*T_source^2 + B*T_source + C*T_source*T_sup + D*T_sup + E*T_sup^2 + F" manufacturer="TRANE" installedThermalPower="51.7" minimumHeatOutput="0" maximumHeatOutput="51.7" modulationRange="0.0" fuel="Electricity" heatSource="Air" nominalCOP="3.32" maxHeatingSupTemperature="55.0" minHeatingSupTemperature="6.0" maxCoolingSupTemperature="30.0" minCoolingSupTemperature="11.0" supply_medium="water">
<performance_curve curve_type="second degree multivariable function">
<dependant_variable>COP</dependant_variable>
<parameters>source_temperature</parameters>
<parameters>supply_temperature</parameters>
<coefficients a="9.5E-4" b="0.177" c="-0.00242" d="-0.155" e="9.3E-4" f="8.044"/>
</performance_curve>
</heatPumps>
<heatPumps generation_id="14" name="Air-to-Water Heat Pump" modelName="CMAA 70" description="A second degree equation is used in form of A*T_source^2 + B*T_source + C*T_source*T_sup + D*T_sup + E*T_sup^2 + F" manufacturer="TRANE" installedThermalPower="279.3" minimumHeatOutput="0" maximumHeatOutput="279.3" modulationRange="0.0" fuel="Electricity" heatSource="Air" nominalCOP="3.07" maxHeatingSupTemperature="55.0" minHeatingSupTemperature="6.0" maxCoolingSupTemperature="30.0" minCoolingSupTemperature="11.0" supply_medium="water">
<performance_curve curve_type="second degree multivariable function">
<dependant_variable>COP</dependant_variable>
<parameters>source_temperature</parameters>
<parameters>supply_temperature</parameters>
<coefficients a="0.0011" b="0.207" c="-0.00292" d="-0.187" e="0.00121" f="8.95"/>
</performance_curve>
</heatPumps>
<heatPumps generation_id="15" name="Air-to-Water Heat Pump" modelName="CMAA 140" description="A second degree equation is used in form of A*T_source^2 + B*T_source + C*T_source*T_sup + D*T_sup + E*T_sup^2 + F" manufacturer="TRANE" installedThermalPower="557" minimumHeatOutput="0" maximumHeatOutput="557" modulationRange="0.0" fuel="Electricity" heatSource="Air" nominalCOP="3.46" maxHeatingSupTemperature="55.0" minHeatingSupTemperature="6.0" maxCoolingSupTemperature="30.0" minCoolingSupTemperature="11.0" supply_medium="water">
<performance_curve curve_type="second degree multivariable function">
<dependant_variable>COP</dependant_variable>
<parameters>source_temperature</parameters>
<parameters>supply_temperature</parameters>
<coefficients a="0.00109" b="0.209" c="-0.00291" d="-0.172" e="0.00102" f="8.95"/>
</performance_curve>
</heatPumps>
<templateGenerationEquipments generation_id="16" name="template Natural-Gas Boiler" nominalEfficiency="0.90" fuel="natural gas"/>
<templateGenerationEquipments generation_id="17" name="template Electric Boiler" nominalEfficiency="0.95" fuel="electricity"/>
<templateGenerationEquipments generation_id="18" name="template Air-to-Water Heat Pump" fuel="electricity" heatSource="Air" nominalCOP="3" supply_medium="water"/>
<templateGenerationEquipments generation_id="19" name="template Groundwater-to-Water Heat Pump" fuel="electricity" heatSource="Ground" nominalCOP="3.5" supply_medium="water"/>
<templateGenerationEquipments generation_id="20" name="template Water-to-Water Heat Pump" fuel="electricity" heatSource="Water" nominalCOP="3.5" supply_medium="water"/>
<templateGenerationEquipments generation_id="21" name="template Photovoltaic Module" nominalEfficiency="0.2" width="1.0" height="1.0"/>
<manufacturers manufacturer_id="1" name="Alpine" country="USA" product="Natural Gas Boiler"/>
<manufacturers manufacturer_id="2" name="Alta" country="USA" product="Natural Gas Boiler"/>
<manufacturers manufacturer_id="3" name="Aspen" country="USA" product="Natural Gas Boiler"/>
<manufacturers manufacturer_id="4" name="K2" country="USA" product="Natural Gas Boiler"/>
<manufacturers manufacturer_id="5" name="TRANE" product="Air-to-Water Heat Pump"/>
<manufacturers manufacturer_id="6" name="Canadian Solar" country="Canada" product="Photovoltaic Module"/>
</energy_generation_components>
<energy_storage_components>
<thermalStorages storage_id="1" name="Hot Water Storage Tank" modelName="HF 200" manufacturer="reflex" maxTemp="95.0">
<insulation material_id="1" insulationMaterial="Polyurethane" insulationThickness="90.0"/>
<physical_characteristics material_id="2" tankThickness="0" height="1.5" tankMaterial="Steel" volume="0.5"/>
<medium media_id="1" usesMedium="Water"/>
</thermalStorages>
<thermalStorages storage_id="2" name="Hot Water Storage Tank" modelName="HF 300" manufacturer="reflex" maxTemp="95.0">
<insulation material_id="1" insulationMaterial="Polyurethane" insulationThickness="90.0"/>
<physical_characteristics material_id="2" tankThickness="0" height="1.5" tankMaterial="Steel" volume="0.6"/>
<medium media_id="1" usesMedium="Water"/>
</thermalStorages>
<thermalStorages storage_id="3" name="Hot Water Storage Tank" modelName="HF 500" manufacturer="reflex" maxTemp="95.0">
<insulation material_id="1" insulationMaterial="Polyurethane" insulationThickness="90.0"/>
<physical_characteristics material_id="2" tankThickness="0" height="1.5" tankMaterial="Steel" volume="0.5"/>
<medium media_id="1" usesMedium="Water"/>
</thermalStorages>
<thermalStorages storage_id="4" name="Hot Water Storage Tank" modelName="HF 200" manufacturer="reflex" maxTemp="95.0">
<insulation material_id="1" insulationMaterial="Polyurethane" insulationThickness="90.0"/>
<physical_characteristics material_id="2" tankThickness="0" height="1.5" tankMaterial="Steel" volume="0.5"/>
<medium media_id="1" usesMedium="Water"/>
</thermalStorages>
<thermalStorages storage_id="5" name="Hot Water Storage Tank" modelName="HF 200" manufacturer="reflex" maxTemp="95.0">
<insulation material_id="1" insulationMaterial="Polyurethane" insulationThickness="90.0"/>
<physical_characteristics material_id="2" tankThickness="0" height="1.5" tankMaterial="Steel" volume="0.5"/>
<medium media_id="1" usesMedium="Water"/>
</thermalStorages>
<templateStorages storage_id="6" name="template Hot Water Storage Tank" maxTemp="95.0">
<insulation material_id="1" insulationMaterial="Polyurethane" insulationThickness="90.0"/>
<physical_characteristics material_id="2" tankThickness="0" height="1.5" tankMaterial="Steel"/>
<medium media_id="1" usesMedium="Water"/>
</templateStorages>
<manufacturers manufacturer_id="1" name="reflex" product="Storage Tank"/>
</energy_storage_components>
<materials>
<material material_id="1" name="Polyurethane" thermalConductivity="0.028"/>
<material material_id="2" name="Steel" thermalConductivity="18.0"/>
</materials>
<systems>
<system id="1">
<name>Air Source Heat Pump with Natural Gas Boiler and thermal storage</name>
<demands>
<demand>heating</demand>
<demand>domestic_hot_water</demand>
</demands>
<components>
<generation_id>16</generation_id>
<generation_id>18</generation_id>
<storage_id>6</storage_id>
</components>
</system>
<system id="2">
<name>Air Source Heat Pump with Electrical Boiler and thermal storage</name>
<demands>
<demand>heating</demand>
<demand>domestic_hot_water</demand>
</demands>
<components>
<generation_id>17</generation_id>
<generation_id>18</generation_id>
<storage_id>6</storage_id>
</components>
</system>
<system id="3">
<name>Ground Source Heat Pump with Natural Gas Boiler and thermal storage</name>
<demands>
<demand>heating</demand>
<demand>domestic_hot_water</demand>
</demands>
<components>
<generation_id>16</generation_id>
<generation_id>19</generation_id>
<storage_id>6</storage_id>
</components>
</system>
<system id="4">
<name>Ground Source Heat Pump with Electrical Boiler and thermal storage</name>
<demands>
<demand>heating</demand>
<demand>domestic_hot_water</demand>
</demands>
<components>
<generation_id>17</generation_id>
<generation_id>19</generation_id>
<storage_id>6</storage_id>
</components>
</system>
<system id="5">
<name>Water Source Heat Pump with Natural Gas Boiler and thermal storage</name>
<demands>
<demand>heating</demand>
<demand>domestic_hot_water</demand>
</demands>
<components>
<generation_id>16</generation_id>
<generation_id>20</generation_id>
<storage_id>6</storage_id>
</components>
</system>
<system id="6">
<name>Water Source Heat Pump with Electrical Boiler and thermal storage</name>\
<demands>
<demand>heating</demand>
<demand>domestic_hot_water</demand>
</demands>
<components>
<generation_id>17</generation_id>
<generation_id>20</generation_id>
<storage_id>6</storage_id>
</components>
</system>
<system id="7">
<name>Photovoltaic System</name>
<demands>
<demand>electricity</demand>
</demands>
<components>
<generation_id>21</generation_id>
</components>
</system>
</systems>
<system_archetypes>
<system_archetype id="1">
<name>PV+ASHP+GasBoiler+TES</name>
<schema>schemas/PV+ASHP+GasBoiler+TES.jpg</schema>
<systems>
<system_id>7</system_id>
<system_id>1</system_id>
</systems>
</system_archetype>
<system_archetype id="2">
<name>PV+ASHP+ElectricBoiler+TES</name>
<schema>schemas/PV+ASHP+ElectricBoiler+TES.jpg</schema>
<systems>
<system_id>7</system_id>
<system_id>2</system_id>
</systems>
</system_archetype>
<system_archetype id="3">
<name>PV+GSHP+GasBoiler+TES</name>
<schema>schemas/PV+GSHP+GasBoiler+TES.jpg</schema>
<systems>
<system_id>7</system_id>
<system_id>3</system_id>
</systems>
</system_archetype>
<system_archetype id="4">
<name>PV+GSHP+ElectricBoiler+TES</name>
<schema>schemas/PV+GSHP+ElectricBoiler+TES.jpg</schema>
<systems>
<system_id>7</system_id>
<system_id>4</system_id>
</systems>
</system_archetype>
<system_archetype id="5">
<name>PV+WSHP+GasBoiler+TES</name>
<schema>schemas/PV+WSHP+GasBoiler+TES.jpg</schema>
<systems>
<system_id>7</system_id>
<system_id>5</system_id>
</systems>
</system_archetype>
<system_archetype id="6">
<name>PV+WSHP+ElectricBoiler+TES</name>
<schema>schemas/PV+WSHP+ElectricBoiler+TES.jpg</schema>
<systems>
<system_id>7</system_id>
<system_id>6</system_id>
</systems>
</system_archetype>
</system_archetypes>
<energy_demands>
<demand demand_id="1" name="heating"/>
<demand demand_id="2" name="domesticHotWater"/>
<demand demand_id="3" name="electricity"/>
<demand demand_id="4" name="cooling"/>
</energy_demands>
</EnergySystemCatalog>

View File

@ -0,0 +1,809 @@
<?xml version="1.0" encoding="UTF-8"?>
<EnergySystemCatalog>
<schemas_path>./schemas/</schemas_path>
<media>
<medium>
<medium_id>1</medium_id>
<name>Water</name>
<solar_absorptance/>
<thermal_absorptance/>
<visible_absorptance/>
<no_mass/>
<thermal_resistance/>
<density>981.0</density>
<specific_heat>4180.0</specific_heat>
<conductivity>0.6</conductivity>
</medium>
</media>
<energy_generation_components>
<non_pv_generation_component>
<system_id>1</system_id>
<name>Natural-Gas Boiler</name>
<system_type>boiler</system_type>
<model_name/>
<manufacturer/>
<nominal_heat_output/>
<minimum_heat_output/>
<maximum_heat_output/>
<heat_efficiency>0.7</heat_efficiency>
<reversible>False</reversible>
<fuel_type>natural gas</fuel_type>
<source_medium/>
<supply_medium/>
<nominal_cooling_output/>
<minimum_cooling_output/>
<maximum_cooling_output/>
<cooling_efficiency/>
<electricity_efficiency/>
<source_temperature/>
<source_mass_flow/>
<nominal_electricity_output/>
<maximum_heat_supply_temperature/>
<minimum_heat_supply_temperature/>
<maximum_cooling_supply_temperature/>
<minimum_cooling_supply_temperature/>
<heat_output_curve/>
<heat_fuel_consumption_curve/>
<heat_efficiency_curve/>
<cooling_output_curve/>
<cooling_fuel_consumption_curve/>
<cooling_efficiency_curve/>
<distribution_systems/>
<energy_storage_systems/>
<domestic_hot_water>True</domestic_hot_water>
<heat_supply_temperature/>
<cooling_supply_temperature/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</non_pv_generation_component>
<non_pv_generation_component>
<system_id>2</system_id>
<name>Joule</name>
<system_type>joule</system_type>
<model_name/>
<manufacturer/>
<nominal_heat_output/>
<minimum_heat_output/>
<maximum_heat_output/>
<heat_efficiency>1</heat_efficiency>
<reversible>False</reversible>
<fuel_type>electricity</fuel_type>
<source_medium/>
<supply_medium/>
<nominal_cooling_output/>
<minimum_cooling_output/>
<maximum_cooling_output/>
<cooling_efficiency/>
<electricity_efficiency/>
<source_temperature/>
<source_mass_flow/>
<nominal_electricity_output/>
<maximum_heat_supply_temperature/>
<minimum_heat_supply_temperature/>
<maximum_cooling_supply_temperature/>
<minimum_cooling_supply_temperature/>
<heat_output_curve/>
<heat_fuel_consumption_curve/>
<heat_efficiency_curve/>
<cooling_output_curve/>
<cooling_fuel_consumption_curve/>
<cooling_efficiency_curve/>
<distribution_systems/>
<energy_storage_systems/>
<domestic_hot_water>True</domestic_hot_water>
<heat_supply_temperature/>
<cooling_supply_temperature/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</non_pv_generation_component>
<non_pv_generation_component>
<system_id>3</system_id>
<name>Heat Pump</name>
<system_type>heat pump</system_type>
<model_name/>
<manufacturer/>
<nominal_heat_output/>
<minimum_heat_output/>
<maximum_heat_output/>
<heat_efficiency>2</heat_efficiency>
<reversible>True</reversible>
<fuel_type>electricity</fuel_type>
<source_medium>Air</source_medium>
<supply_medium>Water</supply_medium>
<nominal_cooling_output/>
<minimum_cooling_output/>
<maximum_cooling_output/>
<cooling_efficiency>2</cooling_efficiency>
<electricity_efficiency/>
<source_temperature/>
<source_mass_flow/>
<nominal_electricity_output/>
<maximum_heat_supply_temperature/>
<minimum_heat_supply_temperature/>
<maximum_cooling_supply_temperature/>
<minimum_cooling_supply_temperature/>
<heat_output_curve/>
<heat_fuel_consumption_curve/>
<heat_efficiency_curve/>
<cooling_output_curve/>
<cooling_fuel_consumption_curve/>
<cooling_efficiency_curve/>
<distribution_systems/>
<energy_storage_systems/>
<domestic_hot_water>False</domestic_hot_water>
<heat_supply_temperature/>
<cooling_supply_temperature/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</non_pv_generation_component>
<non_pv_generation_component>
<system_id>4</system_id>
<name>Butane Heater</name>
<system_type>butane heater</system_type>
<model_name/>
<manufacturer/>
<nominal_heat_output/>
<minimum_heat_output/>
<maximum_heat_output/>
<heat_efficiency>0.7</heat_efficiency>
<reversible>False</reversible>
<fuel_type>butane</fuel_type>
<source_medium/>
<supply_medium/>
<nominal_cooling_output/>
<minimum_cooling_output/>
<maximum_cooling_output/>
<cooling_efficiency/>
<electricity_efficiency/>
<source_temperature/>
<source_mass_flow/>
<nominal_electricity_output/>
<maximum_heat_supply_temperature/>
<minimum_heat_supply_temperature/>
<maximum_cooling_supply_temperature/>
<minimum_cooling_supply_temperature/>
<heat_output_curve/>
<heat_fuel_consumption_curve/>
<heat_efficiency_curve/>
<cooling_output_curve/>
<cooling_fuel_consumption_curve/>
<cooling_efficiency_curve/>
<distribution_systems/>
<energy_storage_systems/>
<domestic_hot_water>True</domestic_hot_water>
<heat_supply_temperature/>
<cooling_supply_temperature/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</non_pv_generation_component>
<non_pv_generation_component>
<system_id>5</system_id>
<name>Split</name>
<system_type>split</system_type>
<model_name/>
<manufacturer/>
<nominal_heat_output/>
<minimum_heat_output/>
<maximum_heat_output/>
<heat_efficiency/>
<reversible>False</reversible>
<fuel_type>electricity</fuel_type>
<source_medium/>
<supply_medium/>
<nominal_cooling_output/>
<minimum_cooling_output/>
<maximum_cooling_output/>
<cooling_efficiency>2</cooling_efficiency>
<electricity_efficiency/>
<source_temperature/>
<source_mass_flow/>
<nominal_electricity_output/>
<maximum_heat_supply_temperature/>
<minimum_heat_supply_temperature/>
<maximum_cooling_supply_temperature/>
<minimum_cooling_supply_temperature/>
<heat_output_curve/>
<heat_fuel_consumption_curve/>
<heat_efficiency_curve/>
<cooling_output_curve/>
<cooling_fuel_consumption_curve/>
<cooling_efficiency_curve/>
<distribution_systems/>
<energy_storage_systems/>
<domestic_hot_water>False</domestic_hot_water>
<heat_supply_temperature/>
<cooling_supply_temperature/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</non_pv_generation_component>
<non_pv_generation_component>
<system_id>6</system_id>
<name>Domestic Hot Water Heat Pump</name>
<system_type>heat pump</system_type>
<model_name/>
<manufacturer/>
<nominal_heat_output/>
<minimum_heat_output/>
<maximum_heat_output/>
<heat_efficiency>3</heat_efficiency>
<reversible>False</reversible>
<fuel_type>electricity</fuel_type>
<source_medium>Air</source_medium>
<supply_medium>Water</supply_medium>
<nominal_cooling_output/>
<minimum_cooling_output/>
<maximum_cooling_output/>
<cooling_efficiency/>
<electricity_efficiency/>
<source_temperature/>
<source_mass_flow/>
<nominal_electricity_output/>
<maximum_heat_supply_temperature/>
<minimum_heat_supply_temperature/>
<maximum_cooling_supply_temperature/>
<minimum_cooling_supply_temperature/>
<heat_output_curve/>
<heat_fuel_consumption_curve/>
<heat_efficiency_curve/>
<cooling_output_curve/>
<cooling_fuel_consumption_curve/>
<cooling_efficiency_curve/>
<distribution_systems/>
<energy_storage_systems/>
<domestic_hot_water>True</domestic_hot_water>
<heat_supply_temperature/>
<cooling_supply_temperature/>
<simultaneous_heat_cold/>
</non_pv_generation_component>
<pv_generation_component>
<system_id>7</system_id>
<name>template Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<model_name/>
<manufacturer/>
<nominal_electricity_output/>
<electricity_efficiency>0.2</electricity_efficiency>
<nominal_ambient_temperature>20</nominal_ambient_temperature>
<nominal_cell_temperature>45</nominal_cell_temperature>
<nominal_radiation>800</nominal_radiation>
<standard_test_condition_cell_temperature>25</standard_test_condition_cell_temperature>
<standard_test_condition_radiation>1000</standard_test_condition_radiation>
<standard_test_condition_maximum_power>500</standard_test_condition_maximum_power>
<cell_temperature_coefficient/>
<width>2.0</width>
<height>1.0</height>
<distribution_systems/>
<energy_storage_systems/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</pv_generation_component>
<pv_generation_component>
<system_id>8</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<model_name>RE400CAA Pure 2</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>305</nominal_electricity_output>
<electricity_efficiency>0.206</electricity_efficiency>
<nominal_ambient_temperature>20</nominal_ambient_temperature>
<nominal_cell_temperature>44</nominal_cell_temperature>
<nominal_radiation>800</nominal_radiation>
<standard_test_condition_cell_temperature>25</standard_test_condition_cell_temperature>
<standard_test_condition_radiation>1000</standard_test_condition_radiation>
<standard_test_condition_maximum_power>400</standard_test_condition_maximum_power>
<cell_temperature_coefficient>0.24</cell_temperature_coefficient>
<width>1.86</width>
<height>1.04</height>
<distribution_systems/>
<energy_storage_systems/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</pv_generation_component>
<pv_generation_component>
<system_id>9</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<model_name>RE410CAA Pure 2</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>312</nominal_electricity_output>
<electricity_efficiency>0.211</electricity_efficiency>
<nominal_ambient_temperature>20</nominal_ambient_temperature>
<nominal_cell_temperature>44</nominal_cell_temperature>
<nominal_radiation>800</nominal_radiation>
<standard_test_condition_cell_temperature>25</standard_test_condition_cell_temperature>
<standard_test_condition_radiation>1000</standard_test_condition_radiation>
<standard_test_condition_maximum_power>410</standard_test_condition_maximum_power>
<cell_temperature_coefficient>0.24</cell_temperature_coefficient>
<width>1.86</width>
<height>1.04</height>
<distribution_systems/>
<energy_storage_systems/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</pv_generation_component>
<pv_generation_component>
<system_id>10</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<model_name>RE420CAA Pure 2</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>320</nominal_electricity_output>
<electricity_efficiency>0.217</electricity_efficiency>
<nominal_ambient_temperature>20</nominal_ambient_temperature>
<nominal_cell_temperature>44</nominal_cell_temperature>
<nominal_radiation>800</nominal_radiation>
<standard_test_condition_cell_temperature>25</standard_test_condition_cell_temperature>
<standard_test_condition_radiation>1000</standard_test_condition_radiation>
<standard_test_condition_maximum_power>420</standard_test_condition_maximum_power>
<cell_temperature_coefficient>0.24</cell_temperature_coefficient>
<width>1.86</width>
<height>1.04</height>
<distribution_systems/>
<energy_storage_systems/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</pv_generation_component>
<pv_generation_component>
<system_id>11</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<model_name>RE430CAA Pure 2</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>327</nominal_electricity_output>
<electricity_efficiency>0.222</electricity_efficiency>
<nominal_ambient_temperature>20</nominal_ambient_temperature>
<nominal_cell_temperature>44</nominal_cell_temperature>
<nominal_radiation>800</nominal_radiation>
<standard_test_condition_cell_temperature>25</standard_test_condition_cell_temperature>
<standard_test_condition_radiation>1000</standard_test_condition_radiation>
<standard_test_condition_maximum_power>430</standard_test_condition_maximum_power>
<cell_temperature_coefficient>0.24</cell_temperature_coefficient>
<width>1.86</width>
<height>1.04</height>
<distribution_systems/>
<energy_storage_systems/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</pv_generation_component>
<pv_generation_component>
<system_id>12</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<model_name>REC600AA Pro M</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>457</nominal_electricity_output>
<electricity_efficiency>0.211</electricity_efficiency>
<nominal_ambient_temperature>20</nominal_ambient_temperature>
<nominal_cell_temperature>44</nominal_cell_temperature>
<nominal_radiation>800</nominal_radiation>
<standard_test_condition_cell_temperature>25</standard_test_condition_cell_temperature>
<standard_test_condition_radiation>1000</standard_test_condition_radiation>
<standard_test_condition_maximum_power>600</standard_test_condition_maximum_power>
<cell_temperature_coefficient>0.24</cell_temperature_coefficient>
<width>2.17</width>
<height>1.3</height>
<distribution_systems/>
<energy_storage_systems/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</pv_generation_component>
<pv_generation_component>
<system_id>13</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<model_name>REC610AA Pro M</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>464</nominal_electricity_output>
<electricity_efficiency>0.215</electricity_efficiency>
<nominal_ambient_temperature>20</nominal_ambient_temperature>
<nominal_cell_temperature>44</nominal_cell_temperature>
<nominal_radiation>800</nominal_radiation>
<standard_test_condition_cell_temperature>25</standard_test_condition_cell_temperature>
<standard_test_condition_radiation>1000</standard_test_condition_radiation>
<standard_test_condition_maximum_power>610</standard_test_condition_maximum_power>
<cell_temperature_coefficient>0.24</cell_temperature_coefficient>
<width>2.17</width>
<height>1.3</height>
<distribution_systems/>
<energy_storage_systems/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</pv_generation_component>
<pv_generation_component>
<system_id>14</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<model_name>REC620AA Pro M</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>472</nominal_electricity_output>
<electricity_efficiency>0.218</electricity_efficiency>
<nominal_ambient_temperature>20</nominal_ambient_temperature>
<nominal_cell_temperature>44</nominal_cell_temperature>
<nominal_radiation>800</nominal_radiation>
<standard_test_condition_cell_temperature>25</standard_test_condition_cell_temperature>
<standard_test_condition_radiation>1000</standard_test_condition_radiation>
<standard_test_condition_maximum_power>620</standard_test_condition_maximum_power>
<cell_temperature_coefficient>0.24</cell_temperature_coefficient>
<width>2.17</width>
<height>1.3</height>
<distribution_systems/>
<energy_storage_systems/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</pv_generation_component>
<pv_generation_component>
<system_id>15</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<model_name>REC630AA Pro M</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>480</nominal_electricity_output>
<electricity_efficiency>0.222</electricity_efficiency>
<nominal_ambient_temperature>20</nominal_ambient_temperature>
<nominal_cell_temperature>44</nominal_cell_temperature>
<nominal_radiation>800</nominal_radiation>
<standard_test_condition_cell_temperature>25</standard_test_condition_cell_temperature>
<standard_test_condition_radiation>1000</standard_test_condition_radiation>
<standard_test_condition_maximum_power>630</standard_test_condition_maximum_power>
<cell_temperature_coefficient>0.24</cell_temperature_coefficient>
<width>2.17</width>
<height>1.3</height>
<distribution_systems/>
<energy_storage_systems/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</pv_generation_component>
<pv_generation_component>
<system_id>16</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<model_name>REC640AA Pro M</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>487</nominal_electricity_output>
<electricity_efficiency>0.215</electricity_efficiency>
<nominal_ambient_temperature>20</nominal_ambient_temperature>
<nominal_cell_temperature>44</nominal_cell_temperature>
<nominal_radiation>800</nominal_radiation>
<standard_test_condition_cell_temperature>25</standard_test_condition_cell_temperature>
<standard_test_condition_radiation>1000</standard_test_condition_radiation>
<standard_test_condition_maximum_power>640</standard_test_condition_maximum_power>
<cell_temperature_coefficient>0.24</cell_temperature_coefficient>
<width>2.17</width>
<height>1.3</height>
<distribution_systems/>
<energy_storage_systems/>
<simultaneous_heat_cold>False</simultaneous_heat_cold>
</pv_generation_component>
</energy_generation_components>
<energy_storage_components>
<thermalStorages>
<storage_id>6</storage_id>
<name>template Hot Water Storage Tank</name>
<type_energy_stored>thermal</type_energy_stored>
<model_name/>
<manufacturer/>
<maximum_operating_temperature>95.0</maximum_operating_temperature>
<insulation>
<material_id>1</material_id>
<insulationThickness>90.0</insulationThickness>
</insulation>
<physical_characteristics>
<material_id>2</material_id>
<tankThickness>0</tankThickness>
<height>1.5</height>
<tankMaterial>Steel</tankMaterial>
<volume/>
</physical_characteristics>
<storage_medium>
<medium_id>1</medium_id>
</storage_medium>
<storage_type>sensible</storage_type>
<nominal_capacity/>
<losses_ratio/>
<heating_coil_capacity/>
</thermalStorages>
<thermalStorages>
<storage_id>7</storage_id>
<name>template Hot Water Storage Tank with Heating Coil</name>
<type_energy_stored>thermal</type_energy_stored>
<model_name/>
<manufacturer/>
<maximum_operating_temperature>95.0</maximum_operating_temperature>
<insulation>
<material_id>1</material_id>
<insulationThickness>90.0</insulationThickness>
</insulation>
<physical_characteristics>
<material_id>2</material_id>
<tankThickness>0</tankThickness>
<height>1.5</height>
<tankMaterial>Steel</tankMaterial>
<volume/>
</physical_characteristics>
<storage_medium>
<medium_id>1</medium_id>
</storage_medium>
<storage_type>sensible</storage_type>
<nominal_capacity/>
<losses_ratio/>
<heating_coil_capacity>5000</heating_coil_capacity>
</thermalStorages>
</energy_storage_components>
<materials>
<material>
<material_id>1</material_id>
<name>Polyurethane</name>
<solar_absorptance/>
<thermal_absorptance/>
<visible_absorptance/>
<no_mass/>
<thermal_resistance/>
<density/>
<specific_heat/>
<conductivity>0.028</conductivity>
</material>
<material>
<material_id>2</material_id>
<name>Steel</name>
<solar_absorptance/>
<thermal_absorptance/>
<visible_absorptance/>
<no_mass/>
<thermal_resistance/>
<density/>
<specific_heat/>
<conductivity>18</conductivity>
</material>
</materials>
<distribution_systems>
<distribution_system/>
</distribution_systems>
<dissipation_systems>
<dissipation_system/>
</dissipation_systems>
<systems>
<system>
<id>1</id>
<name>Central gas system</name>
<schema/>
<demands>
<demand>heating</demand>
<demand>domestic_hot_water</demand>
</demands>
<components>
<generation_id>1</generation_id>
</components>
</system>
<system>
<id>2</id>
<name>Central Joule system</name>
<schema/>
<demands>
<demand>heating</demand>
<demand>domestic_hot_water</demand>
</demands>
<components>
<generation_id>2</generation_id>
</components>
</system>
<system>
<id>3</id>
<name>Central butane system</name>
<schema/>
<demands>
<demand>heating</demand>
<demand>domestic_hot_water</demand>
</demands>
<components>
<generation_id>4</generation_id>
</components>
</system>
<system>
<id>4</id>
<name>Single zone split system</name>
<schema/>
<demands>
<demand>cooling</demand>
</demands>
<components>
<generation_id>5</generation_id>
</components>
</system>
<system>
<id>5</id>
<name>4 pipe heat pump system</name>
<schema/>
<demands>
<demand>heating</demand>
<demand>cooling</demand>
</demands>
<components>
<generation_id>3</generation_id>
</components>
</system>
<system>
<id>6</id>
<name>PV</name>
<schema/>
<demands>
<demand>electricity</demand>
</demands>
<components>
<generation_id>7</generation_id>
</components>
</system>
<system>
<id>7</id>
<name>Gas heating</name>
<schema/>
<demands>
<demand>heating</demand>
</demands>
<components>
<generation_id>1</generation_id>
</components>
</system>
<system>
<id>8</id>
<name>Electrical heating</name>
<schema/>
<demands>
<demand>heating</demand>
</demands>
<components>
<generation_id>2</generation_id>
</components>
</system>
<system>
<id>9</id>
<name>Butane heating</name>
<schema/>
<demands>
<demand>heating</demand>
</demands>
<components>
<generation_id>4</generation_id>
</components>
</system>
<system>
<id>10</id>
<name>Gas hot water system</name>
<schema/>
<demands>
<demand>domestic_hot_water</demand>
</demands>
<components>
<generation_id>1</generation_id>
</components>
</system>
<system>
<id>11</id>
<name>Electrical hot water system</name>
<schema/>
<demands>
<demand>domestic_hot_water</demand>
</demands>
<components>
<generation_id>2</generation_id>
</components>
</system>
<system>
<id>12</id>
<name>Butane hot water system</name>
<schema/>
<demands>
<demand>domestic_hot_water</demand>
</demands>
<components>
<generation_id>4</generation_id>
</components>
</system>
<system>
<id>13</id>
<name>Heat Pump hot water system</name>
<schema/>
<demands>
<demand>domestic_hot_water</demand>
</demands>
<components>
<generation_id>6</generation_id>
</components>
</system>
</systems>
<system_archetypes>
<system_archetype id="1">
<name>Gas boiler for heating and hot water heater with split cooling</name>
<systems>
<system_id>1</system_id>
<system_id>4</system_id>
</systems>
</system_archetype>
<system_archetype id="2">
<name>Joule heater for heating and hot water heater with split cooling</name>
<systems>
<system_id>2</system_id>
<system_id>4</system_id>
</systems>
</system_archetype>
<system_archetype id="3">
<name>Butane heater for heating and hot water heater with split cooling</name>
<systems>
<system_id>3</system_id>
<system_id>4</system_id>
</systems>
</system_archetype>
<system_archetype id="4">
<name>Gas heating</name>
<systems>
<system_id>1</system_id>
</systems>
</system_archetype>
<system_archetype id="5">
<name>Electrical joule heating</name>
<systems>
<system_id>2</system_id>
</systems>
</system_archetype>
<system_archetype id="6">
<name>Butane heating</name>
<systems>
<system_id>3</system_id>
</systems>
</system_archetype>
<system_archetype id="7">
<name>Heat pump with gas water heater</name>
<systems>
<system_id>5</system_id>
<system_id>7</system_id>
</systems>
</system_archetype>
<system_archetype id="8">
<name>Heat pump with joule water heater</name>
<systems>
<system_id>5</system_id>
<system_id>8</system_id>
</systems>
</system_archetype>
<system_archetype id="9">
<name>Heat pump with butane water heater</name>
<systems>
<system_id>5</system_id>
<system_id>9</system_id>
</systems>
</system_archetype>
<system_archetype id="10">
<name>Heat pump with gas water heater and rooftop PV</name>
<systems>
<system_id>5</system_id>
<system_id>7</system_id>
<system_id>6</system_id>
</systems>
</system_archetype>
<system_archetype id="11">
<name>Heat pump with joule water heater and rooftop PV</name>
<systems>
<system_id>5</system_id>
<system_id>8</system_id>
<system_id>6</system_id>
</systems>
</system_archetype>
<system_archetype id="12">
<name>Rooftop PV</name>
<systems>
<system_id>6</system_id>
</systems>
</system_archetype>
<system_archetype id="13">
<name>Joule heater with split cooling and gas hot water</name>
<systems>
<system_id>4</system_id>
<system_id>8</system_id>
<system_id>10</system_id>
</systems>
</system_archetype>
<system_archetype id="14">
<name>Joule heater with split cooling and butane hot water</name>
<systems>
<system_id>4</system_id>
<system_id>8</system_id>
<system_id>12</system_id>
</systems>
</system_archetype>
<system_archetype id="15">
<name>PV and heat pump</name>
<systems>
<system_id>5</system_id>
<system_id>6</system_id>
<system_id>13</system_id>
</systems>
</system_archetype>
</system_archetypes>
</EnergySystemCatalog>

View File

Before

Width:  |  Height:  |  Size: 64 KiB

After

Width:  |  Height:  |  Size: 64 KiB

View File

Before

Width:  |  Height:  |  Size: 64 KiB

After

Width:  |  Height:  |  Size: 64 KiB

View File

Before

Width:  |  Height:  |  Size: 64 KiB

After

Width:  |  Height:  |  Size: 64 KiB

View File

Before

Width:  |  Height:  |  Size: 64 KiB

After

Width:  |  Height:  |  Size: 64 KiB

View File

Before

Width:  |  Height:  |  Size: 64 KiB

After

Width:  |  Height:  |  Size: 64 KiB

View File

Before

Width:  |  Height:  |  Size: 64 KiB

After

Width:  |  Height:  |  Size: 64 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 64 KiB

View File

@ -1,6 +0,0 @@
<?xml version="1.0" encoding="UTF-8" ?>
<nrcan base_url="https://raw.githubusercontent.com/NREL/openstudio-standards/master/lib/openstudio-standards/standards/necb/">
<space_types>NECB2015/data/space_types.json</space_types>
<space_types_compliance>NECB2015/qaqc/qaqc_data/space_compliance_2015.json</space_types_compliance>>
<schedules>NECB2015/data/schedules.json</schedules>
</nrcan>

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,904 @@
{
"tables": {
"schedules": {
"data_type": "table",
"refs": [
"DBHE CTE Tabla b-Anejo D"
],
"table": [
{
"name": "DBHE-CTE-Occupancy-sensible",
"category": "Occupancy",
"units": "FRACTION",
"day_types": "Default|Wkdy",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
1,
1,
1,
1,
1,
1,
0.25,
0.25,
0.25,
0.25,
0.25,
0.25,
0.25,
0.25,
0.5,
0.5,
0.5,
0.5,
0.5,
0.5,
0.5,
0.5,
0.5,
1
]
},
{
"name": "DBHE-CTE-Occupancy-sensible",
"category": "Occupancy",
"units": "FRACTION",
"day_types": "Sat",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1
]
},
{
"name": "DBHE-CTE-Occupancy-sensible",
"category": "Occupancy",
"units": "FRACTION",
"day_types": "Sun|Hol",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1
]
},
{
"name": "DBHE-CTE-Occupancy-latent",
"category": "Occupancy",
"units": "FRACTION",
"day_types": "Default|Wkdy",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
1,
1,
1,
1,
1,
1,
0.25,
0.25,
0.25,
0.25,
0.25,
0.25,
0.25,
0.25,
0.5,
0.5,
0.5,
0.5,
0.5,
0.5,
0.5,
0.5,
0.5,
1
]
},
{
"name": "DBHE-CTE-Occupancy-latent",
"category": "Occupancy",
"units": "FRACTION",
"day_types": "Sat",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1
]
},
{
"name": "DBHE-CTE-Occupancy-latent",
"category": "Occupancy",
"units": "FRACTION",
"day_types": "Sun|Hol",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1
]
},
{
"name": "DBHE-CTE-Lighting",
"category": "Lighting",
"units": "FRACTION",
"day_types": "Default|Wkdy",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.5,
1,
1,
1,
1,
1,
0.5
]
},
{
"name": "DBHE-CTE-Lighting",
"category": "Lighting",
"units": "FRACTION",
"day_types": "Sat",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.5,
1,
1,
1,
1,
1,
0.5
]
},
{
"name": "DBHE-CTE-Lighting",
"category": "Lighting",
"units": "FRACTION",
"day_types": "Sun|Hol",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.5,
1,
1,
1,
1,
1,
0.5
]
},
{
"name": "DBHE-CTE-Equipment",
"category": "Equipment",
"units": "FRACTION",
"day_types": "Default|Wkdy",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.5,
1,
1,
1,
1,
1,
0.5
]
},
{
"name": "DBHE-CTE-Equipment",
"category": "Equipment",
"units": "FRACTION",
"day_types": "Sat",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.5,
1,
1,
1,
1,
1,
0.5
]
},
{
"name": "DBHE-CTE-Equipment",
"category": "Equipment",
"units": "FRACTION",
"day_types": "Sun|Hol",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.33,
0.5,
1,
1,
1,
1,
1,
0.5
]
},
{
"name": "DBHE-CTE-Thermostat Setpoint-Heating",
"category": "Thermostat Setpoint",
"units": "TEMPERATURE",
"day_types": "Default|Wkdy",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
17.0,
17.0,
17.0,
17.0,
17.0,
17.0,
17.0,
21.0,
21.0,
21.0,
21.0,
21.0,
21.0,
21.0,
21.0,
21.0,
21.0,
21.0,
21.0,
21.0,
21.0,
20.0,
17.0,
17.0
]
},
{
"name": "DBHE-CTE-Thermostat Setpoint-Heating",
"category": "Thermostat Setpoint",
"units": "TEMPERATURE",
"day_types": "Sat",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
22.0,
18.0,
18.0,
18.0,
18.0,
18.0,
18.0,
20.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0
]
},
{
"name": "DBHE-CTE-Thermostat Setpoint-Heating",
"category": "Thermostat Setpoint",
"units": "TEMPERATURE",
"day_types": "Sun|Hol",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
22.0,
18.0,
18.0,
18.0,
18.0,
18.0,
18.0,
20.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0,
22.0
]
},
{
"name": "DBHE-CTE-Thermostat Setpoint-Cooling",
"category": "Thermostat Setpoint",
"units": "TEMPERATURE",
"day_types": "Default|Wkdy",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
28.0,
28.0,
28.0,
28.0,
28.0,
28.0,
28.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
28.0,
28.0
]
},
{
"name": "DBHE-CTE-Thermostat Setpoint-Cooling",
"category": "Thermostat Setpoint",
"units": "TEMPERATURE",
"day_types": "Sat",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
28.0,
28.0,
28.0,
28.0,
28.0,
28.0,
28.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
28.0,
28.0
]
},
{
"name": "DBHE-CTE-Thermostat Setpoint-Cooling",
"category": "Thermostat Setpoint",
"units": "TEMPERATURE",
"day_types": "Sun|Hol",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
28.0,
28.0,
28.0,
28.0,
28.0,
28.0,
28.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
25.0,
28.0,
28.0
]
},
{
"name": "Always On",
"category": "Unknown",
"units": null,
"day_types": "Default",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Constant",
"notes": null,
"values": [
1.0
]
},
{
"name": "default_HVAC_schedule",
"category": "Fan",
"units": "ON_OFF",
"day_types": "Default|Wkdy",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0
]
},
{
"name": "default_HVAC_schedule",
"category": "Fan",
"units": "ON_OFF",
"day_types": "Sat",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0
]
},
{
"name": "default_HVAC_schedule",
"category": "Fan",
"units": "ON_OFF",
"day_types": "Sun|Hol",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0
]
},
{
"name": "DBHE-CTE-Service Water Heating",
"category": "Service Water Heating",
"units": "FRACTION",
"day_types": "Default|Wkdy",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
0.01,
0.00,
0.00,
0.00,
0.00,
0.01,
0.03,
0.1,
0.07,
0.07,
0.06,
0.06,
0.05,
0.05,
0.04,
0.03,
0.04,
0.04,
0.05,
0.07,
0.06,
0.06,
0.05,
0.05
]
},
{
"name": "DBHE-CTE-Service Water Heating",
"category": "Service Water Heating",
"units": "FRACTION",
"day_types": "Sat",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
0.01,
0.00,
0.00,
0.00,
0.00,
0.01,
0.03,
0.1,
0.07,
0.07,
0.06,
0.06,
0.05,
0.05,
0.04,
0.03,
0.04,
0.04,
0.05,
0.07,
0.06,
0.06,
0.05,
0.05
]
},
{
"name": "DBHE-CTE-Service Water Heating",
"category": "Service Water Heating",
"units": "FRACTION",
"day_types": "Sun|Hol",
"start_date": "2014-01-01T00:00:00+00:00",
"end_date": "2014-12-31T00:00:00+00:00",
"type": "Hourly",
"notes": null,
"values": [
0.01,
0.00,
0.00,
0.00,
0.00,
0.01,
0.03,
0.1,
0.07,
0.07,
0.06,
0.06,
0.05,
0.05,
0.04,
0.03,
0.04,
0.04,
0.05,
0.07,
0.06,
0.06,
0.05,
0.05
]
}
]
}}}

View File

@ -0,0 +1,30 @@
{
"tables": {
"space_compliance": {
"data_type": "table",
"refs": {
"lighting_per_area_w_per_m2": "DBHE-CTE Tabla b-Anejo D",
"occupancy_per_area_people_per_m2": "DBHE CTE Tabla b-Anejo D",
"occupancy_schedule": "DBHE-CTE Tabla b-Anejo D",
"electric_equipment_per_area_w_per_m2": "DBHE CTE Tabla b-Anejo D"
},
"tolerance": {
"lighting_per_area_w_per_m2": 1,
"occupancy_per_area_people_per_m2": 3,
"occupancy_schedule": null,
"electric_equipment_per_area_w_per_m2": 1
},
"table": [
{
"template": "DBHE-CTE",
"building_type": "residential",
"space_type": "WholeBuilding",
"lighting_per_area_w_per_m2": 4.4,
"occupancy_per_area_people_per_m2": 0.014333333,
"occupancy_schedule": "DBHE-CTE-Occupancy",
"electric_equipment_per_area_w_per_m2": 4.4,
"service_water_heating_peak_flow_per_area": 0.02272990107962068
}]
}
}
}

View File

@ -0,0 +1,97 @@
{
"tables": {
"space_types": {
"data_type": "table",
"refs": [
"assumption"
],
"table": [
{
"building_type": "residential",
"space_type": "WholeBuilding",
"rgb": "255_255_255",
"lighting_standard": "DBHE-CTE",
"lighting_primary_space_type": "residential",
"lighting_secondary_space_type": "WholeBuilding",
"lighting_per_area": 4.4,
"lighting_per_person": null,
"additional_lighting_per_area": null,
"rel_absence_occ": 0.0,
"personal_control": 0.0,
"occ_sense": 0.0,
"lighting_fraction_to_return_air": 0.0,
"lighting_fraction_radiant": 0.5,
"lighting_fraction_visible": 0.2,
"lighting_fraction_replaceable": null,
"lpd_fractionlinear_fluorescent": 1.0,
"lpd_fractioncompact_fluorescent": null,
"lpd_fractionhigh_bay": null,
"lpd_fractionspecialty_lighting": null,
"lpd_fractionexit_lighting": null,
"lighting_schedule": "DBHE-CTE-Lighting",
"compact_fluorescent_lighting_schedule": null,
"high_bay_lighting_schedule": null,
"specialty_lighting_schedule": null,
"exit_lighting_schedule": null,
"target_illuminance_setpoint": 125,
"target_illuminance_setpoint_ref": null,
"psa_nongeometry_fraction": null,
"ssa_nongeometry_fraction": null,
"ventilation_standard": null,
"ventilation_primary_space_type": "residential",
"ventilation_secondary_space_type": "WholeBuilding",
"ventilation_per_area": 0,
"ventilation_per_person": 0,
"ventilation_air_changes": 0.4,
"minimum_total_air_changes": null,
"occupancy_per_area": 2.15,
"occupancy_schedule": "DBHE-CTE-Occupancy-sensible",
"occupancy_activity_schedule": null,
"infiltration_per_exterior_area": 0.4,
"infiltration_per_exterior_wall_area": null,
"infiltration_air_changes": null,
"infiltration_schedule": "Always On",
"infiltration_schedule_perimeter": null,
"gas_equipment_per_area": null,
"gas_equipment_fraction_latent": null,
"gas_equipment_fraction_radiant": null,
"gas_equipment_fraction_lost": null,
"gas_equipment_schedule": null,
"electric_equipment_per_area": 4.4,
"electric_equipment_fraction_latent": 0.0,
"electric_equipment_fraction_radiant": 0.5,
"electric_equipment_fraction_lost": 0.0,
"electric_equipment_schedule": "DBHE-CTE-Equipment",
"additional_electric_equipment_schedule": null,
"additional_gas_equipment_schedule": null,
"heating_setpoint_schedule": "DBHE-CTE-Thermostat Setpoint-Heating",
"cooling_setpoint_schedule": "DBHE-CTE-Thermostat Setpoint-Cooling",
"service_water_heating_peak_flow_rate": null,
"service_water_heating_area": null,
"service_water_heating_peak_flow_per_area": 0.009385225,
"service_water_heating_target_temperature": 60.0,
"service_water_heating_fraction_sensible": null,
"service_water_heating_fraction_latent": null,
"service_water_heating_schedule": "DBHE-CTE-Service Water Heating",
"exhaust_per_area": null,
"exhaust_fan_efficiency": null,
"exhaust_fan_power": null,
"exhaust_fan_pressure_rise": null,
"exhaust_fan_maximum_flow_rate": null,
"exhaust_schedule": null,
"balanced_exhaust_fraction_schedule": null,
"is_residential": null,
"necb_hvac_system_selection_type": "residential",
"necb_schedule_type": "G",
"notes": null,
"ventilation_occupancy_rate_people_per_1000ft2": 10,
"ventilation_occupancy_standard": null,
"ventilation_standard_space_type": null,
"sensible_convective_internal_gain": 0.86,
"sensible_radiative_internal_gain": 1.29,
"latent_internal_gain": 1.36
}
]
}
}
}

View File

@ -7,11 +7,15 @@ Code contributors: Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concord
Oriol Gavalda Torrellas oriol.gavalda@concordia.ca
"""
import copy
import datetime
import glob
import os
from pathlib import Path
from geomeppy import IDF
import hub.helpers.constants as cte
from hub.city_model_structure.attributes.schedule import Schedule
from hub.city_model_structure.building_demand.thermal_zone import ThermalZone
from hub.helpers.configuration_helper import ConfigurationHelper
class Idf:
@ -55,7 +59,6 @@ class Idf:
_SIMPLE = 'Simple'
idf_surfaces = {
# todo: make an enum for all the surface types
cte.WALL: 'wall',
cte.GROUND: 'floor',
cte.ROOF: 'roof'
@ -148,20 +151,20 @@ class Idf:
def _add_material(self, layer):
for material in self._idf.idfobjects[self._MATERIAL]:
if material.Name == layer.name:
if material.Name == layer.material_name:
return
for material in self._idf.idfobjects[self._MATERIAL_NOMASS]:
if material.Name == layer.name:
if material.Name == layer.material_name:
return
if layer.no_mass:
self._idf.newidfobject(self._MATERIAL_NOMASS,
Name=layer.name,
Name=layer.material_name,
Roughness=self._ROUGHNESS,
Thermal_Resistance=layer.thermal_resistance
)
else:
self._idf.newidfobject(self._MATERIAL,
Name=layer.name,
Name=layer.material_name,
Roughness=self._ROUGHNESS,
Thickness=layer.thickness,
Conductivity=layer.conductivity,
@ -275,12 +278,13 @@ class Idf:
_kwargs[f'Field_{counter + 2}'] = 'Until: 24:00,0.0'
self._idf.newidfobject(self._COMPACT_SCHEDULE, **_kwargs)
def _write_schedules_file(self, usage, schedule):
file_name = str((Path(self._output_path) / f'{schedule.type} schedules {usage}.dat').resolve())
with open(file_name, 'w', encoding='utf8') as file:
for value in schedule.values:
file.write(f'{str(value)},\n')
return file_name
def _write_schedules_file(self, schedule, usage):
file_name = str((Path(self._output_path) / f'{schedule.type} schedules {usage.replace("/","_")}.csv').resolve())
if not Path(file_name).exists():
with open(file_name, 'w', encoding='utf8') as file:
for value in schedule.values:
file.write(f'{str(value)},\n')
return Path(file_name).name
def _add_file_schedule(self, usage, schedule, file_name):
_schedule = self._idf.newidfobject(self._FILE_SCHEDULE, Name=f'{schedule.type} schedules {usage}')
@ -304,7 +308,7 @@ class Idf:
for schedule in self._idf.idfobjects[self._FILE_SCHEDULE]:
if schedule.Name == f'{schedule_type} schedules {usage}':
return
file_name = self._write_schedules_file(usage, new_schedules[0])
file_name = self._write_schedules_file(new_schedules[0], usage)
self._add_file_schedule(usage, new_schedules[0], file_name)
return
@ -321,12 +325,13 @@ class Idf:
if construction.Name == vegetation_name:
return
else:
if construction.Name == thermal_boundary.construction_name:
if construction.Name == f'{thermal_boundary.construction_name} {thermal_boundary.parent_surface.type}':
return
if thermal_boundary.layers is None:
for material in self._idf.idfobjects[self._MATERIAL]:
if material.Name == "DefaultMaterial":
return
self._idf.set_default_constructions()
return
for layer in thermal_boundary.layers:
@ -338,11 +343,12 @@ class Idf:
_kwargs = {'Name': vegetation_name,
'Outside_Layer': thermal_boundary.parent_surface.vegetation.name}
for i in range(0, len(layers) - 1):
_kwargs[f'Layer_{i + 2}'] = layers[i].name
_kwargs[f'Layer_{i + 2}'] = layers[i].material_name
else:
_kwargs = {'Name': thermal_boundary.construction_name, 'Outside_Layer': layers[0].name}
_kwargs = {'Name': f'{thermal_boundary.construction_name} {thermal_boundary.parent_surface.type}',
'Outside_Layer': layers[0].material_name}
for i in range(1, len(layers) - 1):
_kwargs[f'Layer_{i + 1}'] = layers[i].name
_kwargs[f'Layer_{i + 1}'] = layers[i].material_name
self._idf.newidfobject(self._CONSTRUCTION, **_kwargs)
def _add_window_construction_and_material(self, thermal_opening):
@ -387,9 +393,9 @@ class Idf:
thermostat = self._add_thermostat(thermal_zone)
self._idf.newidfobject(self._IDEAL_LOAD_AIR_SYSTEM,
Zone_Name=zone_name,
System_Availability_Schedule_Name=f'HVAC AVAIL SCHEDULES {thermal_zone.usage_name}',
Heating_Availability_Schedule_Name=f'HVAC AVAIL SCHEDULES {thermal_zone.usage_name}',
Cooling_Availability_Schedule_Name=f'HVAC AVAIL SCHEDULES {thermal_zone.usage_name}',
System_Availability_Schedule_Name=f'Thermostat_availability schedules {thermal_zone.usage_name}',
Heating_Availability_Schedule_Name=f'Thermostat_availability schedules {thermal_zone.usage_name}',
Cooling_Availability_Schedule_Name=f'Thermostat_availability schedules {thermal_zone.usage_name}',
Template_Thermostat_Name=thermostat.Name)
def _add_occupancy(self, thermal_zone, zone_name):
@ -403,7 +409,7 @@ class Idf:
self._idf.newidfobject(self._PEOPLE,
Name=f'{zone_name}_occupancy',
Zone_or_ZoneList_Name=zone_name,
Zone_or_ZoneList_or_Space_or_SpaceList_Name=zone_name,
Number_of_People_Schedule_Name=f'Occupancy schedules {thermal_zone.usage_name}',
Number_of_People_Calculation_Method="People",
Number_of_People=number_of_people,
@ -420,7 +426,7 @@ class Idf:
self._idf.newidfobject(self._LIGHTS,
Name=f'{zone_name}_lights',
Zone_or_ZoneList_Name=zone_name,
Zone_or_ZoneList_or_Space_or_SpaceList_Name=zone_name,
Schedule_Name=f'Lighting schedules {thermal_zone.usage_name}',
Design_Level_Calculation_Method=method,
Watts_per_Zone_Floor_Area=watts_per_zone_floor_area,
@ -439,7 +445,7 @@ class Idf:
self._idf.newidfobject(self._APPLIANCES,
Fuel_Type=fuel_type,
Name=f'{zone_name}_appliance',
Zone_or_ZoneList_Name=zone_name,
Zone_or_ZoneList_or_Space_or_SpaceList_Name=zone_name,
Schedule_Name=f'Appliance schedules {thermal_zone.usage_name}',
Design_Level_Calculation_Method=method,
Power_per_Zone_Floor_Area=watts_per_zone_floor_area,
@ -449,28 +455,39 @@ class Idf:
)
def _add_infiltration(self, thermal_zone, zone_name):
schedule = f'Infiltration schedules {thermal_zone.usage_name}'
schedule = f'INF_CONST schedules {thermal_zone.usage_name}'
_infiltration = thermal_zone.infiltration_rate_system_off * cte.HOUR_TO_SECONDS
self._idf.newidfobject(self._INFILTRATION,
Name=f'{zone_name}_infiltration',
Zone_or_ZoneList_Name=zone_name,
Zone_or_ZoneList_or_Space_or_SpaceList_Name=zone_name,
Schedule_Name=schedule,
Design_Flow_Rate_Calculation_Method='AirChanges/Hour',
Air_Changes_per_Hour=_infiltration
)
def _add_infiltration_surface(self, thermal_zone, zone_name):
schedule = f'INF_CONST schedules {thermal_zone.usage_name}'
_infiltration = thermal_zone.infiltration_rate_area_system_off*1
self._idf.newidfobject(self._INFILTRATION,
Name=f'{zone_name}_infiltration',
Zone_or_ZoneList_or_Space_or_SpaceList_Name=zone_name,
Schedule_Name=schedule,
Design_Flow_Rate_Calculation_Method='Flow/ExteriorWallArea',
Flow_Rate_per_Exterior_Surface_Area=_infiltration
)
def _add_ventilation(self, thermal_zone, zone_name):
schedule = f'Ventilation schedules {thermal_zone.usage_name}'
_air_change = thermal_zone.mechanical_air_change * cte.HOUR_TO_SECONDS
self._idf.newidfobject(self._VENTILATION,
Name=f'{zone_name}_ventilation',
Zone_or_ZoneList_Name=zone_name,
Zone_or_ZoneList_or_Space_or_SpaceList_Name=zone_name,
Schedule_Name=schedule,
Design_Flow_Rate_Calculation_Method='AirChanges/Hour',
Air_Changes_per_Hour=_air_change
)
def _add_dhw(self, thermal_zone, zone_name):
def _add_dhw(self, thermal_zone, zone_name, usage):
peak_flow_rate = thermal_zone.domestic_hot_water.peak_flow * thermal_zone.total_floor_area
self._idf.newidfobject(self._DHW,
Name=f'DHW {zone_name}',
@ -478,7 +495,7 @@ class Idf:
Flow_Rate_Fraction_Schedule_Name=f'DHW_prof schedules {thermal_zone.usage_name}',
Target_Temperature_Schedule_Name=f'DHW_temp schedules {thermal_zone.usage_name}',
Hot_Water_Supply_Temperature_Schedule_Name=f'DHW_temp schedules {thermal_zone.usage_name}',
Cold_Water_Supply_Temperature_Schedule_Name=f'cold_temp schedules {zone_name}',
Cold_Water_Supply_Temperature_Schedule_Name=f'cold_temp schedules {usage}',
EndUse_Subcategory=f'DHW {zone_name}',
Zone_Name=zone_name
)
@ -512,19 +529,25 @@ class Idf:
self._rename_building(self._city.name)
self._lod = self._city.level_of_detail.geometry
for building in self._city.buildings:
is_target = building.name in self._target_buildings or building.name in self._adjacent_buildings
for internal_zone in building.internal_zones:
if internal_zone.thermal_zones_from_internal_zones is None:
self._target_buildings.remoidf_surface_typeve(building.name)
is_target = False
continue
for thermal_zone in internal_zone.thermal_zones_from_internal_zones:
for thermal_boundary in thermal_zone.thermal_boundaries:
for thermal_boundary in thermal_zone.thermal_boundaries:
self._add_construction(thermal_boundary)
if thermal_boundary.parent_surface.vegetation is not None:
self._add_vegetation_material(thermal_boundary.parent_surface.vegetation)
for thermal_opening in thermal_boundary.thermal_openings:
self._add_window_construction_and_material(thermal_opening)
usage = thermal_zone.usage_name
if building.name in self._target_buildings or building.name in self._adjacent_buildings:
if is_target:
start = datetime.datetime.now()
service_temperature = thermal_zone.domestic_hot_water.service_temperature
usage = thermal_zone.usage_name
_new_schedules = self._create_infiltration_schedules(thermal_zone)
self._add_schedules(usage, 'Infiltration', _new_schedules)
_new_schedules = self._create_ventilation_schedules(thermal_zone)
@ -536,12 +559,14 @@ class Idf:
self._add_schedules(usage, 'Lighting', thermal_zone.lighting.schedules)
self._add_schedules(usage, 'Appliance', thermal_zone.appliances.schedules)
self._add_schedules(usage, 'DHW_prof', thermal_zone.domestic_hot_water.schedules)
_new_schedules = self._create_yearly_values_schedules('cold_temp',
building.cold_water_temperature[cte.HOUR])
self._add_schedules(building.name, 'cold_temp', _new_schedules)
value = thermal_zone.domestic_hot_water.service_temperature
_new_schedules = self._create_constant_value_schedules('DHW_temp', value)
_new_schedules = self._create_yearly_values_schedules('cold_temp', building.cold_water_temperature[cte.HOUR])
self._add_schedules(usage, 'cold_temp', _new_schedules)
_new_schedules = self._create_constant_value_schedules('DHW_temp', service_temperature)
self._add_schedules(usage, 'DHW_temp', _new_schedules)
_new_schedules = self._create_constant_value_schedules('INF_CONST', 1)
self._add_schedules(usage, 'INF_CONST', _new_schedules)
_new_schedules = self._create_constant_value_schedules('Thermostat_availability', 1)
self._add_schedules(usage, 'Thermostat_availability', _new_schedules)
_occ = thermal_zone.occupancy
if _occ.occupancy_density == 0:
_total_heat = 0
@ -552,16 +577,18 @@ class Idf:
self._add_schedules(usage, 'Activity Level', _new_schedules)
self._add_zone(thermal_zone, building.name)
self._add_heating_system(thermal_zone, building.name)
self._add_infiltration(thermal_zone, building.name)
self._add_infiltration_surface(thermal_zone, building.name)
self._add_ventilation(thermal_zone, building.name)
self._add_occupancy(thermal_zone, building.name)
self._add_lighting(thermal_zone, building.name)
self._add_appliances(thermal_zone, building.name)
self._add_dhw(thermal_zone, building.name)
self._add_dhw(thermal_zone, building.name, usage)
if self._export_type == "Surfaces":
if building.name in self._target_buildings or building.name in self._adjacent_buildings:
if is_target:
if building.thermal_zones_from_internal_zones is not None:
start = datetime.datetime.now()
self._add_surfaces(building, building.name)
print(f'add surfaces {datetime.datetime.now() - start}')
else:
self._add_pure_geometry(building, building.name)
else:
@ -587,6 +614,30 @@ class Idf:
Reporting_Frequency="Hourly",
)
self._idf.newidfobject(
"OUTPUT:VARIABLE",
Variable_Name="Zone Lights Electricity Rate",
Reporting_Frequency="Hourly",
)
self._idf.newidfobject(
"OUTPUT:VARIABLE",
Variable_Name="Other Equipment Electricity Rate",
Reporting_Frequency="Hourly",
)
self._idf.newidfobject(
"OUTPUT:VARIABLE",
Variable_Name="Zone Air Temperature",
Reporting_Frequency="Hourly",
)
self._idf.newidfobject(
"OUTPUT:VARIABLE",
Variable_Name="Zone Air Relative Humidity",
Reporting_Frequency="Hourly",
)
# post-process to erase windows associated to adiabatic walls
windows_list = []
for window in self._idf.idfobjects[self._WINDOW]:
@ -627,24 +678,26 @@ class Idf:
self._idf.intersect_match()
def _add_shading(self, building):
for surface in building.surfaces:
shading = self._idf.newidfobject(self._SHADING, Name=f'{surface.name}')
for i, surface in enumerate(building.surfaces):
shading = self._idf.newidfobject(self._SHADING, Name=f'{building.name}_{i}')
coordinates = self._matrix_to_list(surface.solid_polygon.coordinates,
self._city.lower_corner)
shading.setcoords(coordinates)
solar_reflectance = surface.short_wave_reflectance
if solar_reflectance is None:
solar_reflectance = ConfigurationHelper().short_wave_reflectance
self._idf.newidfobject(self._SHADING_PROPERTY,
Shading_Surface_Name=f'{surface.name}',
Shading_Surface_Name=f'{building.name}_{i}',
Diffuse_Solar_Reflectance_of_Unglazed_Part_of_Shading_Surface=solar_reflectance,
Fraction_of_Shading_Surface_That_Is_Glazed=0)
def _add_pure_geometry(self, building, zone_name):
for surface in building.surfaces:
for index, surface in enumerate(building.surfaces):
outside_boundary_condition = 'Outdoors'
sun_exposure = 'SunExposed'
wind_exposure = 'WindExposed'
idf_surface_type = self.idf_surfaces[surface.type]
_kwargs = {'Name': f'{surface.name}',
_kwargs = {'Name': f'Building_{building.name}_surface_{index}',
'Surface_Type': idf_surface_type,
'Zone_Name': zone_name}
if surface.type == cte.GROUND:
@ -653,7 +706,7 @@ class Idf:
wind_exposure = 'NoWind'
if surface.percentage_shared is not None and surface.percentage_shared > 0.5:
outside_boundary_condition = 'Surface'
outside_boundary_condition_object = surface.name
outside_boundary_condition_object = f'Building_{building.name}_surface_{index}'
sun_exposure = 'NoSun'
wind_exposure = 'NoWind'
_kwargs['Outside_Boundary_Condition_Object'] = outside_boundary_condition_object
@ -678,12 +731,12 @@ class Idf:
def _add_surfaces(self, building, zone_name):
for thermal_zone in building.thermal_zones_from_internal_zones:
for boundary in thermal_zone.thermal_boundaries:
for index, boundary in enumerate(thermal_zone.thermal_boundaries):
idf_surface_type = self.idf_surfaces[boundary.parent_surface.type]
outside_boundary_condition = 'Outdoors'
sun_exposure = 'SunExposed'
wind_exposure = 'WindExposed'
_kwargs = {'Name': f'{boundary.parent_surface.name}',
_kwargs = {'Name': f'Building_{building.name}_surface_{index}',
'Surface_Type': idf_surface_type,
'Zone_Name': zone_name}
if boundary.parent_surface.type == cte.GROUND:
@ -692,7 +745,7 @@ class Idf:
wind_exposure = 'NoWind'
if boundary.parent_surface.percentage_shared is not None and boundary.parent_surface.percentage_shared > 0.5:
outside_boundary_condition = 'Surface'
outside_boundary_condition_object = boundary.parent_surface.name
outside_boundary_condition_object = f'Building_{building.name}_surface_{index}'
sun_exposure = 'NoSun'
wind_exposure = 'NoWind'
_kwargs['Outside_Boundary_Condition_Object'] = outside_boundary_condition_object
@ -703,7 +756,7 @@ class Idf:
if boundary.parent_surface.vegetation is not None:
construction_name = f'{boundary.construction_name}_{boundary.parent_surface.vegetation.name}'
else:
construction_name = boundary.construction_name
construction_name = f'{boundary.construction_name} {boundary.parent_surface.type}'
_kwargs['Construction_Name'] = construction_name
surface = self._idf.newidfobject(self._SURFACE, **_kwargs)

File diff suppressed because it is too large Load Diff

View File

@ -13,7 +13,7 @@
! HVAC: None.
!
Version,9.5;
Version,24.1;
Timestep,4;

View File

@ -270,7 +270,7 @@ class InselMonthlyEnergyBalance:
global_irradiance = surface.global_irradiance[cte.MONTH]
for j in range(0, len(global_irradiance)):
parameters.append(f'{j + 1} '
f'{global_irradiance[j] * cte.WATTS_HOUR_TO_JULES / 24 / _NUMBER_DAYS_PER_MONTH[j]}')
f'{global_irradiance[j] / 24 / _NUMBER_DAYS_PER_MONTH[j]}')
else:
for j in range(0, 12):
parameters.append(f'{j + 1} 0.0')

View File

@ -20,9 +20,10 @@ class EnergyBuildingsExportsFactory:
"""
Energy Buildings exports factory class
"""
def __init__(self, handler, city, path, custom_insel_block='d18599', target_buildings=None):
def __init__(self, handler, city, path, custom_insel_block='d18599', target_buildings=None, weather_file=None):
self._city = city
self._export_type = '_' + handler.lower()
self._weather_file = weather_file
validate_import_export_type(EnergyBuildingsExportsFactory, handler)
if isinstance(path, str):
path = Path(path)
@ -53,12 +54,13 @@ class EnergyBuildingsExportsFactory:
"""
idf_data_path = (Path(__file__).parent / './building_energy/idf_files/').resolve()
url = wh().epw_file(self._city.region_code)
weather_path = (Path(__file__).parent.parent / f'data/weather/epw/{url.rsplit("/", 1)[1]}').resolve()
if not weather_path.exists():
with open(weather_path, 'wb') as epw_file:
if self._weather_file is None:
self._weather_file = (Path(__file__).parent.parent / f'data/weather/epw/{url.rsplit("/", 1)[1]}').resolve()
if not self._weather_file.exists():
with open(self._weather_file, 'wb') as epw_file:
epw_file.write(requests.get(url, allow_redirects=True).content)
return Idf(self._city, self._path, (idf_data_path / 'Minimal.idf'), (idf_data_path / 'Energy+.idd'), weather_path,
target_buildings=self._target_buildings)
return Idf(self._city, self._path, (idf_data_path / 'Minimal.idf'), (idf_data_path / 'Energy+.idd'),
self._weather_file, target_buildings=self._target_buildings)
@property
def _insel_monthly_energy_balance(self):

View File

@ -7,9 +7,12 @@ Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
from pathlib import Path
from hub.exports.formats.glb import Glb
from hub.exports.formats.obj import Obj
from hub.exports.formats.geojson import Geojson
from hub.exports.formats.simplified_radiosity_algorithm import SimplifiedRadiosityAlgorithm
from hub.exports.formats.stl import Stl
from hub.exports.formats.cesiumjs_tileset import CesiumjsTileset
from hub.helpers.utils import validate_import_export_type
@ -17,7 +20,7 @@ class ExportsFactory:
"""
Exports factory class
"""
def __init__(self, handler, city, path, target_buildings=None, adjacent_buildings=None):
def __init__(self, handler, city, path, target_buildings=None, adjacent_buildings=None, base_uri=None):
self._city = city
self._handler = '_' + handler.lower()
validate_import_export_type(ExportsFactory, handler)
@ -26,18 +29,7 @@ class ExportsFactory:
self._path = path
self._target_buildings = target_buildings
self._adjacent_buildings = adjacent_buildings
@property
def _citygml(self):
"""
Export to citygml
:return: None
"""
raise NotImplementedError
@property
def _collada(self):
raise NotImplementedError
self._base_uri = base_uri
@property
def _stl(self):
@ -61,9 +53,30 @@ class ExportsFactory:
Export the city to Simplified Radiosity Algorithm xml format
:return: None
"""
return SimplifiedRadiosityAlgorithm(self._city,
(self._path / f'{self._city.name}_sra.xml'),
target_buildings=self._target_buildings)
return SimplifiedRadiosityAlgorithm(
self._city, (self._path / f'{self._city.name}_sra.xml'), target_buildings=self._target_buildings
)
@property
def _cesiumjs_tileset(self):
"""
Export the city to a cesiumJs tileset format
:return: None
"""
return CesiumjsTileset(
self._city,
(self._path / f'{self._city.name}.json'),
target_buildings=self._target_buildings,
base_uri=self._base_uri
)
@property
def _glb(self):
return Glb(self._city, self._path, target_buildings=self._target_buildings)
@property
def _geojson(self):
return Geojson(self._city, self._path, target_buildings=self._target_buildings)
def export(self):
"""

View File

@ -0,0 +1,159 @@
"""
export a city into Cesium tileset format
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
"""
import json
import math
import pyproj
from pyproj import Transformer
from hub.helpers.geometry_helper import GeometryHelper
class CesiumjsTileset:
def __init__(self, city, file_name, target_buildings=None, base_uri=None):
self._city = city
self._file_name = file_name
self._target_buildings = target_buildings
if base_uri is None:
base_uri = '.'
self._base_uri = base_uri
try:
srs_name = self._city.srs_name
if self._city.srs_name in GeometryHelper.srs_transformations:
srs_name = GeometryHelper.srs_transformations[self._city.srs_name]
input_reference = pyproj.CRS(srs_name) # Projected coordinate system from input data
except pyproj.exceptions.CRSError as err:
raise pyproj.exceptions.CRSError from err
self._to_gps = Transformer.from_crs(input_reference, pyproj.CRS('EPSG:4326'))
city_upper_corner = [
self._city.upper_corner[0] - self._city.lower_corner[0],
self._city.upper_corner[1] - self._city.lower_corner[1],
self._city.upper_corner[2] - self._city.lower_corner[2]
]
city_lower_corner = [0, 0, 0]
self._tile_set = {
'asset': {
'version': '1.1',
"tilesetVersion": "1.2.3"
},
'position': self._to_gps.transform(self._city.lower_corner[0], self._city.lower_corner[1]),
'schema': {
'id': "building",
'classes': {
'building': {
"properties": {
'name': {
'type': 'STRING'
},
'position': {
'type': 'SCALAR',
'array': True,
'componentType': 'FLOAT32'
},
'aliases': {
'type': 'STRING',
'array': True,
},
'volume': {
'type': 'SCALAR',
'componentType': 'FLOAT32'
},
'floor_area': {
'type': 'SCALAR',
'componentType': 'FLOAT32'
},
'max_height': {
'type': 'SCALAR',
'componentType': 'INT32'
},
'year_of_construction': {
'type': 'SCALAR',
'componentType': 'INT32'
},
'function': {
'type': 'STRING'
},
'usages_percentage': {
'type': 'STRING'
}
}
}
}
},
'geometricError': 500,
'root': {
'boundingVolume': {
'box': CesiumjsTileset._box_values(city_upper_corner, city_lower_corner)
},
'geometricError': 70,
'refine': 'ADD',
'children': []
}
}
self._export()
@staticmethod
def _box_values(upper_corner, lower_corner):
x = (upper_corner[0] - lower_corner[0]) / 2
x_center = ((upper_corner[0] - lower_corner[0]) / 2) + lower_corner[0]
y = (upper_corner[1] - lower_corner[1]) / 2
y_center = ((upper_corner[1] - lower_corner[1]) / 2) + lower_corner[1]
z = (upper_corner[2] - lower_corner[2]) / 2
return [x_center, y_center, z, x, 0, 0, 0, y, 0, 0, 0, z]
def _ground_coordinates(self, coordinates):
ground_coordinates = []
for coordinate in coordinates:
ground_coordinates.append(
(coordinate[0] - self._city.lower_corner[0], coordinate[1] - self._city.lower_corner[1])
)
return ground_coordinates
def _export(self):
for building in self._city.buildings:
upper_corner = [-math.inf, -math.inf, 0]
lower_corner = [math.inf, math.inf, 0]
lower_corner_coordinates = lower_corner
for surface in building.grounds: # todo: maybe we should add the terrain?
coordinates = self._ground_coordinates(surface.solid_polygon.coordinates)
lower_corner = [min([c[0] for c in coordinates]), min([c[1] for c in coordinates]), 0]
lower_corner_coordinates = [
min([c[0] for c in surface.solid_polygon.coordinates]),
min([c[1] for c in surface.solid_polygon.coordinates]),
0
]
upper_corner = [max([c[0] for c in coordinates]), max([c[1] for c in coordinates]), building.max_height]
tile = {
'boundingVolume': {
'box': CesiumjsTileset._box_values(upper_corner, lower_corner)
},
'geometricError': 250,
'metadata': {
'class': 'building',
'properties': {
'name': building.name,
'position': self._to_gps.transform(lower_corner_coordinates[0], lower_corner_coordinates[1]),
'aliases': building.aliases,
'volume': building.volume,
'floor_area': building.floor_area,
'max_height': building.max_height,
'year_of_construction': building.year_of_construction,
'function': building.function,
'usages_percentage': building.usages_percentage
}
},
'content': {
'uri': f'{self._base_uri}/{building.name}.glb'
}
}
self._tile_set['root']['children'].append(tile)
with open(self._file_name, 'w') as f:
json.dump(self._tile_set, f, indent=2)

View File

@ -0,0 +1,112 @@
"""
export a city into Geojson format
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
"""
import json
from pathlib import Path
import numpy as np
import pyproj
from pyproj import Transformer
from hub.helpers.geometry_helper import GeometryHelper
class Geojson:
"""
Export to geojson format
"""
def __init__(self, city, path, target_buildings):
self._city = city
self._file_path = Path(path / f'{self._city.name}.geojson').resolve()
try:
srs_name = self._city.srs_name
if self._city.srs_name in GeometryHelper.srs_transformations:
srs_name = GeometryHelper.srs_transformations[self._city.srs_name]
input_reference = pyproj.CRS(srs_name) # Projected coordinate system from input data
except pyproj.exceptions.CRSError as err:
raise pyproj.exceptions.CRSError from err
self._to_gps = Transformer.from_crs(input_reference, pyproj.CRS('EPSG:4326'))
if target_buildings is None:
target_buildings = [b.name for b in self._city.buildings]
self._geojson_skeleton = {
'type': 'FeatureCollection',
'features': []
}
self._feature_skeleton = {
'type': 'Feature',
'geometry': {
'type': 'Polygon',
'coordinates': []
},
'properties': {}
}
self._export()
def _export(self):
for building in self._city.buildings:
if len(building.grounds) == 1:
ground = building.grounds[0]
feature = self._polygon(ground)
else:
feature = self._multipolygon(building.grounds)
feature['id'] = building.name
feature['properties']['height'] = f'{building.max_height - building.lower_corner[2]}'
feature['properties']['function'] = f'{building.function}'
feature['properties']['year_of_construction'] = f'{building.year_of_construction}'
feature['properties']['aliases'] = building.aliases
feature['properties']['elevation'] = f'{building.lower_corner[2]}'
self._geojson_skeleton['features'].append(feature)
with open(self._file_path, 'w', encoding='utf-8') as f:
json.dump(self._geojson_skeleton, f, indent=2)
def _polygon(self, ground):
feature = {
'type': 'Feature',
'geometry': {
'type': 'Polygon',
'coordinates': []
},
'properties': {}
}
ground_coordinates = []
for coordinate in ground.solid_polygon.coordinates:
gps_coordinate = self._to_gps.transform(coordinate[0], coordinate[1])
ground_coordinates.insert(0, [gps_coordinate[1], gps_coordinate[0]])
first_gps_coordinate = self._to_gps.transform(
ground.solid_polygon.coordinates[0][0],
ground.solid_polygon.coordinates[0][1]
)
ground_coordinates.insert(0, [first_gps_coordinate[1], first_gps_coordinate[0]])
feature['geometry']['coordinates'].append(ground_coordinates)
return feature
def _multipolygon(self, grounds):
feature = {
'type': 'Feature',
'geometry': {
'type': 'MultiPolygon',
'coordinates': []
},
'properties': {}
}
polygons = []
for ground in grounds:
ground_coordinates = []
for coordinate in ground.solid_polygon.coordinates:
gps_coordinate = self._to_gps.transform(coordinate[0], coordinate[1])
ground_coordinates.insert(0, [gps_coordinate[1], gps_coordinate[0]])
first_gps_coordinate = self._to_gps.transform(
ground.solid_polygon.coordinates[0][0],
ground.solid_polygon.coordinates[0][1]
)
ground_coordinates.insert(0, [first_gps_coordinate[1], first_gps_coordinate[0]])
polygons.append(ground_coordinates)
feature['geometry']['coordinates'].append(polygons)
return feature

View File

@ -0,0 +1,54 @@
"""
export a city into Glb format
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
"""
import os
import shutil
import subprocess
from hub.city_model_structure.city import City
from hub.exports.formats.obj import Obj
class GltExceptionError(Exception):
"""
Glt execution error
"""
class Glb:
"""
Glb class
"""
def __init__(self, city, path, target_buildings=None):
self._city = city
self._path = path
if target_buildings is None:
target_buildings = [b.name for b in self._city.buildings]
self._target_buildings = target_buildings
self._export()
@property
def _obj2gltf(self):
return shutil.which('obj2gltf')
def _export(self):
try:
for building in self._city.buildings:
city = City(self._city.lower_corner, self._city.upper_corner, self._city.srs_name)
city.add_city_object(building)
city.name = building.name
Obj(city, self._path)
glb = f'{self._path}/{building.name}.glb'
subprocess.run([
self._obj2gltf,
'-i', f'{self._path}/{building.name}.obj',
'-b',
'-o', f'{glb}'
])
os.unlink(f'{self._path}/{building.name}.obj')
os.unlink(f'{self._path}/{building.name}.mtl')
except (subprocess.SubprocessError, subprocess.TimeoutExpired, subprocess.CalledProcessError) as err:
raise GltExceptionError from err

View File

@ -26,7 +26,7 @@ class Obj:
def _to_vertex(self, coordinate):
x, y, z = self._ground(coordinate)
return f'v {x} {z} {y}\n'
return f'v {x} {z} -{y}\n' # to match opengl expectations
def _to_texture_vertex(self, coordinate):
u, v, _ = self._ground(coordinate)
@ -54,7 +54,7 @@ class Obj:
with open(mtl_file_path, 'w', encoding='utf-8') as mtl:
mtl.write("newmtl cerc_base_material\n")
mtl.write("Ka 1.0 1.0 1.0 # Ambient color (white)\n")
mtl.write("Kd 0.3 0.8 0.3 # Diffuse color (greenish)\n")
mtl.write("Kd 0.1 0.3 0.1 # Diffuse color (greenish)\n")
mtl.write("Ks 1.0 1.0 1.0 # Specular color (white)\n")
mtl.write("Ns 400.0 # Specular exponent (defines shininess)\n")
vertices = {}
@ -63,12 +63,13 @@ class Obj:
normal_index = 0
with open(obj_file_path, 'w', encoding='utf-8') as obj:
obj.write("# cerc-hub export\n")
obj.write(f'mtllib {mtl_name}')
obj.write(f'mtllib {mtl_name}\n')
for building in self._city.buildings:
obj.write(f'# building {building.name}\n')
obj.write(f'g {building.name}\n')
obj.write('s off\n')
for surface in building.surfaces:
obj.write(f'# surface {surface.name}\n')
face = []
@ -77,7 +78,6 @@ class Obj:
textures = []
for coordinate in surface.perimeter_polygon.coordinates:
vertex = self._to_vertex(coordinate)
if vertex not in vertices:
vertex_index += 1
vertices[vertex] = vertex_index
@ -86,8 +86,7 @@ class Obj:
textures.append(self._to_texture_vertex(coordinate)) # only append if non-existing
else:
current = vertices[vertex]
face.insert(0, f'{current}/{current}/{normal_index}') # insert counterclockwise
face.append(f'{current}/{current}/{normal_index}') # insert clockwise
obj.writelines(normal) # add the normal
obj.writelines(textures) # add the texture vertex

View File

@ -66,8 +66,8 @@ class SimplifiedRadiosityAlgorithm:
else:
i = (total_days + day - 1) * 24 + hour - 1
representative_building = self._city.buildings[0]
_global = representative_building.global_horizontal[cte.HOUR][i] * cte.WATTS_HOUR_TO_JULES
_beam = representative_building.beam[cte.HOUR][i] * cte.WATTS_HOUR_TO_JULES
_global = representative_building.diffuse[cte.HOUR][i]
_beam = representative_building.direct_normal[cte.HOUR][i]
content += f'{day} {month} {hour} {_global} {_beam}\n'
with open(file, 'w', encoding='utf-8') as file:
file.write(content)

View File

@ -10,11 +10,11 @@ Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
KELVIN = 273.15
WATER_DENSITY = 1000 # kg/m3
WATER_HEAT_CAPACITY = 4182 # J/kgK
WATER_THERMAL_CONDUCTIVITY = 0.65 # W/mK
NATURAL_GAS_LHV = 36.6e6 # J/m3
AIR_DENSITY = 1.293 # kg/m3
AIR_HEAT_CAPACITY = 1005.2 # J/kgK
# converters
HOUR_TO_MINUTES = 60
MINUTES_TO_SECONDS = 60
@ -24,6 +24,8 @@ BTU_H_TO_WATTS = 0.29307107
KILO_WATTS_HOUR_TO_JULES = 3600000
WATTS_HOUR_TO_JULES = 3600
GALLONS_TO_QUBIC_METERS = 0.0037854117954011185
INFILTRATION_75PA_TO_4PA = (4/75)**0.65
# time
SECOND = 'second'
@ -292,6 +294,8 @@ WOOD = 'Wood'
GAS = 'Gas'
DIESEL = 'Diesel'
COAL = 'Coal'
BIOMASS = 'Biomass'
BUTANE = 'Butane'
AIR = 'Air'
WATER = 'Water'
GEOTHERMAL = 'Geothermal'
@ -302,7 +306,11 @@ PHOTOVOLTAIC = 'Photovoltaic'
BOILER = 'Boiler'
HEAT_PUMP = 'Heat Pump'
BASEBOARD = 'Baseboard'
ELECTRICITY_GENERATOR = 'Electricity generator'
CHILLER = 'Chiller'
SPLIT = 'Split'
JOULE = 'Joule'
BUTANE_HEATER = 'Butane Heater'
SENSIBLE = 'sensible'
LATENT = 'Latent'
LITHIUMION = 'Lithium Ion'

View File

@ -0,0 +1,30 @@
"""
Dictionaries module for hub function to Palma construction function
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Cecilia Pérez cperez@irec.cat
"""
import hub.helpers.constants as cte
class HubFunctionToPalmaConstructionFunction:
"""
Hub function to Palma construction function class
"""
def __init__(self):
self._dictionary = {
cte.RESIDENTIAL: 'V',
cte.SINGLE_FAMILY_HOUSE: 'Single-family building',
cte.HIGH_RISE_APARTMENT: 'Large multifamily building',
cte.MID_RISE_APARTMENT: 'Medium multifamily building',
cte.MULTI_FAMILY_HOUSE: 'Small multifamily building'
}
@property
def dictionary(self) -> dict:
"""
Get the dictionary
:return: {}
"""
return self._dictionary

View File

@ -0,0 +1,51 @@
"""
Dictionaries module for hub usage to Palma usage
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Cecilia Pérez cperez@irec.cat
"""
"""
Codification of uses from cadastre:
U: store-parking. Residential Use
S: store-parking. Industrial Use
V: Residential
I: Industrial
O: Offices
C: Comercial
K: Sportive center
T: Shows
G: Leisure and Hostelry
Y: Health and charity
E: Culture
R: Religion
M: Urbanization work, gardening and undeveloped land
P: Singular building
B: Farm warehouse
J: Farm Industry
Z: Farm-related
"""
import hub.helpers.constants as cte
class HubUsageToPalmaUsage:
"""
Hub usage to Palma usage class
"""
def __init__(self):
self._dictionary = {
cte.RESIDENTIAL: 'residential',
cte.SINGLE_FAMILY_HOUSE: 'residential',
cte.HIGH_RISE_APARTMENT: 'residential',
cte.MID_RISE_APARTMENT: 'residential',
cte.MULTI_FAMILY_HOUSE: 'residential'
}
@property
def dictionary(self) -> dict:
"""
Get the dictionary
:return: {}
"""
return self._dictionary

View File

@ -12,12 +12,16 @@ class MontrealCustomFuelToHubFuel:
"""
Montreal custom fuel to hub fuel class
"""
def __init__(self):
self._dictionary = {
'gas': cte.GAS,
'electricity': cte.ELECTRICITY,
'renewable': cte.RENEWABLE
}
'gas': cte.GAS,
'natural gas': cte.GAS,
'electricity': cte.ELECTRICITY,
'renewable': cte.RENEWABLE,
'butane': cte.BUTANE,
'diesel': cte.DIESEL
}
@property
def dictionary(self) -> dict:

View File

@ -0,0 +1,35 @@
"""
Dictionaries module for Montreal system to hub energy generation system
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
"""
import hub.helpers.constants as cte
class MontrealGenerationSystemToHubEnergyGenerationSystem:
"""
Montreal's generation system to hub energy generation system class
"""
def __init__(self):
self._dictionary = {
'boiler': cte.BOILER,
'furnace': cte.BASEBOARD,
'cooler': cte.CHILLER,
'electricity generator': cte.ELECTRICITY_GENERATOR,
'Photovoltaic': cte.PHOTOVOLTAIC,
'heat pump': cte.HEAT_PUMP,
'joule': cte.JOULE,
'split': cte.SPLIT,
'butane heater': cte.BUTANE_HEATER
}
@property
def dictionary(self) -> dict:
"""
Get the dictionary
:return: {}
"""
return self._dictionary

View File

@ -0,0 +1,31 @@
"""
Dictionaries module for Palma function to hub function
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Cecilia Pérez cperez@irec.cat
"""
import hub.helpers.constants as cte
class PalmaFunctionToHubFunction:
"""
Palma function to hub function class
"""
def __init__(self):
self._dictionary = {'Residential': cte.RESIDENTIAL,
'Single-family building': cte.SINGLE_FAMILY_HOUSE,
'Large multifamily building': cte.HIGH_RISE_APARTMENT,
'Medium multifamily building': cte.MID_RISE_APARTMENT,
'Small multifamily building': cte.MULTI_FAMILY_HOUSE,
'V': cte.RESIDENTIAL
}
@property
def dictionary(self) -> dict:
"""
Get the dictionary
:return: {}
"""
return self._dictionary

View File

@ -19,12 +19,16 @@ from hub.helpers.data.hub_usage_to_hft_usage import HubUsageToHftUsage
from hub.helpers.data.hub_usage_to_nrcan_usage import HubUsageToNrcanUsage
from hub.helpers.data.hub_usage_to_eilat_usage import HubUsageToEilatUsage
from hub.helpers.data.montreal_system_to_hub_energy_generation_system import MontrealSystemToHubEnergyGenerationSystem
from hub.helpers.data.montreal_generation_system_to_hub_energy_generation_system import MontrealGenerationSystemToHubEnergyGenerationSystem
from hub.helpers.data.montreal_demand_type_to_hub_energy_demand_type import MontrealDemandTypeToHubEnergyDemandType
from hub.helpers.data.hub_function_to_montreal_custom_costs_function import HubFunctionToMontrealCustomCostsFunction
from hub.helpers.data.north_america_demand_type_to_hub_energy_demand_type import NorthAmericaDemandTypeToHubEnergyDemandType
from hub.helpers.data.north_america_system_to_hub_energy_generation_system import NorthAmericaSystemToHubEnergyGenerationSystem
from hub.helpers.data.north_america_custom_fuel_to_hub_fuel import NorthAmericaCustomFuelToHubFuel
from hub.helpers.data.north_america_storage_system_to_hub_storage import NorthAmericaStorageSystemToHubEnergyStorage
from hub.helpers.data.palma_function_to_hub_function import PalmaFunctionToHubFunction
from hub.helpers.data.hub_usage_to_palma_usage import HubUsageToPalmaUsage
from hub.helpers.data.hub_function_to_palma_construction_function import HubFunctionToPalmaConstructionFunction
class Dictionaries:
@ -64,6 +68,14 @@ class Dictionaries:
"""
return HubUsageToEilatUsage().dictionary
@property
def hub_usage_to_palma_usage(self) -> dict:
"""
Hub usage to Palma usage, transformation dictionary
:return: dict
"""
return HubUsageToPalmaUsage().dictionary
@property
def hub_function_to_nrcan_construction_function(self) -> dict:
"""
@ -87,6 +99,13 @@ class Dictionaries:
:return: dict
"""
return HubFunctionToNrelConstructionFunction().dictionary
@property
def hub_function_to_palma_construction_function(self) -> dict:
"""
Get hub function to Palma construction function, transformation dictionary
:return: dict
"""
return HubFunctionToPalmaConstructionFunction().dictionary
@property
def pluto_function_to_hub_function(self) -> dict:
@ -104,6 +123,14 @@ class Dictionaries:
"""
return HftFunctionToHubFunction().dictionary
@property
def palma_function_to_hub_function(self) -> dict:
"""
Get Palma function to hub function, transformation dictionary
:return: dict
"""
return PalmaFunctionToHubFunction().dictionary
@property
def montreal_function_to_hub_function(self) -> dict:
"""
@ -154,6 +181,13 @@ class Dictionaries:
"""
return MontrealCustomFuelToHubFuel().dictionary
@property
def montreal_generation_system_to_hub_energy_generation_system(self):
"""
Get montreal custom generation system names to hub energy system names, transformation dictionary
"""
return MontrealGenerationSystemToHubEnergyGenerationSystem().dictionary
@property
def north_america_demand_type_to_hub_energy_demand_type(self):
"""

View File

@ -84,7 +84,7 @@ class EilatPhysicsParameters:
layer.thickness = layer_archetype.thickness
total_thickness += layer_archetype.thickness
archetype_material = layer_archetype.material
layer.name = archetype_material.name
layer.material_name = archetype_material.name
layer.no_mass = archetype_material.no_mass
if archetype_material.no_mass:
layer.thermal_resistance = archetype_material.thermal_resistance

View File

@ -65,6 +65,10 @@ class ConstructionHelper:
'Eilat': 'BWh'
}
_reference_city_to_palma_climate_zone ={
'Palma': 'B3'
}
@staticmethod
def yoc_to_nrel_standard(year_of_construction):
"""
@ -107,3 +111,13 @@ class ConstructionHelper:
:return: str
"""
return ConstructionHelper._reference_city_to_israel_climate_zone[reference_city]
@staticmethod
def city_to_palma_climate_zone(reference_city):
"""
City name to Palma climate zone
:param reference_city: str
:return: str
"""
return ConstructionHelper._reference_city_to_palma_climate_zone[reference_city]

View File

@ -3,6 +3,7 @@ NrcanPhysicsParameters import the construction and material information defined
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
Project Collaborator Saeed Ranjbar saeed.ranjbar@concordia.ca
"""
import logging
@ -32,10 +33,21 @@ class NrcanPhysicsParameters:
city = self._city
nrcan_catalog = ConstructionCatalogFactory('nrcan').catalog
for building in city.buildings:
if building.function not in Dictionaries().hub_function_to_nrcan_construction_function:
logging.error('Building %s has an unknown building function %s', building.name, building.function)
main_function = None
functions = building.function.split('_')
if len(functions) > 1:
maximum_percentage = 0
for function in functions:
percentage_and_function = function.split('-')
if float(percentage_and_function[0]) > maximum_percentage:
maximum_percentage = float(percentage_and_function[0])
main_function = percentage_and_function[-1]
else:
main_function = functions[-1]
if main_function not in Dictionaries().hub_function_to_nrcan_construction_function:
logging.error('Building %s has an unknown building function %s', building.name, main_function)
continue
function = Dictionaries().hub_function_to_nrcan_construction_function[building.function]
function = Dictionaries().hub_function_to_nrcan_construction_function[main_function]
try:
archetype = self._search_archetype(nrcan_catalog, function, building.year_of_construction, self._climate_zone)
@ -67,6 +79,8 @@ class NrcanPhysicsParameters:
thermal_archetype.indirect_heated_ratio = 0
thermal_archetype.infiltration_rate_for_ventilation_system_on = catalog_archetype.infiltration_rate_for_ventilation_system_on
thermal_archetype.infiltration_rate_for_ventilation_system_off = catalog_archetype.infiltration_rate_for_ventilation_system_off
thermal_archetype.infiltration_rate_area_for_ventilation_system_on = catalog_archetype.infiltration_rate_area_for_ventilation_system_on
thermal_archetype.infiltration_rate_area_for_ventilation_system_off = catalog_archetype.infiltration_rate_area_for_ventilation_system_off
_constructions = []
for catalog_construction in catalog_archetype.constructions:
construction = Construction()
@ -82,7 +96,7 @@ class NrcanPhysicsParameters:
layer = Layer()
layer.thickness = layer_archetype.thickness
archetype_material = layer_archetype.material
layer.name = archetype_material.name
layer.material_name = archetype_material.name
layer.no_mass = archetype_material.no_mass
if archetype_material.no_mass:
layer.thermal_resistance = archetype_material.thermal_resistance

View File

@ -85,7 +85,7 @@ class NrelPhysicsParameters:
layer = Layer()
layer.thickness = layer_archetype.thickness
archetype_material = layer_archetype.material
layer.name = archetype_material.name
layer.material_name = archetype_material.name
layer.no_mass = archetype_material.no_mass
if archetype_material.no_mass:
layer.thermal_resistance = archetype_material.thermal_resistance

View File

@ -0,0 +1,107 @@
"""
PalmaPhysicsParameters import the construction and material information defined by Palma
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Cecilia Pérez Pérez cperez@irec.cat
"""
import logging
from hub.catalog_factories.construction_catalog_factory import ConstructionCatalogFactory
from hub.city_model_structure.building_demand.thermal_archetype import ThermalArchetype
from hub.city_model_structure.building_demand.construction import Construction
from hub.city_model_structure.building_demand.layer import Layer
from hub.helpers.dictionaries import Dictionaries
from hub.imports.construction.helpers.construction_helper import ConstructionHelper
class PalmaPhysicsParameters:
"""
PalmaPhysicsParameters class
"""
def __init__(self, city, divide_in_storeys=False):
self._city = city
self._divide_in_storeys = divide_in_storeys
self._climate_zone = ConstructionHelper.city_to_palma_climate_zone(city.climate_reference_city)
def enrich_buildings(self):
"""
Returns the city with the construction parameters assigned to the buildings
"""
city = self._city
palma_catalog = ConstructionCatalogFactory('palma').catalog
for building in city.buildings:
if building.function not in Dictionaries().hub_function_to_palma_construction_function:
logging.error('Building %s has an unknown building function %s', building.name, building.function)
continue
function = Dictionaries().hub_function_to_palma_construction_function[building.function]
try:
archetype = self._search_archetype(palma_catalog, function, building.year_of_construction, self._climate_zone)
except KeyError:
logging.error('Building %s has unknown construction archetype for building function: %s '
'[%s], building year of construction: %s and climate zone %s', building.name, function,
building.function, building.year_of_construction, self._climate_zone)
continue
thermal_archetype = ThermalArchetype()
self._assign_values(thermal_archetype, archetype)
for internal_zone in building.internal_zones:
internal_zone.thermal_archetype = thermal_archetype
@staticmethod
def _search_archetype(nrcan_catalog, function, year_of_construction, climate_zone):
nrcan_archetypes = nrcan_catalog.entries('archetypes')
for building_archetype in nrcan_archetypes:
construction_period_limits = building_archetype.construction_period.split('_')
if int(construction_period_limits[0]) <= int(year_of_construction) <= int(construction_period_limits[1]):
if str(function) == str(building_archetype.function) and climate_zone == str(building_archetype.climate_zone):
return building_archetype
raise KeyError('archetype not found')
@staticmethod
def _assign_values(thermal_archetype, catalog_archetype):
thermal_archetype.average_storey_height = catalog_archetype.average_storey_height
thermal_archetype.extra_loses_due_to_thermal_bridges = catalog_archetype.extra_loses_due_to_thermal_bridges
thermal_archetype.thermal_capacity = catalog_archetype.thermal_capacity
thermal_archetype.indirect_heated_ratio = 0
thermal_archetype.infiltration_rate_for_ventilation_system_on = catalog_archetype.infiltration_rate_for_ventilation_system_on
thermal_archetype.infiltration_rate_for_ventilation_system_off = catalog_archetype.infiltration_rate_for_ventilation_system_off
thermal_archetype.infiltration_rate_area_for_ventilation_system_on = catalog_archetype.infiltration_rate_area_for_ventilation_system_on
thermal_archetype.infiltration_rate_area_for_ventilation_system_off = catalog_archetype.infiltration_rate_area_for_ventilation_system_off
_constructions = []
for catalog_construction in catalog_archetype.constructions:
construction = Construction()
construction.type = catalog_construction.type
construction.name = catalog_construction.name
if catalog_construction.window_ratio is not None:
for _orientation in catalog_construction.window_ratio:
if catalog_construction.window_ratio[_orientation] is None:
catalog_construction.window_ratio[_orientation] = 0
construction.window_ratio = catalog_construction.window_ratio
_layers = []
for layer_archetype in catalog_construction.layers:
layer = Layer()
layer.thickness = layer_archetype.thickness
archetype_material = layer_archetype.material
layer.material_name = archetype_material.name
layer.no_mass = archetype_material.no_mass
if archetype_material.no_mass:
layer.thermal_resistance = archetype_material.thermal_resistance
else:
layer.density = archetype_material.density
layer.conductivity = archetype_material.conductivity
layer.specific_heat = archetype_material.specific_heat
layer.solar_absorptance = archetype_material.solar_absorptance
layer.thermal_absorptance = archetype_material.thermal_absorptance
layer.visible_absorptance = archetype_material.visible_absorptance
_layers.append(layer)
construction.layers = _layers
if catalog_construction.window is not None:
window_archetype = catalog_construction.window
construction.window_type = window_archetype.name
construction.window_frame_ratio = window_archetype.frame_ratio
construction.window_g_value = window_archetype.g_value
construction.window_overall_u_value = window_archetype.overall_u_value
_constructions.append(construction)
thermal_archetype.constructions = _constructions

View File

@ -10,6 +10,7 @@ from hub.helpers.utils import validate_import_export_type
from hub.imports.construction.nrcan_physics_parameters import NrcanPhysicsParameters
from hub.imports.construction.nrel_physics_parameters import NrelPhysicsParameters
from hub.imports.construction.eilat_physics_parameters import EilatPhysicsParameters
from hub.imports.construction.palma_physics_parameters import PalmaPhysicsParameters
class ConstructionFactory:
@ -48,9 +49,20 @@ class ConstructionFactory:
for building in self._city.buildings:
building.level_of_detail.construction = 2
def _palma(self):
"""
Enrich the city by using Palma information
"""
PalmaPhysicsParameters(self._city).enrich_buildings()
self._city.level_of_detail.construction = 2
for building in self._city.buildings:
building.level_of_detail.construction = 2
def enrich(self):
"""
Enrich the city given to the class using the class given handler
:return: None
"""
getattr(self, self._handler, lambda: None)()
for building in self._city.buildings:
_ = building.thermal_zones_from_internal_zones # ensure internal zones initialization

View File

@ -8,15 +8,13 @@ Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
import logging
import copy
from pandas import DataFrame
from hub.catalog_factories.energy_systems_catalog_factory import EnergySystemsCatalogFactory
from hub.city_model_structure.energy_systems.generic_distribution_system import GenericDistributionSystem
from hub.city_model_structure.energy_systems.generic_energy_system import GenericEnergySystem
from hub.city_model_structure.energy_systems.generic_generation_system import GenericGenerationSystem
from hub.city_model_structure.energy_systems.energy_system import EnergySystem
from hub.city_model_structure.energy_systems.generation_system import GenerationSystem
from hub.city_model_structure.energy_systems.distribution_system import DistributionSystem
from hub.city_model_structure.energy_systems.non_pv_generation_system import NonPvGenerationSystem
from hub.city_model_structure.energy_systems.pv_generation_system import PvGenerationSystem
from hub.city_model_structure.energy_systems.electrical_storage_system import ElectricalStorageSystem
from hub.city_model_structure.energy_systems.thermal_storage_system import ThermalStorageSystem
from hub.city_model_structure.energy_systems.emission_system import EmissionSystem
from hub.helpers.dictionaries import Dictionaries
@ -36,10 +34,6 @@ class MontrealCustomEnergySystemParameters:
"""
city = self._city
montreal_custom_catalog = EnergySystemsCatalogFactory('montreal_custom').catalog
if city.energy_systems_connection_table is None:
_energy_systems_connection_table = DataFrame(columns=['Energy System Type', 'Building'])
else:
_energy_systems_connection_table = city.energy_systems_connection_table
if city.generic_energy_systems is None:
_generic_energy_systems = {}
else:
@ -53,16 +47,12 @@ class MontrealCustomEnergySystemParameters:
archetype_name)
continue
_energy_systems_connection_table, _generic_energy_systems = self._create_generic_systems(
archetype,
building,
_energy_systems_connection_table,
_generic_energy_systems
)
city.energy_systems_connection_table = _energy_systems_connection_table
if archetype.name not in _generic_energy_systems:
_generic_energy_systems = self._create_generic_systems_list(archetype, _generic_energy_systems)
city.generic_energy_systems = _generic_energy_systems
self._associate_energy_systems(city)
self._assign_energy_systems_to_buildings(city)
@staticmethod
def _search_archetypes(catalog, name):
@ -72,85 +62,100 @@ class MontrealCustomEnergySystemParameters:
return building_archetype
raise KeyError('archetype not found')
def _create_generic_systems_list(self, archetype, _generic_energy_systems):
building_systems = []
for archetype_system in archetype.systems:
energy_system = EnergySystem()
_hub_demand_types = []
for demand_type in archetype_system.demand_types:
_hub_demand_types.append(Dictionaries().montreal_demand_type_to_hub_energy_demand_type[demand_type])
energy_system.name = archetype_system.name
energy_system.demand_types = _hub_demand_types
energy_system.generation_systems = self._create_generation_systems(archetype_system)
energy_system.distribution_systems = self._create_distribution_systems(archetype_system)
building_systems.append(energy_system)
_generic_energy_systems[archetype.name] = building_systems
return _generic_energy_systems
@staticmethod
def _create_generic_systems(archetype, building,
_energy_systems_connection_table, _generic_energy_systems):
data = [archetype.name, building.name]
_energy_systems_connection_table.loc[len(_energy_systems_connection_table)] = data
if archetype.name not in _generic_energy_systems:
building_systems = []
for system in archetype.systems:
energy_system = GenericEnergySystem()
_hub_demand_types = []
for demand_type in system.demand_types:
_hub_demand_types.append(Dictionaries().montreal_demand_type_to_hub_energy_demand_type[demand_type])
energy_system.name = system.name
energy_system.demand_types = _hub_demand_types
_generation_system = GenericGenerationSystem()
archetype_generation_equipment = system.generation_systems
_type = system.name
_generation_system.type = Dictionaries().montreal_system_to_hub_energy_generation_system[
def _create_generation_systems(archetype_system):
_generation_systems = []
for archetype_generation_system in archetype_system.generation_systems:
if archetype_generation_system.system_type == 'Photovoltaic':
_generation_system = PvGenerationSystem()
_type = 'Photovoltaic'
_generation_system.system_type = Dictionaries().montreal_generation_system_to_hub_energy_generation_system[
_type]
_fuel_type = Dictionaries().montreal_custom_fuel_to_hub_fuel[archetype_generation_equipment.fuel_type]
_fuel_type = Dictionaries().montreal_custom_fuel_to_hub_fuel[archetype_generation_system.fuel_type]
_generation_system.fuel_type = _fuel_type
_generation_system.source_types = archetype_generation_equipment.source_medium
_generation_system.heat_efficiency = archetype_generation_equipment.heat_efficiency
_generation_system.cooling_efficiency = archetype_generation_equipment.cooling_efficiency
_generation_system.electricity_efficiency = archetype_generation_equipment.electricity_efficiency
_generation_system.source_temperature = archetype_generation_equipment.source_temperature
_generation_system.source_mass_flow = archetype_generation_equipment.source_mass_flow
_generation_system.storage = archetype_generation_equipment.storage
_generation_system.auxiliary_equipment = None
energy_system.generation_systems = _generation_system
_distribution_system = GenericDistributionSystem()
archetype_distribution_equipment = system.distribution_systems
_distribution_system.type = archetype_distribution_equipment.type
_distribution_system.supply_temperature = archetype_distribution_equipment.supply_temperature
_distribution_system.distribution_consumption_fix_flow = \
archetype_distribution_equipment.distribution_consumption_fix_flow
_distribution_system.distribution_consumption_variable_flow = \
archetype_distribution_equipment.distribution_consumption_variable_flow
_distribution_system.heat_losses = archetype_distribution_equipment.heat_losses
energy_system.distribution_systems = _distribution_system
building_systems.append(energy_system)
_generic_energy_systems[archetype.name] = building_systems
return _energy_systems_connection_table, _generic_energy_systems
_generation_system.electricity_efficiency = archetype_generation_system.electricity_efficiency
_generic_storage_system = None
if archetype_generation_system.energy_storage_systems is not None:
_generic_storage_system = ElectricalStorageSystem()
_generic_storage_system.type_energy_stored = 'electrical'
_generation_system.energy_storage_systems = [_generic_storage_system]
else:
_generation_system = NonPvGenerationSystem()
_type = archetype_generation_system.system_type
_generation_system.system_type = Dictionaries().montreal_generation_system_to_hub_energy_generation_system[
_type]
_fuel_type = Dictionaries().montreal_custom_fuel_to_hub_fuel[archetype_generation_system.fuel_type]
_generation_system.fuel_type = _fuel_type
_generation_system.source_types = archetype_generation_system.source_medium
_generation_system.heat_efficiency = archetype_generation_system.heat_efficiency
_generation_system.cooling_efficiency = archetype_generation_system.cooling_efficiency
_generation_system.electricity_efficiency = archetype_generation_system.electricity_efficiency
_generic_storage_system = None
if archetype_generation_system.energy_storage_systems is not None:
_storage_systems = []
for storage_system in archetype_generation_system.energy_storage_systems:
if storage_system.type_energy_stored == 'electrical':
_generic_storage_system = ElectricalStorageSystem()
_generic_storage_system.type_energy_stored = 'electrical'
else:
_generic_storage_system = ThermalStorageSystem()
_generic_storage_system.type_energy_stored = storage_system.type_energy_stored
_generic_storage_system.height = storage_system.height
_generic_storage_system.layers = storage_system.layers
_generic_storage_system.storage_medium = storage_system.storage_medium
_storage_systems.append(_generic_storage_system)
_generation_system.energy_storage_systems = _storage_systems
_generation_systems.append(_generation_system)
return _generation_systems
@staticmethod
def _associate_energy_systems(city):
energy_systems_connection = city.energy_systems_connection_table
def _create_distribution_systems(archetype_system):
_distribution_systems = []
for archetype_distribution_system in archetype_system.distribution_systems:
_distribution_system = DistributionSystem()
_distribution_system.type = archetype_distribution_system.type
_distribution_system.distribution_consumption_fix_flow = \
archetype_distribution_system.distribution_consumption_fix_flow
_distribution_system.distribution_consumption_variable_flow = \
archetype_distribution_system.distribution_consumption_variable_flow
_distribution_system.heat_losses = archetype_distribution_system.heat_losses
_emission_system = None
if archetype_distribution_system.emission_systems is not None:
_emission_systems = []
for emission_system in archetype_distribution_system.emission_systems:
_emission_system = EmissionSystem()
_emission_system.parasitic_energy_consumption = emission_system.parasitic_energy_consumption
_emission_systems.append(_emission_system)
_distribution_system.emission_systems = _emission_systems
_distribution_systems.append(_distribution_system)
return _distribution_systems
@staticmethod
def _assign_energy_systems_to_buildings(city):
for building in city.buildings:
_building_energy_systems = []
energy_systems = energy_systems_connection['Energy System Type'][
energy_systems_connection['Building'] == building.name]
for energy_system in energy_systems:
if str(energy_system) == 'nan':
break
_generic_building_energy_systems = city.generic_energy_systems[energy_system]
for _generic_building_energy_system in _generic_building_energy_systems:
_building_energy_equipment = EnergySystem()
_building_energy_equipment.name = _generic_building_energy_system.name
_building_energy_equipment.demand_types = _generic_building_energy_system.demand_types
energy_systems_cluster_name = building.energy_systems_archetype_name
if str(energy_systems_cluster_name) == 'nan':
break
_generic_building_energy_systems = city.generic_energy_systems[energy_systems_cluster_name]
for _generic_building_energy_system in _generic_building_energy_systems:
_building_energy_systems.append(copy.deepcopy(_generic_building_energy_system))
_building_distribution_system = DistributionSystem()
_building_distribution_system.generic_distribution_system = \
copy.deepcopy(_generic_building_energy_system.distribution_systems)
_building_emission_system = EmissionSystem()
_building_emission_system.generic_emission_system = \
copy.deepcopy(_generic_building_energy_system.emission_systems)
_building_generation_system = GenerationSystem()
_building_generation_system.generic_generation_system = \
copy.deepcopy(_generic_building_energy_system.generation_systems)
_building_energy_equipment.generation_systems = _building_generation_system
_building_energy_equipment.distribution_systems = _building_distribution_system
_building_energy_equipment.emission_systems = _building_emission_system
_building_energy_systems.append(_building_energy_equipment)
building.energy_systems = _building_energy_systems

Some files were not shown because too many files have changed in this diff Show More