Compare commits

...

56 Commits

Author SHA1 Message Date
7bd7b680b3 Update hub/version.py 2024-12-12 14:14:34 -05:00
Guille
765784135d Correct old ep export and optimize code 2024-12-12 20:09:58 +01:00
08e7f68adf Update hub/version.py 2024-12-07 02:48:32 -05:00
Guille
464abea93a Correct package 2024-12-07 08:46:05 +01:00
7d057ece81 Update hub/version.py 2024-12-04 09:45:28 -05:00
04f24e9d91 Merge pull request 'main' (#79) from main into feature/cerc_idf
Reviewed-on: #79
2024-12-04 02:09:57 -05:00
4da206761a Update hub/version.py 2024-12-04 01:10:53 -05:00
0f6a2a5b8f Update hub/version.py 2024-12-04 00:26:16 -05:00
766eba2cb7 Merge pull request 'Remove usages_percentage in favor of usages' (#78) from fix/remove-usages_percentage into main
Reviewed-on: #78
2024-12-04 00:11:05 -05:00
Connor Brackley
103923b272 Changed sql usage type to JSON 2024-12-03 18:41:54 -05:00
Connor Brackley
a492a9eb0a Remove usages_percentage in favor of usages 2024-12-03 17:28:00 -05:00
5ec1708a2c Update hub/version.py 2024-12-03 00:42:54 -05:00
1bac29118e bug fix in result reading 2024-12-03 06:41:13 +01:00
246e3442a6 Merge branch 'main' into feature/cerc_idf 2024-12-03 05:35:09 +01:00
7831af9144 Update hub/version.py 2024-12-02 14:57:29 -05:00
06532adbb9 bug fix 2024-12-02 20:56:06 +01:00
fba7effd52 bug fix 2024-12-02 20:53:45 +01:00
5ca4a802cd Update hub/version.py 2024-12-02 14:14:28 -05:00
f4598ac946 bug fix 2024-12-02 20:13:56 +01:00
1f3d981ace Merge branch 'main' into feature/cerc_idf 2024-11-30 07:33:26 +01:00
f3454bbb72 bug fix 2024-11-30 07:32:46 +01:00
20b7929519 Update hub/version.py 2024-11-29 00:24:27 -05:00
d6032b06a4 Merge pull request 'fix/multi-useage' (#77) from fix/multi-useage into main
Reviewed-on: #77
2024-11-29 00:23:59 -05:00
faa2c772ba Merge remote-tracking branch 'origin/main' 2024-11-28 22:08:47 +01:00
90353cde16 handle error in wwr 2024-11-28 22:08:34 +01:00
fb10e89248 Update hub/exports/building_energy/idf.py 2024-11-28 15:52:23 -05:00
b9cb69ec05 Try to correct the importer 2024-11-28 21:46:21 +01:00
383bcc976f Update hub/version.py 2024-11-27 12:35:23 -05:00
0d44e38985 Merge pull request 'fix: total_installed_capacity attribute added to PvGeneration class, idf modified, redundant palma file removed' (#76) from feature/pv_epw_fix into main
Reviewed-on: #76
2024-11-27 12:32:58 -05:00
f4b4d0551f fix: total_installed_capacity attribute added to PvGeneration class, idf modified, redundant palma file removed 2024-11-27 18:16:40 +01:00
c2a5cc2d5c Correct output names 2024-11-22 06:51:54 +01:00
b9c6594591 Update hub/version.py 2024-11-20 05:16:06 -05:00
76b67b38df Merge pull request 'feature/pv_workflow' (#75) from feature/pv_workflow into main
Reviewed-on: #75
2024-11-20 05:15:26 -05:00
2e7f4f1fe3 fix: montreal_custom systems moved to montreal_future catalogue 2024-11-17 15:29:19 +01:00
ddf10fb2ae feat: catalogues and importers are modified to be able to be implemented with PV workflow 2024-11-15 13:58:11 +01:00
f94ce25394 Partial correction of output names and result imports 2024-11-12 07:04:57 +01:00
8552b7cbd1 Bug fix 2024-11-08 06:58:23 +01:00
14404fbf04 Include oriol's infiltration changes into cerc_idf and remove empty file 2024-11-08 06:41:15 +01:00
c804c5ee6a Merge branch 'main' into feature/cerc_idf 2024-10-29 22:02:08 +01:00
ddf4631c59 test 2024-10-29 21:52:38 +01:00
6020964899 Validation in progress 2024-10-17 06:13:23 +02:00
841a6136bb Validation in progress 2024-10-15 06:12:11 +02:00
68d2bef9ec Validation in progress 2024-10-15 05:24:33 +02:00
afe5e433ea complete refactor 2024-10-03 15:40:02 +02:00
16b0726db7 correct refactor 2024-10-03 13:56:01 +02:00
b915dbdead Merge branch 'main' into feature/cerc_idf 2024-10-03 13:29:29 +02:00
cd7ac9378e Merge branch 'main' into feature/cerc_idf 2024-10-03 13:16:38 +02:00
0157f47bdc Refactor completed 2024-09-30 16:26:19 +02:00
8687b1257d Merge branch 'main' into feature/cerc_idf 2024-09-30 15:17:31 +02:00
78aa84c338 Partial refactor 2024-09-30 15:15:57 +02:00
dc98b634e8 add weather file to the EnergyBuildingsExportsFactory 2024-09-27 14:33:51 +02:00
27514d4d77 cerc idf implementation refactoring and added systems 2024-09-23 17:52:52 +02:00
5e384c8185 cerc idf implementation refactoring and added systems 2024-09-18 06:56:04 +02:00
62c9a5aab7 cerc idf implementation 2024-09-16 17:34:43 +02:00
cc2ee61ada inputs completed 2024-09-13 06:55:12 +02:00
5401064905 cerc_idf basic implementation 2024-09-12 06:57:15 +02:00
57 changed files with 2957 additions and 1307 deletions

View File

@ -15,11 +15,20 @@ class Archetype:
"""
Archetype class
"""
def __init__(self, name, systems):
def __init__(self, name, systems, archetype_cluster_id=None):
self._cluster_id = archetype_cluster_id
self._name = name
self._systems = systems
@property
def cluster_id(self):
"""
Get id
:return: string
"""
return self._cluster_id
@property
def name(self):
"""
@ -43,6 +52,7 @@ class Archetype:
_systems.append(_system.to_dictionary())
content = {
'Archetype': {
'cluster_id': self.cluster_id,
'name': self.name,
'systems': _systems
}

View File

@ -119,7 +119,7 @@ class ThermalStorageSystem(EnergyStorageSystem):
'height [m]': self.height,
'layers': _layers,
'maximum operating temperature [Celsius]': self.maximum_operating_temperature,
'storage_medium': self.storage_medium.to_dictionary(),
'storage_medium': _medias,
'heating coil capacity [W]': self.heating_coil_capacity
}
}

View File

@ -69,10 +69,10 @@ class MontrealCustomCatalog(Catalog):
storage_system = ThermalStorageSystem(equipment_id)
storage_systems = [storage_system]
if model_name == 'PV system':
system_type = 'Photovoltaic'
system_type = 'photovoltaic'
generation_system = PvGenerationSystem(equipment_id,
name=None,
system_type= system_type,
system_type=system_type,
model_name=model_name,
electricity_efficiency=electricity_efficiency,
energy_storage_systems=storage_systems

View File

@ -30,7 +30,8 @@ class MontrealFutureSystemCatalogue(Catalog):
path = str(path / 'montreal_future_systems.xml')
with open(path, 'r', encoding='utf-8') as xml:
self._archetypes = xmltodict.parse(xml.read(),
force_list=['pv_generation_component', 'templateStorages', 'demand'])
force_list=['pv_generation_component', 'templateStorages', 'demand',
'system', 'system_id'])
self._storage_components = self._load_storage_components()
self._generation_components = self._load_generation_components()
@ -49,7 +50,7 @@ class MontrealFutureSystemCatalogue(Catalog):
'non_pv_generation_component']
if non_pv_generation_components is not None:
for non_pv in non_pv_generation_components:
system_id = non_pv['system_id']
system_id = non_pv['generation_system_id']
name = non_pv['name']
system_type = non_pv['system_type']
model_name = non_pv['model_name']
@ -181,7 +182,7 @@ class MontrealFutureSystemCatalogue(Catalog):
'pv_generation_component']
if pv_generation_components is not None:
for pv in pv_generation_components:
system_id = pv['system_id']
system_id = pv['generation_system_id']
name = pv['name']
system_type = pv['system_type']
model_name = pv['model_name']
@ -381,6 +382,7 @@ class MontrealFutureSystemCatalogue(Catalog):
_system_archetypes = []
system_clusters = self._archetypes['EnergySystemCatalog']['system_archetypes']['system_archetype']
for system_cluster in system_clusters:
archetype_id = system_cluster['@cluster_id']
name = system_cluster['name']
systems = system_cluster['systems']['system_id']
integer_system_ids = [int(item) for item in systems]
@ -388,7 +390,7 @@ class MontrealFutureSystemCatalogue(Catalog):
for system_archetype in self._systems:
if int(system_archetype.id) in integer_system_ids:
_systems.append(system_archetype)
_system_archetypes.append(Archetype(name=name, systems=_systems))
_system_archetypes.append(Archetype(archetype_cluster_id=archetype_id, name=name, systems=_systems))
return _system_archetypes
def _load_materials(self):

View File

@ -93,6 +93,7 @@ class Building(CityObject):
logging.error('Building %s [%s] has an unexpected surface type %s.', self.name, self.aliases, surface.type)
self._domestic_hot_water_peak_load = None
self._fuel_consumption_breakdown = {}
self._systems_archetype_cluster_id = None
self._pv_generation = {}
@property
@ -865,9 +866,10 @@ class Building(CityObject):
Get energy consumption of different sectors
return: dict
"""
fuel_breakdown = {cte.ELECTRICITY: {cte.LIGHTING: self.lighting_electrical_demand[cte.YEAR][0],
cte.APPLIANCES: self.appliances_electrical_demand[cte.YEAR][0]}}
fuel_breakdown = {cte.ELECTRICITY: {cte.LIGHTING: self.lighting_electrical_demand[cte.YEAR][0] if self.lighting_electrical_demand else 0,
cte.APPLIANCES: self.appliances_electrical_demand[cte.YEAR][0] if self.appliances_electrical_demand else 0}}
energy_systems = self.energy_systems
if energy_systems is not None:
for energy_system in energy_systems:
demand_types = energy_system.demand_types
generation_systems = energy_system.generation_systems
@ -883,7 +885,8 @@ class Building(CityObject):
if storage_systems:
for storage_system in storage_systems:
if storage_system.type_energy_stored == 'thermal' and storage_system.heating_coil_energy_consumption:
fuel_breakdown[cte.ELECTRICITY][f'{demand_type}'] += storage_system.heating_coil_energy_consumption[cte.YEAR][0]
fuel_breakdown[cte.ELECTRICITY][f'{demand_type}'] += (
storage_system.heating_coil_energy_consumption)[f'{demand_type}'][cte.YEAR][0]
#TODO: When simulation models of all energy system archetypes are created, this part can be removed
heating_fuels = []
dhw_fuels = []
@ -898,20 +901,52 @@ class Building(CityObject):
if key == cte.ELECTRICITY and cte.COOLING not in fuel_breakdown[key]:
for energy_system in energy_systems:
if cte.COOLING in energy_system.demand_types and cte.COOLING not in fuel_breakdown[key]:
for generation_system in energy_system.generation_systems:
fuel_breakdown[generation_system.fuel_type][cte.COOLING] = self.cooling_consumption[cte.YEAR][0]
if self.cooling_consumption:
fuel_breakdown[energy_system.generation_systems[0].fuel_type][cte.COOLING] = self.cooling_consumption[cte.YEAR][0]
for fuel in heating_fuels:
if cte.HEATING not in fuel_breakdown[fuel]:
for energy_system in energy_systems:
if cte.HEATING in energy_system.demand_types:
for generation_system in energy_system.generation_systems:
fuel_breakdown[generation_system.fuel_type][cte.HEATING] = self.heating_consumption[cte.YEAR][0]
if self.heating_consumption:
fuel_breakdown[energy_system.generation_systems[0].fuel_type][cte.HEATING] = self.heating_consumption[cte.YEAR][0]
for fuel in dhw_fuels:
if cte.DOMESTIC_HOT_WATER not in fuel_breakdown[fuel]:
for energy_system in energy_systems:
if cte.DOMESTIC_HOT_WATER in energy_system.demand_types:
for generation_system in energy_system.generation_systems:
fuel_breakdown[generation_system.fuel_type][cte.DOMESTIC_HOT_WATER] = self.domestic_hot_water_consumption[cte.YEAR][0]
if self.domestic_hot_water_consumption:
fuel_breakdown[energy_system.generation_systems[0].fuel_type][cte.DOMESTIC_HOT_WATER] = self.domestic_hot_water_consumption[cte.YEAR][0]
self._fuel_consumption_breakdown = fuel_breakdown
return self._fuel_consumption_breakdown
@property
def energy_systems_archetype_cluster_id(self):
"""
Get energy systems archetype id
:return: str
"""
return self._systems_archetype_cluster_id
@energy_systems_archetype_cluster_id.setter
def energy_systems_archetype_cluster_id(self, value):
"""
Set energy systems archetype id
:param value: str
"""
self._systems_archetype_cluster_id = value
@property
def pv_generation(self):
"""
temporary attribute to get the onsite pv generation in W
:return: dict
"""
return self._pv_generation
@pv_generation.setter
def pv_generation(self, value):
"""
temporary attribute to set the onsite pv generation in W
:param value: float
"""
self._pv_generation = value

View File

@ -157,6 +157,7 @@ class Surface:
if self._inclination is None:
self._inclination = np.arccos(self.perimeter_polygon.normal[2])
return self._inclination
@property
def type(self):
"""

View File

@ -28,9 +28,7 @@ class PvGenerationSystem(GenerationSystem):
self._height = None
self._electricity_power_output = {}
self._tilt_angle = None
self._surface_azimuth = None
self._solar_altitude_angle = None
self._solar_azimuth_angle = None
self._installed_capacity = None
@property
def nominal_electricity_output(self):
@ -225,33 +223,17 @@ class PvGenerationSystem(GenerationSystem):
self._electricity_power_output = value
@property
def tilt_angle(self):
def installed_capacity(self):
"""
Get tilt angle of PV system in degrees
Get the total installed nominal capacity in W
:return: float
"""
return self._tilt_angle
return self._installed_capacity
@tilt_angle.setter
def tilt_angle(self, value):
@installed_capacity.setter
def installed_capacity(self, value):
"""
Set PV system tilt angle in degrees
Set the total installed nominal capacity in W
:param value: float
"""
self._tilt_angle = value
@property
def surface_azimuth(self):
"""
Get surface azimuth angle of PV system in degrees. 0 is North
:return: float
"""
return self._surface_azimuth
@surface_azimuth.setter
def surface_azimuth(self, value):
"""
Set PV system tilt angle in degrees
:param value: float
"""
self._surface_azimuth = value
self._installed_capacity = value

View File

@ -339,7 +339,7 @@
"infiltration_rate_area_for_ventilation_system_off": 0.0055,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": " C_1941_1960_FACEXT1",
"opaque_surface_name": "C_1941_1960_FACEXT1",
"transparent_surface_name": "C_1941_1960_WIN1",
"transparent_ratio": {
"north": "30",

View File

@ -1,774 +0,0 @@
{
"archetypes": [
{
"function": "Large multifamily building",
"period_of_construction": "2021_2050",
"climate_zone": "B3",
"average_storey_height": 3.57,
"thermal_capacity": 83.018,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT",
"transparent_surface_name": "PA1_PA2_2021_2050_WIN1",
"transparent_ratio": {
"north": "60",
"east": "5",
"south": "60",
"west": "5"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_ROOF",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOOR"
},
"GroundWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT"
},
"GroundRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOORINT"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Medium multifamily building",
"period_of_construction": "2021_2050",
"climate_zone": "B3",
"average_storey_height": 3.57,
"thermal_capacity": 83.018,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT",
"transparent_surface_name": "PA1_PA2_2021_2050_WIN1",
"transparent_ratio": {
"north": "60",
"east": "5",
"south": "60",
"west": "5"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_ROOF",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOOR"
},
"GroundWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT"
},
"GroundRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOORINT"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Small multifamily building",
"period_of_construction": "2021_2050",
"climate_zone": "B3",
"average_storey_height": 3.57,
"thermal_capacity": 83.018,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT",
"transparent_surface_name": "PA1_PA2_2021_2050_WIN1",
"transparent_ratio": {
"north": "60",
"east": "5",
"south": "60",
"west": "5"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_ROOF",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOOR"
},
"GroundWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT"
},
"GroundRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOORINT"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Single-family building",
"period_of_construction": "2021_2050",
"climate_zone": "B3",
"average_storey_height": 3.57,
"thermal_capacity": 83.018,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT",
"transparent_surface_name": "PA1_PA2_2021_2050_WIN1",
"transparent_ratio": {
"north": "60",
"east": "5",
"south": "60",
"west": "5"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_ROOF",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOOR"
},
"GroundWall": {
"opaque_surface_name": "PA1_PA2_2021_2050_FACEXT"
},
"GroundRoofCeiling": {
"opaque_surface_name": "PA1_PA2_2021_2050_FLOORINT"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Large multifamily building",
"period_of_construction": "1961_1980",
"climate_zone": "B3",
"average_storey_height": 3.57,
"thermal_capacity": 3000,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_1961_1980_FACEXT1",
"transparent_surface_name": "PA1_PA2_1961_1980_WIN1",
"transparent_ratio": {
"north": "60",
"east": "60",
"south": "60",
"west": "60"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_1961_1980_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_1961_1980_FLOOR1"
},
"GroundWall": {
"opaque_surface_name": "PA1_PA2_1961_1980_FACEXT1"
},
"GroundRoofCeiling": {
"opaque_surface_name": "PA1_PA2_1961_1980_FLOOR4"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Large multifamily building",
"period_of_construction": "1981_2007",
"climate_zone": "B3",
"average_storey_height": 3.2,
"thermal_capacity": 3179,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "E_1981_2007_FACEXT1",
"transparent_surface_name": "E_1981_2007_WIN1",
"transparent_ratio": {
"north": "45",
"east": "45",
"south": "45",
"west": "45"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "E_1981_2007_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "E_1981_2007_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Medium multifamily building",
"period_of_construction": "1800_1900",
"climate_zone": "B3",
"average_storey_height": 4.39,
"thermal_capacity": 3330,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "A_B1900_FACEXT1",
"transparent_surface_name": "A_B1900_WIN2",
"transparent_ratio": {
"north": "20",
"east": "20",
"south": "20",
"west": "20"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "A_B1900_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "A_B1900_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Medium multifamily building",
"period_of_construction": "1901_1940",
"climate_zone": "B3",
"average_storey_height": 3.65,
"thermal_capacity": 3420,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "B_1901_1940_FACEXT1",
"transparent_surface_name": "B_1901_1940_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "B_1901_1940_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "B_1901_1940_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Medium multifamily building",
"period_of_construction": "1941_1960",
"climate_zone": "B3",
"average_storey_height": 3.6,
"thermal_capacity": 3000,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": " C_1941_1960_FACEXT1",
"transparent_surface_name": "C_1941_1960_WIN1",
"transparent_ratio": {
"north": "30",
"east": "30",
"south": "30",
"west": "30"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "C_1941_1960_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "C_1941_1960_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Medium multifamily building",
"period_of_construction": "1961_1980",
"climate_zone": "B3",
"average_storey_height": 4.5,
"thermal_capacity": 3540,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA1_PA2_1961_1980_FACEXT1",
"transparent_surface_name": "PA1_PA2_1961_1980_WIN1",
"transparent_ratio": {
"north": "55",
"east": "55",
"south": "55",
"west": "55"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA1_PA2_1961_1980_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA1_PA2_1961_1980_FLOOR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Medium multifamily building",
"period_of_construction": "1981_2007",
"climate_zone": "B3",
"average_storey_height": 3.2,
"thermal_capacity": 3179,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "E_1981_2007_FACEXT1",
"transparent_surface_name": "E_1981_2007_WIN1",
"transparent_ratio": {
"north": "45",
"east": "45",
"south": "45",
"west": "45"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "E_1981_2007_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "E_1981_2007_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Medium multifamily building",
"period_of_construction": "2008_2014",
"climate_zone": "B3",
"average_storey_height": 2.75,
"thermal_capacity": 3290,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "F_2008_2014_FACEXT1",
"transparent_surface_name": "F_2008_2014_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "F_2008_2014_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "F_2008_2014_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Small multifamily building",
"period_of_construction": "1800_1980",
"climate_zone": "B3",
"average_storey_height": 3.8,
"thermal_capacity": 3527.9,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA3_PA4_1901_1940_FACEXT1",
"transparent_surface_name": "PA3_PA4_1901_1940_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA3_PA4_1901_1940_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA3_PA4_1901_1940_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Small multifamily building",
"period_of_construction": "1981_2007",
"climate_zone": "B3",
"average_storey_height": 3.2,
"thermal_capacity": 3179,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "E_1981_2007_FACEXT1",
"transparent_surface_name": "E_1981_2007_WIN1",
"transparent_ratio": {
"north": "45",
"east": "45",
"south": "45",
"west": "45"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "E_1981_2007_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "E_1981_2007_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Small multifamily building",
"period_of_construction": "2008_2014",
"climate_zone": "B3",
"average_storey_height": 2.75,
"thermal_capacity": 3290,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "F_2008_2014_FACEXT1",
"transparent_surface_name": "F_2008_2014_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "F_2008_2014_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "F_2008_2014_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Small multifamily building",
"period_of_construction": "2015_2019",
"climate_zone": "B3",
"average_storey_height": 2.75,
"thermal_capacity": 3290,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "G_2015_2019_FACEXT1",
"transparent_surface_name": "G_2015_2019_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "G_2015_2019_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "G_2015_2019_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Single-family building",
"period_of_construction": "1800_1980",
"climate_zone": "B3",
"average_storey_height": 3.68,
"thermal_capacity": 4400,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "PA3_PA4_1901_1940_FACEXT1",
"transparent_surface_name": "PA3_PA4_1901_1940_WIN1",
"transparent_ratio": {
"north": "40",
"east": "40",
"south": "40",
"west": "40"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "PA3_PA4_1901_1940_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "PA3_PA4_1901_1940_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Single-family building",
"period_of_construction": "1981_2007",
"climate_zone": "B3",
"average_storey_height": 3.2,
"thermal_capacity": 3179,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "E_1981_2007_FACEXT1",
"transparent_surface_name": "E_1981_2007_WIN1",
"transparent_ratio": {
"north": "45",
"east": "45",
"south": "45",
"west": "45"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "E_1981_2007_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "E_1981_2007_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Single-family building",
"period_of_construction": "2008_2014",
"climate_zone": "B3",
"average_storey_height": 3.75,
"thermal_capacity": 3200,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "F_2008_2014_FACEXT1",
"transparent_surface_name": "F_2008_2014_WIN1",
"transparent_ratio": {
"north": "60",
"east": "60",
"south": "60",
"west": "60"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "F_2008_2014_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "F_2008_2014_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
},
{
"function": "Single-family building",
"period_of_construction": "2015_2019",
"climate_zone": "B3",
"average_storey_height": 3.75,
"thermal_capacity": 3200,
"extra_loses_due_thermal_bridges": 0.1,
"infiltration_rate_for_ventilation_system_on": 0,
"infiltration_rate_for_ventilation_system_off": 0.9,
"constructions": {
"OutdoorsWall": {
"opaque_surface_name": "G_2015_2019_FACEXT1",
"transparent_surface_name": "G_2015_2019_WIN1",
"transparent_ratio": {
"north": "60",
"east": "60",
"south": "60",
"west": "60"
}
},
"OutdoorsRoofCeiling": {
"opaque_surface_name": "G_2015_2019_ROOF1",
"transparent_surface_name": null,
"transparent_ratio": {
"north": null,
"east": null,
"south": null,
"west": null
}
},
"GroundFloor": {
"opaque_surface_name": "G_2015_2019_FLOORGR1"
}
},
"infiltration_rate_area_for_ventilation_system_on": 0,
"infiltration_rate_area_for_ventilation_system_off": 0
}
]
}

View File

@ -198,7 +198,7 @@
<equipments>
<generation_id>3</generation_id>
<distribution_id>8</distribution_id>
g </equipments>
</equipments>
</system>
<system id="5">
<name>Single zone packaged rooftop unit with electrical resistance furnace and baseboards and fuel boiler for acs</name>
@ -240,7 +240,7 @@ g </equipments>
<demand>domestic_hot_water</demand>
</demands>
<equipments>
<generation_id>2</generation_id>
<generation_id>1</generation_id>
<distribution_id>3</distribution_id>
</equipments>
</system>
@ -302,7 +302,7 @@ g </equipments>
</demands>
<equipments>
<generation_id>5</generation_id>
<distribution_id>6</distribution_id>
<distribution_id>4</distribution_id>
</equipments>
</system>
<system id="15">

File diff suppressed because it is too large Load Diff

View File

@ -253,7 +253,7 @@
<pv_generation_component>
<system_id>7</system_id>
<name>template Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<system_type>photovoltaic</system_type>
<model_name/>
<manufacturer/>
<nominal_electricity_output/>
@ -264,7 +264,7 @@
<standard_test_condition_cell_temperature>25</standard_test_condition_cell_temperature>
<standard_test_condition_radiation>1000</standard_test_condition_radiation>
<standard_test_condition_maximum_power>500</standard_test_condition_maximum_power>
<cell_temperature_coefficient/>
<cell_temperature_coefficient>0.3</cell_temperature_coefficient>
<width>2.0</width>
<height>1.0</height>
<distribution_systems/>
@ -274,7 +274,7 @@
<pv_generation_component>
<system_id>8</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<system_type>photovoltaic</system_type>
<model_name>RE400CAA Pure 2</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>305</nominal_electricity_output>
@ -295,7 +295,7 @@
<pv_generation_component>
<system_id>9</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<system_type>photovoltaic</system_type>
<model_name>RE410CAA Pure 2</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>312</nominal_electricity_output>
@ -316,7 +316,7 @@
<pv_generation_component>
<system_id>10</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<system_type>photovoltaic</system_type>
<model_name>RE420CAA Pure 2</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>320</nominal_electricity_output>
@ -337,7 +337,7 @@
<pv_generation_component>
<system_id>11</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<system_type>photovoltaic</system_type>
<model_name>RE430CAA Pure 2</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>327</nominal_electricity_output>
@ -358,7 +358,7 @@
<pv_generation_component>
<system_id>12</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<system_type>photovoltaic</system_type>
<model_name>REC600AA Pro M</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>457</nominal_electricity_output>
@ -379,7 +379,7 @@
<pv_generation_component>
<system_id>13</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<system_type>photovoltaic</system_type>
<model_name>REC610AA Pro M</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>464</nominal_electricity_output>
@ -400,7 +400,7 @@
<pv_generation_component>
<system_id>14</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<system_type>photovoltaic</system_type>
<model_name>REC620AA Pro M</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>472</nominal_electricity_output>
@ -421,7 +421,7 @@
<pv_generation_component>
<system_id>15</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<system_type>photovoltaic</system_type>
<model_name>REC630AA Pro M</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>480</nominal_electricity_output>
@ -442,7 +442,7 @@
<pv_generation_component>
<system_id>16</system_id>
<name>Photovoltaic Module</name>
<system_type>Photovoltaic</system_type>
<system_type>photovoltaic</system_type>
<model_name>REC640AA Pro M</model_name>
<manufacturer>REC</manufacturer>
<nominal_electricity_output>487</nominal_electricity_output>

View File

@ -0,0 +1,248 @@
"""
Cerc Idf exports one city or some buildings to idf format
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Guille Guillermo.GutierrezMorote@concordia.ca
Code contributors: Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
Oriol Gavalda Torrellas oriol.gavalda@concordia.ca
"""
import copy
import os
import shutil
import subprocess
import hub.exports.building_energy.idf_helper as idf_cte
import hub.helpers.constants as cte
from hub.city_model_structure.attributes.schedule import Schedule
from hub.exports.building_energy.idf_helper.idf_appliance import IdfAppliance
from hub.exports.building_energy.idf_helper.idf_base import IdfBase
from hub.exports.building_energy.idf_helper.idf_construction import IdfConstruction
from hub.exports.building_energy.idf_helper.idf_dhw import IdfDhw
from hub.exports.building_energy.idf_helper.idf_file_schedule import IdfFileSchedule
from hub.exports.building_energy.idf_helper.idf_heating_system import IdfHeatingSystem
from hub.exports.building_energy.idf_helper.idf_infiltration import IdfInfiltration
from hub.exports.building_energy.idf_helper.idf_lighting import IdfLighting
from hub.exports.building_energy.idf_helper.idf_material import IdfMaterial
from hub.exports.building_energy.idf_helper.idf_occupancy import IdfOccupancy
from hub.exports.building_energy.idf_helper.idf_schedule import IdfSchedule
from hub.exports.building_energy.idf_helper.idf_shading import IdfShading
from hub.exports.building_energy.idf_helper.idf_surfaces import IdfSurfaces
from hub.exports.building_energy.idf_helper.idf_thermostat import IdfThermostat
from hub.exports.building_energy.idf_helper.idf_ventilation import IdfVentilation
from hub.exports.building_energy.idf_helper.idf_window import IdfWindow
from hub.exports.building_energy.idf_helper.idf_windows_constructions import IdfWindowsConstructions
from hub.exports.building_energy.idf_helper.idf_windows_material import IdfWindowsMaterial
from hub.exports.building_energy.idf_helper.idf_zone import IdfZone
class CercIdf(IdfBase):
"""
Exports city to IDF
"""
_schedules_added_to_idf = {}
_materials_added_to_idf = {}
_windows_added_to_idf = {}
_constructions_added_to_idf = {}
_thermostat_added_to_idf = {}
def __init__(self, city, output_path, idf_file_path, idd_file_path, epw_file_path, target_buildings=None):
super().__init__(city, output_path, idf_file_path, idd_file_path, epw_file_path, target_buildings)
self._add_surfaces = IdfSurfaces.add
self._add_file_schedule = IdfFileSchedule.add
self._add_idf_schedule = IdfSchedule.add
self._add_construction = IdfConstruction.add
self._add_material = IdfMaterial.add
self._add_windows_material = IdfWindowsMaterial.add
self._add_windows_constructions = IdfWindowsConstructions.add
self._add_occupancy = IdfOccupancy.add
self._add_lighting = IdfLighting.add
self._add_appliance = IdfAppliance.add
self._add_infiltration = IdfInfiltration.add
self._add_infiltration_surface = IdfInfiltration.add_surface
self._add_ventilation = IdfVentilation.add
self._add_zone = IdfZone.add
self._add_thermostat = IdfThermostat.add
self._add_heating_system = IdfHeatingSystem.add
self._add_dhw = IdfDhw.add
self._add_shading = IdfShading.add
self._add_windows = IdfWindow.add
with open(self._idf_file_path, 'r', encoding='UTF-8') as base_idf:
lines = base_idf.readlines()
# Change city name
comment = f' !- Name'
field = f' Buildings in {self._city.name},'.ljust(26, ' ')
lines[15] = f'{field}{comment}\n'
with open(self._output_file_path, 'w', encoding='UTF-8') as self._idf_file:
self._idf_file.writelines(lines)
self._export()
def _create_geometry_rules(self):
file = self._files['constructions']
self._write_to_idf_format(file, idf_cte.GLOBAL_GEOMETRY_RULES)
self._write_to_idf_format(file, 'UpperLeftCorner', 'Starting Vertex Position')
self._write_to_idf_format(file, 'CounterClockWise', 'Vertex Entry Direction')
self._write_to_idf_format(file, 'World', 'Coordinate System', ';')
def _merge_files(self):
for file in self._files.values():
file.close()
for path in self._file_paths.values():
with open(path, 'r', encoding='UTF-8') as file:
lines = file.readlines()
self._idf_file.writelines(lines)
for path in self._file_paths.values():
os.unlink(path)
def _add_outputs(self):
with open(self._outputs_file_path, 'r', encoding='UTF-8') as base_idf:
lines = base_idf.readlines()
self._idf_file.writelines(lines)
@staticmethod
def _create_infiltration_schedules(thermal_zone):
_infiltration_schedules = []
if thermal_zone.thermal_control is None:
return []
for hvac_availability_schedule in thermal_zone.thermal_control.hvac_availability_schedules:
_schedule = Schedule()
_schedule.type = cte.INFILTRATION
_schedule.data_type = cte.FRACTION
_schedule.time_step = cte.HOUR
_schedule.time_range = cte.DAY
_schedule.day_types = copy.deepcopy(hvac_availability_schedule.day_types)
_infiltration_values = []
for hvac_value in hvac_availability_schedule.values:
if hvac_value == 0:
_infiltration_values.append(1.0)
else:
if thermal_zone.infiltration_rate_system_off == 0:
_infiltration_values.append(0.0)
else:
_infiltration_values.append(
thermal_zone.infiltration_rate_system_on / thermal_zone.infiltration_rate_system_off)
_schedule.values = _infiltration_values
_infiltration_schedules.append(_schedule)
return _infiltration_schedules
@staticmethod
def _create_ventilation_schedules(thermal_zone):
_ventilation_schedules = []
if thermal_zone.thermal_control is None:
return []
for hvac_availability_schedule in thermal_zone.thermal_control.hvac_availability_schedules:
_schedule = Schedule()
_schedule.type = cte.VENTILATION
_schedule.data_type = cte.FRACTION
_schedule.time_step = cte.HOUR
_schedule.time_range = cte.DAY
_schedule.day_types = copy.deepcopy(hvac_availability_schedule.day_types)
_ventilation_schedules = thermal_zone.thermal_control.hvac_availability_schedules
return _ventilation_schedules
@staticmethod
def _create_constant_value_schedules(value, amount):
_schedule = Schedule()
_schedule.type = ''
_schedule.data_type = cte.ANY_NUMBER
_schedule.time_step = cte.HOUR
_schedule.time_range = cte.DAY
_schedule.day_types = ['monday',
'tuesday',
'wednesday',
'thursday',
'friday',
'saturday',
'sunday',
'holiday',
'winter_design_day',
'summer_design_day']
_schedule.values = [value for _ in range(0, amount)]
return [_schedule]
def _export(self):
for building in self._city.buildings:
is_target = building.name in self._target_buildings or building.name in self._adjacent_buildings
for internal_zone in building.internal_zones:
if internal_zone.thermal_zones_from_internal_zones is None:
is_target = False
continue
for thermal_zone in internal_zone.thermal_zones_from_internal_zones:
if is_target:
service_temperature = thermal_zone.domestic_hot_water.service_temperature
usage = thermal_zone.usage_name
occ = thermal_zone.occupancy
if occ.occupancy_density == 0:
total_heat = 0
else:
total_heat = (
occ.sensible_convective_internal_gain +
occ.sensible_radiative_internal_gain +
occ.latent_internal_gain
) / occ.occupancy_density
self._add_idf_schedule(self, usage, 'Infiltration', self._create_infiltration_schedules(thermal_zone))
self._add_idf_schedule(self, usage, 'Ventilation', self._create_ventilation_schedules(thermal_zone))
self._add_idf_schedule(self, usage, 'Occupancy', thermal_zone.occupancy.occupancy_schedules)
self._add_idf_schedule(self, usage, 'HVAC AVAIL', thermal_zone.thermal_control.hvac_availability_schedules)
self._add_idf_schedule(self, usage, 'Heating thermostat',
thermal_zone.thermal_control.heating_set_point_schedules)
self._add_idf_schedule(self, usage, 'Cooling thermostat',
thermal_zone.thermal_control.cooling_set_point_schedules)
self._add_idf_schedule(self, usage, 'Lighting', thermal_zone.lighting.schedules)
self._add_idf_schedule(self, usage, 'Appliance', thermal_zone.appliances.schedules)
self._add_idf_schedule(self, usage, 'DHW_prof', thermal_zone.domestic_hot_water.schedules)
self._add_idf_schedule(self, usage, 'DHW_temp',
self._create_constant_value_schedules(service_temperature, 24))
self._add_idf_schedule(self, usage, 'Activity Level', self._create_constant_value_schedules(total_heat, 24))
self._add_file_schedule(self, usage, 'cold_temp',
self._create_constant_value_schedules(building.cold_water_temperature[cte.HOUR],
24))
for thermal_boundary in thermal_zone.thermal_boundaries:
self._add_material(self, thermal_boundary)
self._add_construction(self, thermal_boundary)
for thermal_opening in thermal_boundary.thermal_openings:
self._add_windows_material(self, thermal_boundary, thermal_opening)
self._add_windows_constructions(self, thermal_boundary)
self._add_zone(self, thermal_zone, building.name)
self._add_occupancy(self, thermal_zone, building.name)
self._add_lighting(self, thermal_zone, building.name)
self._add_appliance(self, thermal_zone, building.name)
if self._calculate_with_new_infiltration: # ToDo: Check with oriol if we want to keep the old method too
self._add_infiltration_surface(self, thermal_zone, building.name)
else:
self._add_infiltration(self, thermal_zone, building.name)
self._add_ventilation(self, thermal_zone, building.name)
self._add_thermostat(self, thermal_zone)
self._add_heating_system(self, thermal_zone, building.name)
self._add_dhw(self, thermal_zone, building.name)
if is_target:
self._add_surfaces(self, building, building.name)
self._add_windows(self, building)
else:
self._add_shading(self, building)
self._create_output_control_lighting() # Add lighting control to the lighting
# Create base values
self._create_geometry_rules()
# Merge files
self._merge_files()
self._add_outputs()
@property
def _energy_plus(self):
return shutil.which('energyplus')
def run(self):
cmd = [self._energy_plus,
'--weather', self._epw_file_path,
'--output-directory', self._output_path,
'--idd', self._idd_file_path,
'--expandobjects',
'--readvars',
'--output-prefix', f'{self._city.name}_',
self._output_file_path]
subprocess.run(cmd, cwd=self._output_path)

View File

@ -169,7 +169,7 @@ class EnergyAde:
def _building_geometry(self, building, building_dic, city):
building_dic['bldg:Building']['bldg:function'] = building.function
building_dic['bldg:Building']['bldg:usage'] = building.usages_percentage
building_dic['bldg:Building']['bldg:usage'] = building.usages
building_dic['bldg:Building']['bldg:yearOfConstruction'] = building.year_of_construction
building_dic['bldg:Building']['bldg:roofType'] = building.roof_type
building_dic['bldg:Building']['bldg:measuredHeight'] = {

View File

@ -8,10 +8,12 @@ Code contributors: Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concord
"""
import copy
import datetime
import glob
import os
import shutil
import subprocess
from pathlib import Path
from geomeppy import IDF
import hub.helpers.constants as cte
from hub.city_model_structure.attributes.schedule import Schedule
from hub.city_model_structure.building_demand.thermal_zone import ThermalZone
@ -107,6 +109,7 @@ class Idf:
else:
for building_name in target_buildings:
building = city.city_object(building_name)
print('Name: ', building_name)
if building.neighbours is not None:
self._adjacent_buildings += building.neighbours
self._export()
@ -444,7 +447,7 @@ class Idf:
subcategory = f'ELECTRIC EQUIPMENT#{zone_name}#InteriorEquipment'
self._idf.newidfobject(self._APPLIANCES,
Fuel_Type=fuel_type,
Name=f'{zone_name}_appliance',
Name=zone_name,
Zone_or_ZoneList_or_Space_or_SpaceList_Name=zone_name,
Schedule_Name=f'Appliance schedules {thermal_zone.usage_name}',
Design_Level_Calculation_Method=method,
@ -467,7 +470,7 @@ class Idf:
def _add_infiltration_surface(self, thermal_zone, zone_name):
schedule = f'INF_CONST schedules {thermal_zone.usage_name}'
_infiltration = thermal_zone.infiltration_rate_area_system_off*1
_infiltration = thermal_zone.infiltration_rate_area_system_off* cte.INFILTRATION_75PA_TO_4PA
self._idf.newidfobject(self._INFILTRATION,
Name=f'{zone_name}_infiltration',
Zone_or_ZoneList_or_Space_or_SpaceList_Name=zone_name,
@ -501,7 +504,7 @@ class Idf:
)
def _rename_building(self, city_name):
name = str(str(city_name.encode("utf-8")))
name = str(city_name.encode("utf-8"))
for building in self._idf.idfobjects[self._BUILDING]:
building.Name = f'Buildings in {name}'
building['Solar_Distribution'] = 'FullExterior'
@ -528,11 +531,12 @@ class Idf:
self._remove_sizing_periods()
self._rename_building(self._city.name)
self._lod = self._city.level_of_detail.geometry
is_target = False
for building in self._city.buildings:
is_target = building.name in self._target_buildings or building.name in self._adjacent_buildings
for internal_zone in building.internal_zones:
if internal_zone.thermal_zones_from_internal_zones is None:
self._target_buildings.remoidf_surface_typeve(building.name)
self._target_buildings.remove(building.name)
is_target = False
continue
for thermal_zone in internal_zone.thermal_zones_from_internal_zones:
@ -586,9 +590,7 @@ class Idf:
if self._export_type == "Surfaces":
if is_target:
if building.thermal_zones_from_internal_zones is not None:
start = datetime.datetime.now()
self._add_surfaces(building, building.name)
print(f'add surfaces {datetime.datetime.now() - start}')
else:
self._add_pure_geometry(building, building.name)
else:
@ -651,14 +653,26 @@ class Idf:
self._idf.removeidfobject(window)
self._idf.saveas(str(self._output_file))
for building in self._city.buildings:
if self._export_type == "Surfaces":
if is_target and building.thermal_zones_from_internal_zones is not None:
self._add_surfaces(building, building.name)
return self._idf
@property
def _energy_plus(self):
return shutil.which('energyplus')
def run(self):
"""
Start the energy plus simulation
"""
self._idf.run(expandobjects=False, readvars=True, output_directory=self._output_path,
output_prefix=f'{self._city.name}_')
cmd = [self._energy_plus,
'--weather', self._epw_file_path,
'--output-directory', self._output_path,
'--idd', self._idd_file_path,
'--expandobjects',
'--readvars',
'--output-prefix', f'{self._city.name}_',
self._idf_file_path]
subprocess.run(cmd, cwd=self._output_path)
def _add_block(self, building):
_points = self._matrix_to_2d_list(building.foot_print.coordinates)
@ -727,7 +741,10 @@ class Idf:
else:
# idf only allows setting wwr for external walls
wwr = 0
self._idf.set_wwr(wwr)
try:
self._idf.set_wwr(wwr, construction='window_construction_1')
except ValueError:
self._idf.set_wwr(0, construction='window_construction_1')
def _add_surfaces(self, building, zone_name):
for thermal_zone in building.thermal_zones_from_internal_zones:
@ -758,13 +775,11 @@ class Idf:
else:
construction_name = f'{boundary.construction_name} {boundary.parent_surface.type}'
_kwargs['Construction_Name'] = construction_name
start = datetime.datetime.now()
surface = self._idf.newidfobject(self._SURFACE, **_kwargs)
coordinates = self._matrix_to_list(boundary.parent_surface.solid_polygon.coordinates,
self._city.lower_corner)
surface.setcoords(coordinates)
if self._lod >= 3:
for internal_zone in building.internal_zones:
for thermal_zone in internal_zone.thermal_zones_from_internal_zones:
@ -776,7 +791,10 @@ class Idf:
for surface in building.surfaces:
if surface.type == cte.WALL:
wwr = surface.associated_thermal_boundaries[0].window_ratio
try:
self._idf.set_wwr(wwr, construction='window_construction_1')
except ValueError:
self._idf.set_wwr(0, construction='window_construction_1')
def _add_windows_by_vertices(self, boundary):
raise NotImplementedError

View File

@ -0,0 +1,62 @@
!- Linux Line endings
Version,
24.1; !- Version Identifier
SimulationControl,
No, !- Do Zone Sizing Calculation
No, !- Do System Sizing Calculation
No, !- Do Plant Sizing Calculation
No, !- Run Simulation for Sizing Periods
Yes, !- Run Simulation for Weather File Run Periods
No, !- Do HVAC Sizing Simulation for Sizing Periods
1; !- Maximum Number of HVAC Sizing Simulation Passes
Building,
Buildings in #CITY#, !- Name
0, !- North Axis
Suburbs, !- Terrain
0.04, !- Loads Convergence Tolerance Value
0.4, !- Temperature Convergence Tolerance Value
FullExterior, !- Solar Distribution
25, !- Maximum Number of Warmup Days
6; !- Minimum Number of Warmup Days
Timestep,
4; !- Number of Timesteps per Hour
RunPeriod,
Run Period 1, !- Name
1, !- Begin Month
1, !- Begin Day of Month
, !- Begin Year
12, !- End Month
31, !- End Day of Month
, !- End Year
Tuesday, !- Day of Week for Start Day
Yes, !- Use Weather File Holidays and Special Days
Yes, !- Use Weather File Daylight Saving Period
No, !- Apply Weekend Holiday Rule
Yes, !- Use Weather File Rain Indicators
Yes; !- Use Weather File Snow Indicators
SCHEDULETYPELIMITS,
Any Number, !- Name
, !- Lower Limit Value
, !- Upper Limit Value
, !- Numeric Type
Dimensionless; !- Unit Type
SCHEDULETYPELIMITS,
Fraction, !- Name
0, !- Lower Limit Value
1, !- Upper Limit Value
Continuous, !- Numeric Type
Dimensionless; !- Unit Type
SCHEDULETYPELIMITS,
On/Off, !- Name
0, !- Lower Limit Value
1, !- Upper Limit Value
Discrete, !- Numeric Type
Dimensionless; !- Unit Type

View File

@ -0,0 +1,74 @@
Output:Table:SummaryReports,
AnnualBuildingUtilityPerformanceSummary, !- Report 1 Name
DemandEndUseComponentsSummary, !- Report 2 Name
SensibleHeatGainSummary, !- Report 3 Name
InputVerificationandResultsSummary, !- Report 4 Name
AdaptiveComfortSummary, !- Report 5 Name
Standard62.1Summary, !- Report 6 Name
ClimaticDataSummary, !- Report 7 Name
EquipmentSummary, !- Report 8 Name
EnvelopeSummary, !- Report 9 Name
LightingSummary, !- Report 10 Name
HVACSizingSummary, !- Report 11 Name
SystemSummary, !- Report 12 Name
ComponentSizingSummary, !- Report 13 Name
OutdoorAirSummary, !- Report 14 Name
ObjectCountSummary, !- Report 15 Name
EndUseEnergyConsumptionOtherFuelsMonthly, !- Report 16 Name
PeakEnergyEndUseOtherFuelsMonthly; !- Report 17 Name
OutputControl:Table:Style,
CommaAndHTML, !- Column Separator
JtoKWH; !- Unit Conversion
OUTPUT:VARIABLE,
*, !- Key Value
Zone Ideal Loads Supply Air Total Heating Energy, !- Variable Name
Hourly; !- Reporting Frequency
OUTPUT:VARIABLE,
*, !- Key Value
Zone Ideal Loads Supply Air Total Cooling Energy, !- Variable Name
Hourly; !- Reporting Frequency
OUTPUT:VARIABLE,
*, !- Key Value
Water Use Equipment Heating Rate, !- Variable Name
Hourly; !- Reporting Frequency
OUTPUT:VARIABLE,
*, !- Key Value
Zone Lights Electricity Rate, !- Variable Name
Hourly; !- Reporting Frequency
OUTPUT:VARIABLE,
*, !- Key Value
Other Equipment Electricity Rate, !- Variable Name
Hourly; !- Reporting Frequency
OUTPUT:VARIABLE,
*, !- Key Value
Zone Air Temperature, !- Variable Name
Hourly; !- Reporting Frequency
OUTPUT:VARIABLE,
*, !- Key Value
Zone Air Relative Humidity, !- Variable Name
Hourly; !- Reporting Frequency
Output:Meter,
DISTRICTHEATING:Facility, !- Key Name
hourly; !- Reporting Frequency
Output:Meter,
DISTRICTCOOLING:Facility, !- Key Name
hourly; !- Reporting Frequency
Output:Meter,
InteriorEquipment:Electricity, !- Key Name
hourly; !- Reporting Frequency
Output:Meter,
InteriorLights:Electricity, !- Key Name
hourly; !- Reporting Frequency

View File

@ -0,0 +1,60 @@
import hub.helpers.constants as cte
BUILDING_SURFACE = '\nBUILDINGSURFACE:DETAILED,\n'
WINDOW_SURFACE = '\nFENESTRATIONSURFACE:DETAILED,\n'
COMPACT_SCHEDULE = '\nSCHEDULE:COMPACT,\n'
FILE_SCHEDULE = '\nSCHEDULE:FILE,\n'
NOMASS_MATERIAL = '\nMATERIAL:NOMASS,\n'
SOLID_MATERIAL = '\nMATERIAL,\n'
WINDOW_MATERIAL = '\nWINDOWMATERIAL:SIMPLEGLAZINGSYSTEM,\n'
CONSTRUCTION = '\nCONSTRUCTION,\n'
ZONE = '\nZONE,\n'
GLOBAL_GEOMETRY_RULES = '\nGlobalGeometryRules,\n'
PEOPLE = '\nPEOPLE,\n'
LIGHTS = '\nLIGHTS,\n'
APPLIANCES = '\nOTHEREQUIPMENT,\n'
OUTPUT_CONTROL = '\nOutputControl:IlluminanceMap:Style,\n'
INFILTRATION = '\nZONEINFILTRATION:DESIGNFLOWRATE,\n'
VENTILATION = '\nZONEVENTILATION:DESIGNFLOWRATE,\n'
THERMOSTAT = '\nHVACTEMPLATE:THERMOSTAT,\n'
IDEAL_LOAD_SYSTEM = '\nHVACTEMPLATE:ZONE:IDEALLOADSAIRSYSTEM,\n'
DHW = '\nWATERUSE:EQUIPMENT,\n'
SHADING = '\nSHADING:BUILDING:DETAILED,\n'
AUTOCALCULATE = 'autocalculate'
ROUGHNESS = 'MediumRough'
OUTDOORS = 'Outdoors'
GROUND = 'Ground'
SURFACE = 'Surface'
SUN_EXPOSED = 'SunExposed'
WIND_EXPOSED = 'WindExposed'
NON_SUN_EXPOSED = 'NoSun'
NON_WIND_EXPOSED = 'NoWind'
EMPTY = ''
idf_surfaces_dictionary = {
cte.WALL: 'wall',
cte.GROUND: 'floor',
cte.ROOF: 'roof'
}
idf_type_limits = {
cte.ON_OFF: 'on/off',
cte.FRACTION: 'Fraction',
cte.ANY_NUMBER: 'Any Number',
cte.CONTINUOUS: 'Continuous',
cte.DISCRETE: 'Discrete'
}
idf_day_types = {
cte.MONDAY: 'Monday',
cte.TUESDAY: 'Tuesday',
cte.WEDNESDAY: 'Wednesday',
cte.THURSDAY: 'Thursday',
cte.FRIDAY: 'Friday',
cte.SATURDAY: 'Saturday',
cte.SUNDAY: 'Sunday',
cte.HOLIDAY: 'Holidays',
cte.WINTER_DESIGN_DAY: 'WinterDesignDay',
cte.SUMMER_DESIGN_DAY: 'SummerDesignDay'
}

View File

@ -0,0 +1,26 @@
import hub.exports.building_energy.idf_helper as idf_cte
from hub.exports.building_energy.idf_helper.idf_base import IdfBase
class IdfAppliance(IdfBase):
@staticmethod
def add(self, thermal_zone, zone_name):
schedule_name = f'Appliance schedules {thermal_zone.usage_name}'
storeys_number = int(thermal_zone.total_floor_area / thermal_zone.footprint_area)
watts_per_zone_floor_area = thermal_zone.appliances.density * storeys_number
subcategory = f'ELECTRIC EQUIPMENT#{zone_name}#InteriorEquipment'
file = self._files['appliances']
self._write_to_idf_format(file, idf_cte.APPLIANCES)
self._write_to_idf_format(file, zone_name, 'Name')
self._write_to_idf_format(file, 'Electricity', 'Fuel Type')
self._write_to_idf_format(file, zone_name, 'Zone or ZoneList or Space or SpaceList Name')
self._write_to_idf_format(file, schedule_name, 'Schedule Name')
self._write_to_idf_format(file, 'Watts/Area', 'Design Level Calculation Method')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Design Level')
self._write_to_idf_format(file, watts_per_zone_floor_area, 'Power per Zone Floor Area')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Power per Person')
self._write_to_idf_format(file, thermal_zone.appliances.latent_fraction, 'Fraction Latent')
self._write_to_idf_format(file, thermal_zone.appliances.radiative_fraction, 'Fraction Radiant')
self._write_to_idf_format(file, 0, 'Fraction Lost')
self._write_to_idf_format(file, 0, 'Carbon Dioxide Generation Rate')
self._write_to_idf_format(file, subcategory, 'EndUse Subcategory', ';')

View File

@ -0,0 +1,78 @@
import os
from pathlib import Path
import hub.exports.building_energy.idf_helper as idf_cte
class IdfBase:
def __init__(self, city, output_path, idf_file_path, idd_file_path, epw_file_path, target_buildings=None,
_calculate_with_new_infiltration=True):
self._city = city
self._output_path = str(output_path.resolve())
self._output_file_path = str((output_path / f'{city.name}.idf').resolve())
self._file_paths = {
'schedules': str((output_path / 'schedules.idf').resolve()),
'file_schedules': str((output_path / 'file_schedules.idf').resolve()),
'solid_materials': str((output_path / 'solid_materials.idf').resolve()),
'nomass_materials': str((output_path / 'nomass_materials.idf').resolve()),
'window_materials': str((output_path / 'window_materials.idf').resolve()),
'constructions': str((output_path / 'constructions.idf').resolve()),
'zones': str((output_path / 'zones.idf').resolve()),
'surfaces': str((output_path / 'surfaces.idf').resolve()),
'fenestration': str((output_path / 'fenestration.idf').resolve()),
'occupancy': str((output_path / 'occupancy.idf').resolve()),
'lighting': str((output_path / 'lights.idf').resolve()),
'appliances': str((output_path / 'appliances.idf').resolve()),
'shading': str((output_path / 'shading.idf').resolve()),
'infiltration': str((output_path / 'infiltration.idf').resolve()),
'ventilation': str((output_path / 'ventilation.idf').resolve()),
'thermostat': str((output_path / 'thermostat.idf').resolve()),
'ideal_load_system': str((output_path / 'ideal_load_system.idf').resolve()),
'dhw': str((output_path / 'dhw.idf').resolve()),
}
self._files = {}
for key, value in self._file_paths.items():
self._files[key] = open(value, 'w', encoding='UTF-8')
self._idd_file_path = str(idd_file_path)
self._idf_file_path = str(idf_file_path)
self._outputs_file_path = str(Path(idf_file_path).parent / 'outputs.idf')
self._epw_file_path = str(epw_file_path)
self._target_buildings = target_buildings
self._adjacent_buildings = []
if target_buildings is None:
self._target_buildings = [building.name for building in self._city.buildings]
else:
for building_name in target_buildings:
building = city.city_object(building_name)
if building.neighbours is not None:
self._adjacent_buildings += building.neighbours
self._calculate_with_new_infiltration = _calculate_with_new_infiltration
def _create_output_control_lighting(self):
file = self._files['appliances']
self._write_to_idf_format(file, idf_cte.OUTPUT_CONTROL)
self._write_to_idf_format(file, 'Comma', 'Column Separator', ';')
@staticmethod
def _write_to_idf_format(file, field, comment='', eol=','):
if comment != '':
comment = f' !- {comment}'
field = f' {field}{eol}'.ljust(26, ' ')
file.write(f'{field}{comment}\n')
else:
file.write(f'{field}{comment}')
@staticmethod
def _matrix_to_list(points, lower_corner):
lower_x = lower_corner[0]
lower_y = lower_corner[1]
lower_z = lower_corner[2]
points_list = []
for point in points:
point_tuple = (point[0] - lower_x, point[1] - lower_y, point[2] - lower_z)
points_list.append(point_tuple)
return points_list

View File

@ -0,0 +1,56 @@
import hub.exports.building_energy.idf_helper as idf_cte
from hub.city_model_structure.building_demand.layer import Layer
from hub.exports.building_energy.idf_helper.idf_base import IdfBase
class IdfConstruction(IdfBase):
@staticmethod
def _add_solid_material(self, layer):
file = self._files['solid_materials']
self._write_to_idf_format(file, idf_cte.SOLID_MATERIAL)
self._write_to_idf_format(file, layer.material_name, 'Name')
self._write_to_idf_format(file, idf_cte.ROUGHNESS, 'Roughness')
self._write_to_idf_format(file, layer.thickness, 'Thickness')
self._write_to_idf_format(file, layer.conductivity, 'Conductivity')
self._write_to_idf_format(file, layer.density, 'Density')
self._write_to_idf_format(file, layer.specific_heat, 'Specific Heat')
self._write_to_idf_format(file, layer.thermal_absorptance, 'Thermal Absorptance')
self._write_to_idf_format(file, layer.solar_absorptance, 'Solar Absorptance')
self._write_to_idf_format(file, layer.visible_absorptance, 'Visible Absorptance', ';')
@staticmethod
def _add_default_material(self):
layer = Layer()
layer.material_name = 'DefaultMaterial'
layer.thickness = 0.1
layer.conductivity = 0.1
layer.density = 1000
layer.specific_heat = 1000
layer.thermal_absorptance = 0.9
layer.solar_absorptance = 0.9
layer.visible_absorptance = 0.7
IdfConstruction._add_solid_material(self, layer)
return layer
@staticmethod
def add(self, thermal_boundary):
if thermal_boundary.layers is None:
thermal_boundary.layers = [IdfConstruction._add_default_material(self)]
name = f'{thermal_boundary.construction_name} {thermal_boundary.parent_surface.type}'
if name not in self._constructions_added_to_idf:
self._constructions_added_to_idf[name] = True
file = self._files['constructions']
self._write_to_idf_format(file, idf_cte.CONSTRUCTION)
self._write_to_idf_format(file, name, 'Name')
eol = ','
if len(thermal_boundary.layers) == 1:
eol = ';'
self._write_to_idf_format(file, thermal_boundary.layers[0].material_name, 'Outside Layer', eol)
for i in range(1, len(thermal_boundary.layers) - 1):
comment = f'Layer {i + 1}'
material_name = thermal_boundary.layers[i].material_name
if i == len(thermal_boundary.layers) - 2:
eol = ';'
self._write_to_idf_format(file, material_name, comment, eol)

View File

@ -0,0 +1,21 @@
import hub.exports.building_energy.idf_helper as idf_cte
from hub.exports.building_energy.idf_helper.idf_base import IdfBase
class IdfDhw(IdfBase):
@staticmethod
def add(self, thermal_zone, zone_name):
peak_flow_rate = thermal_zone.domestic_hot_water.peak_flow * thermal_zone.total_floor_area
flow_rate_schedule = f'DHW_prof schedules {thermal_zone.usage_name}'
dhw_schedule = f'DHW_temp schedules {thermal_zone.usage_name}'
cold_temp_schedule = f'cold_temp schedules {thermal_zone.usage_name}'
file = self._files['dhw']
self._write_to_idf_format(file, idf_cte.DHW)
self._write_to_idf_format(file, zone_name, 'Name')
self._write_to_idf_format(file, zone_name, 'EndUse Subcategory')
self._write_to_idf_format(file, peak_flow_rate, 'Peak Flow Rate')
self._write_to_idf_format(file, flow_rate_schedule, 'Flow Rate Fraction Schedule Name')
self._write_to_idf_format(file, dhw_schedule, 'Target Temperature Schedule Name')
self._write_to_idf_format(file, dhw_schedule, 'Hot Water Supply Temperature Schedule Name')
self._write_to_idf_format(file, cold_temp_schedule, 'Cold Water Supply Temperature Schedule Name')
self._write_to_idf_format(file, zone_name, 'Zone Name', ';')

View File

@ -0,0 +1,30 @@
from pathlib import Path
import hub.helpers.constants as cte
import hub.exports.building_energy.idf_helper as idf_cte
from hub.exports.building_energy.idf_helper.idf_base import IdfBase
class IdfFileSchedule(IdfBase):
@staticmethod
def add(self, usage, schedule_type, schedules):
schedule_name = f'{schedule_type} schedules {usage}'
for schedule in schedules:
if schedule_name not in self._schedules_added_to_idf:
self._schedules_added_to_idf[schedule_name] = True
file_name = str(
(Path(self._output_path) / f'{schedule_type} schedules {usage.replace("/", "_")}.csv').resolve())
with open(file_name, 'w', encoding='utf8') as file:
for value in schedule.values[0]:
file.write(f'{value},\n')
file = self._files['file_schedules']
self._write_to_idf_format(file, idf_cte.FILE_SCHEDULE)
self._write_to_idf_format(file, schedule_name, 'Name')
self._write_to_idf_format(file, idf_cte.idf_type_limits[schedule.data_type], 'Schedule Type Limits Name')
self._write_to_idf_format(file, Path(file_name).name, 'File Name')
self._write_to_idf_format(file, 1, 'Column Number')
self._write_to_idf_format(file, 0, 'Rows to Skip at Top')
self._write_to_idf_format(file, 8760, 'Number of Hours of Data')
self._write_to_idf_format(file, 'Comma', 'Column Separator')
self._write_to_idf_format(file, 'No', 'Interpolate to Timestep')
self._write_to_idf_format(file, '60', 'Minutes per Item')
self._write_to_idf_format(file, 'Yes', 'Adjust Schedule for Daylight Savings', ';')

View File

@ -0,0 +1,41 @@
import hub.exports.building_energy.idf_helper as idf_cte
from hub.exports.building_energy.idf_helper.idf_base import IdfBase
class IdfHeatingSystem(IdfBase):
@staticmethod
def add(self, thermal_zone, zone_name):
availability_schedule = f'HVAC AVAIL SCHEDULES {thermal_zone.usage_name}'
thermostat_name = f'Thermostat {thermal_zone.usage_name}'
file = self._files['ideal_load_system']
self._write_to_idf_format(file, idf_cte.IDEAL_LOAD_SYSTEM)
self._write_to_idf_format(file, zone_name, 'Zone Name')
self._write_to_idf_format(file, thermostat_name, 'Template Thermostat Name')
self._write_to_idf_format(file, availability_schedule, 'System Availability Schedule Name')
self._write_to_idf_format(file, 50, 'Maximum Heating Supply Air Temperature')
self._write_to_idf_format(file, 13, 'Minimum Cooling Supply Air Temperature')
self._write_to_idf_format(file, 0.0156, 'Maximum Heating Supply Air Humidity Ratio')
self._write_to_idf_format(file, 0.0077, 'Minimum Cooling Supply Air Humidity Ratio')
self._write_to_idf_format(file, 'NoLimit', 'Heating Limit')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Maximum Heating Air Flow Rate')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Maximum Sensible Heating Capacity')
self._write_to_idf_format(file, 'NoLimit', 'Cooling Limit')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Maximum Cooling Air Flow Rate')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Maximum Total Cooling Capacity')
self._write_to_idf_format(file, availability_schedule, 'Heating Availability Schedule Name')
self._write_to_idf_format(file, availability_schedule, 'Cooling Availability Schedule Name')
self._write_to_idf_format(file, 'ConstantSensibleHeatRatio', 'Dehumidification Control Type')
self._write_to_idf_format(file, 0.7, 'Cooling Sensible Heat Ratio')
self._write_to_idf_format(file, 60, 'Dehumidification Setpoint')
self._write_to_idf_format(file, 'None', 'Humidification Control Type')
self._write_to_idf_format(file, 30, 'Humidification Setpoint')
self._write_to_idf_format(file, 'None', 'Outdoor Air Method')
self._write_to_idf_format(file, 0.00944, 'Outdoor Air Flow Rate per Person')
self._write_to_idf_format(file, 0.0, 'Outdoor Air Flow Rate per Zone Floor Area')
self._write_to_idf_format(file, 0, 'Outdoor Air Flow Rate per Zone')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Design Specification Outdoor Air Object Name')
self._write_to_idf_format(file, 'None', 'Demand Controlled Ventilation Type')
self._write_to_idf_format(file, 'NoEconomizer', 'Outdoor Air Economizer Type')
self._write_to_idf_format(file, 'None', 'Heat Recovery Type')
self._write_to_idf_format(file, 0.70, 'Sensible Heat Recovery Effectiveness')
self._write_to_idf_format(file, 0.65, 'Latent Heat Recovery Effectiveness', ';')

View File

@ -0,0 +1,32 @@
import hub.exports.building_energy.idf_helper as idf_cte
import hub.helpers.constants as cte
from hub.exports.building_energy.idf_helper.idf_base import IdfBase
class IdfInfiltration(IdfBase):
@staticmethod
def add(self, thermal_zone, zone_name):
IdfInfiltration._add_infiltration(self, thermal_zone, zone_name, 'AirChanges/Hour', cte.HOUR_TO_SECONDS)
@staticmethod
def add_surface(self, thermal_zone, zone_name):
IdfInfiltration._add_infiltration(self, thermal_zone, zone_name, 'Flow/ExteriorWallArea', cte.INFILTRATION_75PA_TO_4PA)
@staticmethod
def _add_infiltration(self, thermal_zone, zone_name, calculation_method, multiplier):
schedule_name = f'Infiltration schedules {thermal_zone.usage_name}'
infiltration = thermal_zone.infiltration_rate_system_off * multiplier
file = self._files['infiltration']
self._write_to_idf_format(file, idf_cte.INFILTRATION)
self._write_to_idf_format(file, zone_name, 'Name')
self._write_to_idf_format(file, zone_name, 'Zone or ZoneList or Space or SpaceList Name')
self._write_to_idf_format(file, schedule_name, 'Schedule Name')
self._write_to_idf_format(file, calculation_method, 'Design Flow Rate Calculation Method')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Design Flow Rate')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Flow Rate per Floor Area')
self._write_to_idf_format(file, infiltration, 'Flow Rate per Exterior Surface Area')
self._write_to_idf_format(file, infiltration, 'Air Changes per Hour')
self._write_to_idf_format(file, 1, 'Constant Term Coefficient')
self._write_to_idf_format(file, 0, 'Temperature Term Coefficient')
self._write_to_idf_format(file, 0, 'Velocity Term Coefficient')
self._write_to_idf_format(file, 0, 'Velocity Squared Term Coefficient', ';')

View File

@ -0,0 +1,28 @@
import hub.exports.building_energy.idf_helper as idf_cte
from hub.exports.building_energy.idf_helper.idf_base import IdfBase
class IdfLighting(IdfBase):
@staticmethod
def add(self, thermal_zone, zone_name):
storeys_number = int(thermal_zone.total_floor_area / thermal_zone.footprint_area)
watts_per_zone_floor_area = thermal_zone.lighting.density * storeys_number
subcategory = f'ELECTRIC EQUIPMENT#{zone_name}#GeneralLights'
schedule_name = f'Lighting schedules {thermal_zone.usage_name}'
file = self._files['lighting']
self._write_to_idf_format(file, idf_cte.LIGHTS)
self._write_to_idf_format(file, f'{zone_name}_lights', 'Name')
self._write_to_idf_format(file, zone_name, 'Zone or ZoneList or Space or SpaceList Name')
self._write_to_idf_format(file, schedule_name, 'Schedule Name')
self._write_to_idf_format(file, 'Watts/Area', 'Design Level Calculation Method')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Lighting Level')
self._write_to_idf_format(file, watts_per_zone_floor_area, 'Watts per Zone Floor Area')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Watts per Person')
self._write_to_idf_format(file, 0, 'Return Air Fraction')
self._write_to_idf_format(file, thermal_zone.lighting.radiative_fraction, 'Fraction Radiant')
self._write_to_idf_format(file, 0, 'Fraction Visible')
self._write_to_idf_format(file, 1, 'Fraction Replaceable')
self._write_to_idf_format(file, subcategory, 'EndUse Subcategory')
self._write_to_idf_format(file, 'No', 'Return Air Fraction Calculated from Plenum Temperature')
self._write_to_idf_format(file, 0, 'Return Air Fraction Function of Plenum Temperature Coefficient 1')
self._write_to_idf_format(file, 0, 'Return Air Fraction Function of Plenum Temperature Coefficient 2', ';')

View File

@ -0,0 +1,39 @@
import hub.exports.building_energy.idf_helper as idf_cte
from hub.exports.building_energy.idf_helper.idf_base import IdfBase
class IdfMaterial(IdfBase):
@staticmethod
def _add_solid_material(self, layer):
file = self._files['solid_materials']
self._write_to_idf_format(file, idf_cte.SOLID_MATERIAL)
self._write_to_idf_format(file, layer.material_name, 'Name')
self._write_to_idf_format(file, idf_cte.ROUGHNESS, 'Roughness')
self._write_to_idf_format(file, layer.thickness, 'Thickness')
self._write_to_idf_format(file, layer.conductivity, 'Conductivity')
self._write_to_idf_format(file, layer.density, 'Density')
self._write_to_idf_format(file, layer.specific_heat, 'Specific Heat')
self._write_to_idf_format(file, layer.thermal_absorptance, 'Thermal Absorptance')
self._write_to_idf_format(file, layer.solar_absorptance, 'Solar Absorptance')
self._write_to_idf_format(file, layer.visible_absorptance, 'Visible Absorptance', ';')
@staticmethod
def _add_nomass_material(self, layer):
file = self._files['nomass_materials']
self._write_to_idf_format(file, idf_cte.NOMASS_MATERIAL)
self._write_to_idf_format(file, layer.material_name, 'Name')
self._write_to_idf_format(file, idf_cte.ROUGHNESS, 'Roughness')
self._write_to_idf_format(file, layer.thermal_resistance, 'Thermal Resistance')
self._write_to_idf_format(file, 0.9, 'Thermal Absorptance')
self._write_to_idf_format(file, 0.7, 'Solar Absorptance')
self._write_to_idf_format(file, 0.7, 'Visible Absorptance', ';')
@staticmethod
def add(self, thermal_boundary):
for layer in thermal_boundary.layers:
if layer.material_name not in self._materials_added_to_idf:
self._materials_added_to_idf[layer.material_name] = True
if layer.no_mass:
IdfMaterial._add_nomass_material(self, layer)
else:
IdfMaterial._add_solid_material(self, layer)

View File

@ -0,0 +1,47 @@
import hub.exports.building_energy.idf_helper as idf_cte
from hub.exports.building_energy.idf_helper.idf_base import IdfBase
class IdfOccupancy(IdfBase):
@staticmethod
def add(self, thermal_zone, zone_name):
number_of_people = thermal_zone.occupancy.occupancy_density * thermal_zone.total_floor_area
fraction_radiant = 0
total_sensible = (
thermal_zone.occupancy.sensible_radiative_internal_gain + thermal_zone.occupancy.sensible_convective_internal_gain
)
if total_sensible != 0:
fraction_radiant = thermal_zone.occupancy.sensible_radiative_internal_gain / total_sensible
occupancy_schedule = f'Occupancy schedules {thermal_zone.usage_name}'
activity_level_schedule = f'Activity Level schedules {thermal_zone.usage_name}'
file = self._files['occupancy']
self._write_to_idf_format(file, idf_cte.PEOPLE)
self._write_to_idf_format(file, f'{zone_name}_occupancy', 'Name')
self._write_to_idf_format(file, zone_name, 'Zone or ZoneList or Space or SpaceList Name')
self._write_to_idf_format(file, occupancy_schedule, 'Number of People Schedule Name')
self._write_to_idf_format(file, 'People', 'Number of People Calculation Method')
self._write_to_idf_format(file, number_of_people, 'Number of People')
self._write_to_idf_format(file, idf_cte.EMPTY, 'People per Floor Area')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Floor Area per Person')
self._write_to_idf_format(file, fraction_radiant, 'Fraction Radiant')
self._write_to_idf_format(file, idf_cte.AUTOCALCULATE, 'Sensible Heat Fraction')
self._write_to_idf_format(file, activity_level_schedule, 'Activity Level Schedule Name')
self._write_to_idf_format(file, '3.82e-08', 'Carbon Dioxide Generation Rate')
self._write_to_idf_format(file, 'No', 'Enable ASHRAE 55 Comfort Warnings')
self._write_to_idf_format(file, 'EnclosureAveraged', 'Mean Radiant Temperature Calculation Type')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Surface NameAngle Factor List Name')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Work Efficiency Schedule Name')
self._write_to_idf_format(file, 'ClothingInsulationSchedule', 'Clothing Insulation Calculation Method')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Clothing Insulation Calculation Method Schedule Name')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Clothing Insulation Schedule Name')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Air Velocity Schedule Name')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Thermal Comfort Model 1 Type')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Thermal Comfort Model 2 Type')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Thermal Comfort Model 3 Type')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Thermal Comfort Model 4 Type')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Thermal Comfort Model 5 Type')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Thermal Comfort Model 6 Type')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Thermal Comfort Model 7 Type')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Ankle Level Air Velocity Schedule Name')
self._write_to_idf_format(file, '15.56', 'Cold Stress Temperature Threshold')
self._write_to_idf_format(file, '30', 'Heat Stress Temperature Threshold', ';')

View File

@ -0,0 +1,30 @@
import hub.exports.building_energy.idf_helper as idf_cte
from hub.exports.building_energy.idf_helper.idf_base import IdfBase
class IdfSchedule(IdfBase):
@staticmethod
def add(self, usage, schedule_type, schedules):
if len(schedules) < 1:
return
schedule_name = f'{schedule_type} schedules {usage}'
if schedule_name not in self._schedules_added_to_idf:
self._schedules_added_to_idf[schedule_name] = True
file = self._files['schedules']
self._write_to_idf_format(file, idf_cte.COMPACT_SCHEDULE)
self._write_to_idf_format(file, schedule_name, 'Name')
self._write_to_idf_format(file, idf_cte.idf_type_limits[schedules[0].data_type], 'Schedule Type Limits Name')
self._write_to_idf_format(file, 'Through: 12/31', 'Field 1')
counter = 1
for j, schedule in enumerate(schedules):
_val = schedule.values
_new_field = ''
for day_type in schedule.day_types:
_new_field += f' {idf_cte.idf_day_types[day_type]}'
self._write_to_idf_format(file, f'For:{_new_field}', f'Field {j * 25 + 2}')
counter += 1
for i, _ in enumerate(_val):
self._write_to_idf_format(file, f'Until: {i + 1:02d}:00,{_val[i]}', f'Field {j * 25 + 3 + i}')
counter += 1
self._write_to_idf_format(file, 'For AllOtherDays', f'Field {counter + 1}')
self._write_to_idf_format(file, 'Until: 24:00,0.0', f'Field {counter + 2}', ';')

View File

@ -0,0 +1,25 @@
import hub.exports.building_energy.idf_helper as idf_cte
from hub.exports.building_energy.idf_helper.idf_base import IdfBase
class IdfShading(IdfBase):
@staticmethod
def add(self, building):
name = building.name
file = self._files['shading']
for s, surface in enumerate(building.surfaces):
self._write_to_idf_format(file, idf_cte.SHADING)
self._write_to_idf_format(file, f'{name}_{s}', 'Name')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Transmittance Schedule Name')
self._write_to_idf_format(file, idf_cte.AUTOCALCULATE, 'Number of Vertices')
eol = ','
coordinates = self._matrix_to_list(surface.solid_polygon.coordinates, self._city.lower_corner)
coordinates_length = len(coordinates)
for i, coordinate in enumerate(coordinates):
vertex = i + 1
if vertex == coordinates_length:
eol = ';'
self._write_to_idf_format(file, coordinate[0], f'Vertex {vertex} Xcoordinate')
self._write_to_idf_format(file, coordinate[1], f'Vertex {vertex} Ycoordinate')
self._write_to_idf_format(file, coordinate[2], f'Vertex {vertex} Zcoordinate', eol)

View File

@ -0,0 +1,52 @@
import hub.exports.building_energy.idf_helper as idf_cte
import hub.helpers.constants as cte
from hub.exports.building_energy.idf_helper.idf_base import IdfBase
class IdfSurfaces(IdfBase):
@staticmethod
def add(self, building, zone_name):
zone_name = f'{zone_name}'
file = self._files['surfaces']
for thermal_zone in building.thermal_zones_from_internal_zones:
for index, boundary in enumerate(thermal_zone.thermal_boundaries):
surface_type = idf_cte.idf_surfaces_dictionary[boundary.parent_surface.type]
outside_boundary_condition = idf_cte.OUTDOORS
sun_exposure = idf_cte.SUN_EXPOSED
wind_exposure = idf_cte.WIND_EXPOSED
outside_boundary_condition_object = idf_cte.EMPTY
name = f'Building_{building.name}_surface_{index}'
construction_name = f'{boundary.construction_name} {boundary.parent_surface.type}'
space_name = idf_cte.EMPTY
if boundary.parent_surface.type == cte.GROUND:
outside_boundary_condition = idf_cte.GROUND
sun_exposure = idf_cte.NON_SUN_EXPOSED
wind_exposure = idf_cte.NON_WIND_EXPOSED
if boundary.parent_surface.percentage_shared is not None and boundary.parent_surface.percentage_shared > 0.5:
outside_boundary_condition_object = f'Building_{building.name}_surface_{index}'
outside_boundary_condition = idf_cte.SURFACE
sun_exposure = idf_cte.NON_SUN_EXPOSED
wind_exposure = idf_cte.NON_WIND_EXPOSED
self._write_to_idf_format(file, idf_cte.BUILDING_SURFACE)
self._write_to_idf_format(file, name, 'Name')
self._write_to_idf_format(file, surface_type, 'Surface Type')
self._write_to_idf_format(file, construction_name, 'Construction Name')
self._write_to_idf_format(file, zone_name, 'Zone Name')
self._write_to_idf_format(file, space_name, 'Space Name')
self._write_to_idf_format(file, outside_boundary_condition, 'Outside Boundary Condition')
self._write_to_idf_format(file, outside_boundary_condition_object, 'Outside Boundary Condition Object')
self._write_to_idf_format(file, sun_exposure, 'Sun Exposure')
self._write_to_idf_format(file, wind_exposure, 'Wind Exposure')
self._write_to_idf_format(file, idf_cte.AUTOCALCULATE, 'View Factor to Ground')
self._write_to_idf_format(file, idf_cte.AUTOCALCULATE, 'Number of Vertices')
coordinates = self._matrix_to_list(boundary.parent_surface.solid_polygon.coordinates,
self._city.lower_corner)
eol = ','
coordinates_length = len(coordinates)
for i, coordinate in enumerate(coordinates):
vertex = i + 1
if vertex == coordinates_length:
eol = ';'
self._write_to_idf_format(file, coordinate[0], f'Vertex {vertex} Xcoordinate')
self._write_to_idf_format(file, coordinate[1], f'Vertex {vertex} Ycoordinate')
self._write_to_idf_format(file, coordinate[2], f'Vertex {vertex} Zcoordinate', eol)

View File

@ -0,0 +1,18 @@
import hub.exports.building_energy.idf_helper as idf_cte
from hub.exports.building_energy.idf_helper.idf_base import IdfBase
class IdfThermostat(IdfBase):
@staticmethod
def add(self, thermal_zone):
thermostat_name = f'Thermostat {thermal_zone.usage_name}'
heating_schedule = f'Heating thermostat schedules {thermal_zone.usage_name}'
cooling_schedule = f'Cooling thermostat schedules {thermal_zone.usage_name}'
if thermostat_name not in self._thermostat_added_to_idf:
self._thermostat_added_to_idf[thermostat_name] = True
file = self._files['thermostat']
self._write_to_idf_format(file, idf_cte.THERMOSTAT)
self._write_to_idf_format(file, thermostat_name, 'Name')
self._write_to_idf_format(file, heating_schedule, 'Heating Setpoint Schedule Name')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Constant Heating Setpoint')
self._write_to_idf_format(file, cooling_schedule, 'Cooling Setpoint Schedule Name', ';')

View File

@ -0,0 +1,38 @@
import hub.exports.building_energy.idf_helper as idf_cte
import hub.helpers.constants as cte
from hub.exports.building_energy.idf_helper.idf_base import IdfBase
class IdfVentilation(IdfBase):
@staticmethod
def add(self, thermal_zone, zone_name):
schedule_name = f'Ventilation schedules {thermal_zone.usage_name}'
air_change = thermal_zone.mechanical_air_change * cte.HOUR_TO_SECONDS
file = self._files['ventilation']
self._write_to_idf_format(file, idf_cte.VENTILATION)
self._write_to_idf_format(file, f'{zone_name}_ventilation', 'Name')
self._write_to_idf_format(file, zone_name, 'Zone or ZoneList or Space or SpaceList Name')
self._write_to_idf_format(file, schedule_name, 'Schedule Name')
self._write_to_idf_format(file, 'AirChanges/Hour', 'Design Flow Rate Calculation Method')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Design Flow Rate')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Flow Rate per Floor Area')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Flow Rate per Person')
self._write_to_idf_format(file, air_change, 'Air Changes per Hour')
self._write_to_idf_format(file, 'Natural', 'Ventilation Type')
self._write_to_idf_format(file, 0, 'Fan Pressure Rise')
self._write_to_idf_format(file, 1, 'Fan Total Efficiency')
self._write_to_idf_format(file, 1, 'Constant Term Coefficient')
self._write_to_idf_format(file, 0, 'Temperature Term Coefficient')
self._write_to_idf_format(file, 0, 'Velocity Term Coefficient')
self._write_to_idf_format(file, 0, 'Velocity Squared Term Coefficient')
self._write_to_idf_format(file, -100, 'Minimum Indoor Temperature')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Minimum Indoor Temperature Schedule Name')
self._write_to_idf_format(file, 100, 'Maximum Indoor Temperature')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Maximum Indoor Temperature Schedule Name')
self._write_to_idf_format(file, -100, 'Delta Temperature')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Delta Temperature Schedule Name')
self._write_to_idf_format(file, -100, 'Minimum Outdoor Temperature')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Minimum Outdoor Temperature Schedule Name')
self._write_to_idf_format(file, 100, 'Maximum Outdoor Temperature')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Maximum Outdoor Temperature Schedule Name')
self._write_to_idf_format(file, 40, 'Maximum Wind Speed', ';')

View File

@ -0,0 +1,64 @@
import logging
import hub.exports.building_energy.idf_helper as idf_cte
import hub.helpers.constants as cte
from hub.exports.building_energy.idf_helper.idf_base import IdfBase
class IdfWindow(IdfBase):
@staticmethod
def _to_window_surface(self, surface):
window_ratio = surface.associated_thermal_boundaries[0].window_ratio
x = 0
y = 1
z = 2
coordinates = self._matrix_to_list(surface.solid_polygon.coordinates, self._city.lower_corner)
min_z = surface.lower_corner[z]
max_z = surface.upper_corner[z]
middle = (max_z - min_z) / 2
distance = (max_z - min_z) * window_ratio
new_max_z = middle + distance / 2
new_min_z = middle - distance / 2
for index, coordinate in enumerate(coordinates):
if coordinate[z] == max_z:
coordinates[index] = (coordinate[x], coordinate[y], new_max_z)
elif coordinate[z] == min_z:
coordinates[index] = (coordinate[x], coordinate[y], new_min_z)
else:
logging.warning('Z coordinate not in top or bottom during window creation')
return coordinates
@staticmethod
def add(self, building):
file = self._files['fenestration']
for thermal_zone in building.thermal_zones_from_internal_zones:
for index, boundary in enumerate(thermal_zone.thermal_boundaries):
building_surface_name = f'Building_{building.name}_surface_{index}'
is_exposed = boundary.parent_surface.type == cte.WALL
if boundary.parent_surface.percentage_shared is not None and boundary.parent_surface.percentage_shared > 0.5 or boundary.window_ratio == 0:
is_exposed = False
if not is_exposed:
continue
name = f'Building_{building.name}_window_{index}'
construction_name = f'{boundary.construction_name}_window_construction'
self._write_to_idf_format(file, idf_cte.WINDOW_SURFACE)
self._write_to_idf_format(file, name, 'Name')
self._write_to_idf_format(file, 'Window', 'Surface Type')
self._write_to_idf_format(file, construction_name, 'Construction Name')
self._write_to_idf_format(file, building_surface_name, 'Building Surface Name')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Outside Boundary Condition Object')
self._write_to_idf_format(file, idf_cte.AUTOCALCULATE, 'View Factor to Ground')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Frame and Divider Name')
self._write_to_idf_format(file, '1.0', 'Multiplier')
self._write_to_idf_format(file, idf_cte.AUTOCALCULATE, 'Number of Vertices')
coordinates = IdfWindow._to_window_surface(self, boundary.parent_surface)
eol = ','
coordinates_length = len(coordinates)
for i, coordinate in enumerate(coordinates):
vertex = i + 1
if vertex == coordinates_length:
eol = ';'
self._write_to_idf_format(file, coordinate[0], f'Vertex {vertex} Xcoordinate')
self._write_to_idf_format(file, coordinate[1], f'Vertex {vertex} Ycoordinate')
self._write_to_idf_format(file, coordinate[2], f'Vertex {vertex} Zcoordinate', eol)

View File

@ -0,0 +1,17 @@
import hub.exports.building_energy.idf_helper as idf_cte
from hub.exports.building_energy.idf_helper.idf_base import IdfBase
class IdfWindowsConstructions(IdfBase):
@staticmethod
def add(self, thermal_boundary):
name = f'{thermal_boundary.construction_name}_window'
if name not in self._windows_added_to_idf:
return # Material not added or already assigned to construction
construction_name = f'{thermal_boundary.construction_name}_window_construction'
if construction_name not in self._constructions_added_to_idf:
self._constructions_added_to_idf[construction_name] = True
file = self._files['constructions']
self._write_to_idf_format(file, idf_cte.CONSTRUCTION)
self._write_to_idf_format(file, construction_name, 'Name')
self._write_to_idf_format(file, name, 'Outside Layer', ';')

View File

@ -0,0 +1,15 @@
import hub.exports.building_energy.idf_helper as idf_cte
from hub.exports.building_energy.idf_helper.idf_base import IdfBase
class IdfWindowsMaterial(IdfBase):
@staticmethod
def add(self, thermal_boundary, thermal_opening):
name = f'{thermal_boundary.construction_name}_window'
if name not in self._windows_added_to_idf:
self._windows_added_to_idf[name] = True
file = self._files['window_materials']
self._write_to_idf_format(file, idf_cte.WINDOW_MATERIAL)
self._write_to_idf_format(file, name, 'Name')
self._write_to_idf_format(file, thermal_opening.overall_u_value, 'UFactor')
self._write_to_idf_format(file, thermal_opening.g_value, 'Solar Heat Gain Coefficient', ';')

View File

@ -0,0 +1,22 @@
import hub.exports.building_energy.idf_helper as idf_cte
from hub.exports.building_energy.idf_helper.idf_base import IdfBase
class IdfZone(IdfBase):
@staticmethod
def add(self, thermal_zone, zone_name):
file = self._files['zones']
self._write_to_idf_format(file, idf_cte.ZONE)
self._write_to_idf_format(file, zone_name, 'Name')
self._write_to_idf_format(file, 0, 'Direction of Relative North')
self._write_to_idf_format(file, 0, 'X Origin')
self._write_to_idf_format(file, 0, 'Y Origin')
self._write_to_idf_format(file, 0, 'Z Origin')
self._write_to_idf_format(file, 1, 'Type')
self._write_to_idf_format(file, 1, 'Multiplier')
self._write_to_idf_format(file, idf_cte.AUTOCALCULATE, 'Ceiling Height')
self._write_to_idf_format(file, thermal_zone.volume, 'Volume')
self._write_to_idf_format(file, idf_cte.AUTOCALCULATE, 'Floor Area')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Zone Inside Convection Algorithm')
self._write_to_idf_format(file, idf_cte.EMPTY, 'Zone Outside Convection Algorithm')
self._write_to_idf_format(file, 'Yes', 'Part of Total Floor Area', ';')

View File

@ -11,6 +11,7 @@ import requests
from hub.exports.building_energy.energy_ade import EnergyAde
from hub.exports.building_energy.idf import Idf
from hub.exports.building_energy.cerc_idf import CercIdf
from hub.exports.building_energy.insel.insel_monthly_energy_balance import InselMonthlyEnergyBalance
from hub.helpers.utils import validate_import_export_type
from hub.imports.weather.helpers.weather import Weather as wh
@ -20,6 +21,7 @@ class EnergyBuildingsExportsFactory:
"""
Energy Buildings exports factory class
"""
def __init__(self, handler, city, path, custom_insel_block='d18599', target_buildings=None, weather_file=None):
self._city = city
self._export_type = '_' + handler.lower()
@ -62,6 +64,17 @@ class EnergyBuildingsExportsFactory:
return Idf(self._city, self._path, (idf_data_path / 'Minimal.idf'), (idf_data_path / 'Energy+.idd'),
self._weather_file, target_buildings=self._target_buildings)
@property
def _cerc_idf(self):
idf_data_path = (Path(__file__).parent / './building_energy/idf_files/').resolve()
url = wh().epw_file(self._city.region_code)
weather_path = (Path(__file__).parent.parent / f'data/weather/epw/{url.rsplit("/", 1)[1]}').resolve()
if not weather_path.exists():
with open(weather_path, 'wb') as epw_file:
epw_file.write(requests.get(url, allow_redirects=True).content)
return CercIdf(self._city, self._path, (idf_data_path / 'base.idf'), (idf_data_path / 'Energy+.idd'), weather_path,
target_buildings=self._target_buildings)
@property
def _insel_monthly_energy_balance(self):
"""

View File

@ -77,8 +77,8 @@ class CesiumjsTileset:
'function': {
'type': 'STRING'
},
'usages_percentage': {
'type': 'STRING'
'usages': {
'type': 'LIST'
}
}
}
@ -146,7 +146,7 @@ class CesiumjsTileset:
'max_height': building.max_height,
'year_of_construction': building.year_of_construction,
'function': building.function,
'usages_percentage': building.usages_percentage
'usages': building.usages
}
},
'content': {

View File

@ -24,8 +24,7 @@ BTU_H_TO_WATTS = 0.29307107
KILO_WATTS_HOUR_TO_JULES = 3600000
WATTS_HOUR_TO_JULES = 3600
GALLONS_TO_QUBIC_METERS = 0.0037854117954011185
INFILTRATION_75PA_TO_4PA = (4/75)**0.65
INFILTRATION_75PA_TO_4PA = (4 / 75) ** 0.65
# time
SECOND = 'second'
@ -186,6 +185,19 @@ DAYS_A_MONTH = {JANUARY: 31,
NOVEMBER: 30,
DECEMBER: 31}
HOURS_A_MONTH = {JANUARY: 744,
FEBRUARY: 672,
MARCH: 744,
APRIL: 720,
MAY: 744,
JUNE: 720,
JULY: 744,
AUGUST: 744,
SEPTEMBER: 720,
OCTOBER: 744,
NOVEMBER: 720,
DECEMBER: 744}
# data types
ANY_NUMBER = 'any_number'
FRACTION = 'fraction'
@ -304,6 +316,7 @@ GRID = 'Grid'
ONSITE_ELECTRICITY = 'Onsite Electricity'
PHOTOVOLTAIC = 'Photovoltaic'
BOILER = 'Boiler'
FURNACE = 'Furnace'
HEAT_PUMP = 'Heat Pump'
BASEBOARD = 'Baseboard'
ELECTRICITY_GENERATOR = 'Electricity generator'

View File

@ -17,6 +17,7 @@ class MontrealCustomFuelToHubFuel:
self._dictionary = {
'gas': cte.GAS,
'natural gas': cte.GAS,
'biomass': cte.BIOMASS,
'electricity': cte.ELECTRICITY,
'renewable': cte.RENEWABLE,
'butane': cte.BUTANE,

View File

@ -15,10 +15,10 @@ class MontrealGenerationSystemToHubEnergyGenerationSystem:
def __init__(self):
self._dictionary = {
'boiler': cte.BOILER,
'furnace': cte.BASEBOARD,
'furnace': cte.FURNACE,
'cooler': cte.CHILLER,
'electricity generator': cte.ELECTRICITY_GENERATOR,
'Photovoltaic': cte.PHOTOVOLTAIC,
'photovoltaic': cte.PHOTOVOLTAIC,
'heat pump': cte.HEAT_PUMP,
'joule': cte.JOULE,
'split': cte.SPLIT,

View File

@ -3,6 +3,7 @@ Montreal custom energy system importer
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
Project Contributor Saeed Ranjbar saeed.ranjbar@concordia.ca
"""
import logging
@ -83,9 +84,9 @@ class MontrealCustomEnergySystemParameters:
def _create_generation_systems(archetype_system):
_generation_systems = []
for archetype_generation_system in archetype_system.generation_systems:
if archetype_generation_system.system_type == 'Photovoltaic':
if archetype_generation_system.system_type == 'photovoltaic':
_generation_system = PvGenerationSystem()
_type = 'Photovoltaic'
_type = archetype_generation_system.system_type
_generation_system.system_type = Dictionaries().montreal_generation_system_to_hub_energy_generation_system[
_type]
_fuel_type = Dictionaries().montreal_custom_fuel_to_hub_fuel[archetype_generation_system.fuel_type]
@ -136,13 +137,13 @@ class MontrealCustomEnergySystemParameters:
_distribution_system.distribution_consumption_variable_flow = \
archetype_distribution_system.distribution_consumption_variable_flow
_distribution_system.heat_losses = archetype_distribution_system.heat_losses
_emission_system = None
_generic_emission_system = None
if archetype_distribution_system.emission_systems is not None:
_emission_systems = []
for emission_system in archetype_distribution_system.emission_systems:
_emission_system = EmissionSystem()
_emission_system.parasitic_energy_consumption = emission_system.parasitic_energy_consumption
_emission_systems.append(_emission_system)
_generic_emission_system = EmissionSystem()
_generic_emission_system.parasitic_energy_consumption = emission_system.parasitic_energy_consumption
_emission_systems.append(_generic_emission_system)
_distribution_system.emission_systems = _emission_systems
_distribution_systems.append(_distribution_system)
return _distribution_systems

View File

@ -43,6 +43,7 @@ class MontrealFutureEnergySystemParameters:
archetype_name = building.energy_systems_archetype_name
try:
archetype = self._search_archetypes(montreal_custom_catalog, archetype_name)
building.energy_systems_archetype_cluster_id = archetype.cluster_id
except KeyError:
logging.error('Building %s has unknown energy system archetype for system name %s', building.name,
archetype_name)
@ -87,7 +88,7 @@ class MontrealFutureEnergySystemParameters:
archetype_generation_systems = archetype_system.generation_systems
if archetype_generation_systems is not None:
for archetype_generation_system in archetype_system.generation_systems:
if archetype_generation_system.system_type == 'Photovoltaic':
if archetype_generation_system.system_type == 'photovoltaic':
_generation_system = PvGenerationSystem()
_generation_system.name = archetype_generation_system.name
_generation_system.model_name = archetype_generation_system.model_name
@ -103,15 +104,21 @@ class MontrealFutureEnergySystemParameters:
_generation_system.nominal_radiation = archetype_generation_system.nominal_radiation
_generation_system.standard_test_condition_cell_temperature = archetype_generation_system.standard_test_condition_cell_temperature
_generation_system.standard_test_condition_maximum_power = archetype_generation_system.standard_test_condition_maximum_power
_generation_system.standard_test_condition_radiation = archetype_generation_system.standard_test_condition_radiation
_generation_system.cell_temperature_coefficient = archetype_generation_system.cell_temperature_coefficient
_generation_system.width = archetype_generation_system.width
_generation_system.height = archetype_generation_system.height
_generation_system.tilt_angle = self._city.latitude
_generic_storage_system = None
if archetype_generation_system.energy_storage_systems is not None:
_storage_systems = []
for storage_system in archetype_generation_system.energy_storage_systems:
if storage_system.type_energy_stored == 'electrical':
_generic_storage_system = ElectricalStorageSystem()
_generic_storage_system.type_energy_stored = 'electrical'
_generation_system.energy_storage_systems = [_generic_storage_system]
_storage_systems.append(_generic_storage_system)
_generation_system.energy_storage_systems = _storage_systems
else:
_generation_system = NonPvGenerationSystem()
_generation_system.name = archetype_generation_system.name
@ -185,13 +192,13 @@ class MontrealFutureEnergySystemParameters:
_distribution_system.distribution_consumption_variable_flow = \
archetype_distribution_system.distribution_consumption_variable_flow
_distribution_system.heat_losses = archetype_distribution_system.heat_losses
_emission_system = None
_generic_emission_system = None
if archetype_distribution_system.emission_systems is not None:
_emission_systems = []
for emission_system in archetype_distribution_system.emission_systems:
_emission_system = EmissionSystem()
_emission_system.parasitic_energy_consumption = emission_system.parasitic_energy_consumption
_emission_systems.append(_emission_system)
_generic_emission_system = EmissionSystem()
_generic_emission_system.parasitic_energy_consumption = emission_system.parasitic_energy_consumption
_emission_systems.append(_generic_emission_system)
_distribution_system.emission_systems = _emission_systems
_distribution_systems.append(_distribution_system)
return _distribution_systems

View File

@ -87,7 +87,7 @@ class PalmaEnergySystemParameters:
archetype_generation_systems = archetype_system.generation_systems
if archetype_generation_systems is not None:
for archetype_generation_system in archetype_system.generation_systems:
if archetype_generation_system.system_type == 'Photovoltaic':
if archetype_generation_system.system_type == 'photovoltaic':
_generation_system = PvGenerationSystem()
_generation_system.name = archetype_generation_system.name
_generation_system.model_name = archetype_generation_system.model_name

View File

@ -1,14 +1,12 @@
"""
Insel monthly energy balance
Cerc Idf result import
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Saeed Ranjbar saeed.ranjbar@concordia.ca
Project collaborator Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
Project Coder Guille Guillermo.GutierrezMorote@concordia.ca
Code contributors: Saeed Ranjbar saeed.ranjbar@concordia.ca
"""
from pathlib import Path
import csv
from hub.helpers.monthly_values import MonthlyValues
import hub.helpers.constants as cte
@ -16,62 +14,33 @@ class EnergyPlus:
"""
Energy plus class
"""
def __init__(self, city, base_path):
def _extract_fields_from_headers(self, headers):
for header in headers:
header_parts = header.split(':')
building_name = header_parts[0]
variable = ':'.join(header_parts[1:]).strip() # concat the rest and ensure that : it's reintroduced just in case
if variable == '':
continue
if building_name not in self._summary_variables:
self._building_energy_demands[variable] = [] # initialize the list of variables
else:
self._building_energy_demands[header] = []
def __init__(self, city, file_path):
self._city = city
self._base_path = base_path
self._building_energy_demands = {}
self._lines = []
self._summary_variables = ['DistrictCooling:Facility [J](Hourly)',
'InteriorEquipment:Electricity [J](Hourly)',
'InteriorLights:Electricity [J](Hourly) ']
@staticmethod
def _building_energy_demands(energy_plus_output_file_path):
with open(Path(energy_plus_output_file_path).resolve(), 'r', encoding='utf8') as csv_file:
with open(file_path, 'r', encoding='utf8') as csv_file:
csv_output = csv.reader(csv_file)
headers = next(csv_output)
building_energy_demands = {
'Heating (J)': [],
'Cooling (J)': [],
'DHW (J)': [],
'Appliances (J)': [],
'Lighting (J)': []
}
heating_column_index = []
cooling_column_index = []
dhw_column_index = []
appliance_column_index = []
lighting_column_index = []
for index, header in enumerate(headers):
if "Total Heating" in header:
heating_column_index.append(index)
elif "Total Cooling" in header:
cooling_column_index.append(index)
elif "DHW" in header:
dhw_column_index.append(index)
elif "InteriorEquipment" in header:
appliance_column_index.append(index)
elif "InteriorLights" in header:
lighting_column_index.append(index)
self._headers = next(csv_output)
self._extract_fields_from_headers(self._headers)
for line in csv_output:
total_heating_demand = 0
total_cooling_demand = 0
total_dhw_demand = 0
total_appliance_demand = 0
total_lighting_demand = 0
for heating_index in heating_column_index:
total_heating_demand += float(line[heating_index])
building_energy_demands['Heating (J)'].append(total_heating_demand)
for cooling_index in cooling_column_index:
total_cooling_demand += float(line[cooling_index])
building_energy_demands['Cooling (J)'].append(total_cooling_demand)
for dhw_index in dhw_column_index:
total_dhw_demand += float(line[dhw_index]) * 3600
building_energy_demands['DHW (J)'].append(total_dhw_demand)
for appliance_index in appliance_column_index:
total_appliance_demand += float(line[appliance_index])
building_energy_demands['Appliances (J)'].append(total_appliance_demand)
for lighting_index in lighting_column_index:
total_lighting_demand += float(line[lighting_index])
building_energy_demands['Lighting (J)'].append(total_lighting_demand)
return building_energy_demands
self._lines.append(line)
def enrich(self):
"""
@ -79,27 +48,58 @@ class EnergyPlus:
:return: None
"""
for building in self._city.buildings:
file_name = f'{building.name}_out.csv'
energy_plus_output_file_path = Path(self._base_path / file_name).resolve()
if energy_plus_output_file_path.is_file():
building_energy_demands = self._building_energy_demands(energy_plus_output_file_path)
building.heating_demand[cte.HOUR] = building_energy_demands['Heating (J)']
building.cooling_demand[cte.HOUR] = building_energy_demands['Cooling (J)']
building.domestic_hot_water_heat_demand[cte.HOUR] = building_energy_demands['DHW (J)']
building.appliances_electrical_demand[cte.HOUR] = building_energy_demands['Appliances (J)']
building.lighting_electrical_demand[cte.HOUR] = building_energy_demands['Lighting (J)']
# todo: @Saeed, this a list of ONE value with the total energy of the year, exactly the same as cte.YEAR.
# You have to use the method to add hourly values from helpers/monthly_values
building.heating_demand[cte.MONTH] = MonthlyValues.get_total_month(building.heating_demand[cte.HOUR])
building.cooling_demand[cte.MONTH] = MonthlyValues.get_total_month(building.cooling_demand[cte.HOUR])
building.domestic_hot_water_heat_demand[cte.MONTH] = (
MonthlyValues.get_total_month(building.domestic_hot_water_heat_demand[cte.HOUR]))
building.appliances_electrical_demand[cte.MONTH] = (
MonthlyValues.get_total_month(building.appliances_electrical_demand[cte.HOUR]))
building.lighting_electrical_demand[cte.MONTH] = (
MonthlyValues.get_total_month(building.lighting_electrical_demand[cte.HOUR]))
building.heating_demand[cte.YEAR] = [sum(building.heating_demand[cte.MONTH])]
building.cooling_demand[cte.YEAR] = [sum(building.cooling_demand[cte.MONTH])]
building.domestic_hot_water_heat_demand[cte.YEAR] = [sum(building.domestic_hot_water_heat_demand[cte.MONTH])]
building.appliances_electrical_demand[cte.YEAR] = [sum(building.appliances_electrical_demand[cte.MONTH])]
building.lighting_electrical_demand[cte.YEAR] = [sum(building.lighting_electrical_demand[cte.MONTH])]
_energy_demands = {}
for header in self._building_energy_demands:
print(header)
if header == 'Zone Ideal Loads Supply Air Total Heating Energy [J](Hourly)':
field_name = f'{building.name} IDEAL LOADS AIR SYSTEM:{header}'
elif header == 'Zone Ideal Loads Supply Air Total Cooling Energy [J](Hourly)':
field_name = f'{building.name} IDEAL LOADS AIR SYSTEM:{header}'
else:
field_name = f'{building.name}:{header}'
position = -1
if field_name in self._headers:
position = self._headers.index(field_name)
if position == -1:
continue
for line in self._lines:
if header not in _energy_demands.keys():
_energy_demands[header] = []
_energy_demands[header].append(line[position])
# print(building_energy_demands['Zone Ideal Loads Supply Air Total Heating Energy [J](Hourly)'])
EnergyPlus._set_building_demands(building, _energy_demands)
@staticmethod
def _set_building_demands(building, energy_demands):
print(energy_demands.keys())
heating = [float(x) for x in energy_demands['Zone Ideal Loads Supply Air Total Heating Energy [J](Hourly)']]
cooling = [float(x) for x in energy_demands['Zone Ideal Loads Supply Air Total Cooling Energy [J](Hourly)']]
dhw = [float(x) * cte.WATTS_HOUR_TO_JULES for x in energy_demands['Water Use Equipment Heating Rate [W](Hourly)']]
appliances = [float(x) * cte.WATTS_HOUR_TO_JULES for x in energy_demands['Other Equipment Electricity Rate [W](Hourly)']]
lighting = [float(x) * cte.WATTS_HOUR_TO_JULES for x in energy_demands['Zone Lights Electricity Rate [W](Hourly)']]
building.heating_demand[cte.HOUR] = heating
building.cooling_demand[cte.HOUR] = cooling
building.domestic_hot_water_heat_demand[cte.HOUR] = dhw
building.appliances_electrical_demand[cte.HOUR] = appliances
building.lighting_electrical_demand[cte.HOUR] = lighting
building.heating_demand[cte.MONTH] = []
building.cooling_demand[cte.MONTH] = []
building.domestic_hot_water_heat_demand[cte.MONTH] = []
building.appliances_electrical_demand[cte.MONTH] = []
building.lighting_electrical_demand[cte.MONTH] = []
start = 0
for hours in cte.HOURS_A_MONTH.values():
end = hours + start
building.heating_demand[cte.MONTH].append(sum(building.heating_demand[cte.HOUR][start: end]))
building.cooling_demand[cte.MONTH].append(sum(building.cooling_demand[cte.HOUR][start: end]))
building.domestic_hot_water_heat_demand[cte.MONTH].append(sum(dhw[start: end]))
building.appliances_electrical_demand[cte.MONTH].append(sum(appliances[start: end]))
building.lighting_electrical_demand[cte.MONTH].append(sum(lighting[start: end]))
start = end
building.heating_demand[cte.YEAR] = [sum(building.heating_demand[cte.HOUR])]
building.cooling_demand[cte.YEAR] = [sum(building.cooling_demand[cte.HOUR])]
building.domestic_hot_water_heat_demand[cte.YEAR] = [sum(building.domestic_hot_water_heat_demand[cte.HOUR])]
building.appliances_electrical_demand[cte.YEAR] = [sum(building.appliances_electrical_demand[cte.HOUR])]
building.lighting_electrical_demand[cte.YEAR] = [sum(building.lighting_electrical_demand[cte.HOUR])]

View File

@ -22,9 +22,11 @@ class EnergyPlusMultipleBuildings:
with open(Path(energy_plus_output_file_path).resolve(), 'r', encoding='utf8') as csv_file:
csv_output = list(csv.DictReader(csv_file))
print(csv_output)
return
for building in self._city.buildings:
building_name = building.name.upper()
buildings_energy_demands[f'Building {building_name} Heating Demand (J)'] = [
float(
row[f"{building_name} IDEAL LOADS AIR SYSTEM:Zone Ideal Loads Supply Air Total Heating Energy [J](Hourly)"])

View File

@ -8,6 +8,7 @@ Code contributors: Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concord
from pathlib import Path
from hub.helpers.utils import validate_import_export_type
from hub.imports.results.energy_plus import EnergyPlus
from hub.imports.results.insel_monthly_energry_balance import InselMonthlyEnergyBalance
from hub.imports.results.simplified_radiosity_algorithm import SimplifiedRadiosityAlgorithm
@ -60,6 +61,9 @@ class ResultFactory:
"""
EnergyPlusMultipleBuildings(self._city, self._base_path).enrich()
def _cerc_idf(self):
EnergyPlus(self._city, self._base_path).enrich()
def enrich(self):
"""
Enrich the city given to the class using the usage factory given handler

View File

@ -9,6 +9,7 @@ import datetime
import logging
from sqlalchemy import Column, Integer, String, Sequence, ForeignKey, Float
from sqlalchemy.dialects.postgresql import JSON
from sqlalchemy import DateTime
from hub.city_model_structure.building import Building
@ -27,7 +28,7 @@ class CityObject(Models):
type = Column(String, nullable=False)
year_of_construction = Column(Integer, nullable=True)
function = Column(String, nullable=True)
usage = Column(String, nullable=True)
usage = Column(JSON, nullable=True)
volume = Column(Float, nullable=False)
area = Column(Float, nullable=False)
total_heating_area = Column(Float, nullable=False)
@ -46,7 +47,7 @@ class CityObject(Models):
self.type = building.type
self.year_of_construction = building.year_of_construction
self.function = building.function
self.usage = building.usages_percentage
self.usage = building.usages
self.volume = building.volume
self.area = building.floor_area
self.roof_area = sum(roof.solid_polygon.area for roof in building.roofs)

View File

@ -1,4 +1,4 @@
"""
Hub version number
"""
__version__ = '0.2.0.13'
__version__ = '0.3.0.5'

View File

@ -1,5 +1,5 @@
xmltodict
numpy==1.26.4
numpy
trimesh[all]
pyproj
pandas

View File

@ -59,6 +59,7 @@ setup(
'hub.exports',
'hub.exports.building_energy',
'hub.exports.building_energy.idf_files',
'hub.exports.building_energy.idf_helper',
'hub.exports.building_energy.insel',
'hub.exports.energy_systems',
'hub.exports.formats',

View File

@ -17,6 +17,7 @@ from hub.exports.exports_factory import ExportsFactory
from hub.helpers.dictionaries import Dictionaries
from hub.imports.construction_factory import ConstructionFactory
from hub.imports.geometry_factory import GeometryFactory
from hub.imports.results_factory import ResultFactory
from hub.imports.usage_factory import UsageFactory
from hub.imports.weather_factory import WeatherFactory
@ -136,7 +137,6 @@ class TestExports(TestCase):
year_of_construction_field='ANNEE_CONS',
function_field='CODE_UTILI',
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
self.assertIsNotNone(city, 'city is none')
EnergyBuildingsExportsFactory('idf', city, self._output_path).export()
ConstructionFactory('nrcan', city).enrich()
@ -144,6 +144,42 @@ class TestExports(TestCase):
UsageFactory('nrcan', city).enrich()
WeatherFactory('epw', city).enrich()
try:
EnergyBuildingsExportsFactory('idf', city, self._output_path, target_buildings=[1]).export()
_idf = EnergyBuildingsExportsFactory('idf', city, self._output_path).export()
_idf.run()
except Exception:
self.fail("Idf ExportsFactory raised ExceptionType unexpectedly!")
def test_cerc_idf_export(self):
"""
export to IDF
"""
file = 'test.geojson'
file_path = (self._example_path / file).resolve()
city = GeometryFactory('geojson',
path=file_path,
height_field='citygml_me',
year_of_construction_field='ANNEE_CONS',
function_field='CODE_UTILI',
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
self.assertIsNotNone(city, 'city is none')
ConstructionFactory('nrcan', city).enrich()
UsageFactory('nrcan', city).enrich()
WeatherFactory('epw', city).enrich()
try:
idf = EnergyBuildingsExportsFactory('cerc_idf', city, self._output_path).export()
idf.run()
csv_output_path = (self._output_path / f'{city.name}_out.csv').resolve()
ResultFactory('cerc_idf', city, csv_output_path).enrich()
self.assertTrue(csv_output_path.is_file())
for building in city.buildings:
self.assertIsNotNone(building.heating_demand)
self.assertIsNotNone(building.cooling_demand)
self.assertIsNotNone(building.domestic_hot_water_heat_demand)
self.assertIsNotNone(building.lighting_electrical_demand)
self.assertIsNotNone(building.appliances_electrical_demand)
total_demand = sum(building.heating_demand[cte.HOUR])
total_demand_month = sum(building.heating_demand[cte.MONTH])
self.assertAlmostEqual(total_demand, building.heating_demand[cte.YEAR][0], 2)
self.assertAlmostEqual(total_demand_month, building.heating_demand[cte.YEAR][0], 2)
except Exception:
self.fail("Idf ExportsFactory raised ExceptionType unexpectedly!")

View File

@ -92,42 +92,3 @@ class TestResultsImport(TestCase):
building.cooling_demand[cte.HOUR] = values
self.assertIsNotNone(building.heating_peak_load)
self.assertIsNotNone(building.cooling_peak_load)
def test_energy_plus_results_import(self):
ResultFactory('energy_plus_single_building', self._city, self._example_path).enrich()
for building in self._city.buildings:
csv_output_name = f'{building.name}_out.csv'
csv_output_path = (self._example_path / csv_output_name).resolve()
if csv_output_path.is_file():
self.assertEqual(building.name, '12')
self.assertIsNotNone(building.heating_demand)
self.assertIsNotNone(building.cooling_demand)
self.assertIsNotNone(building.domestic_hot_water_heat_demand)
self.assertIsNotNone(building.lighting_electrical_demand)
self.assertIsNotNone(building.appliances_electrical_demand)
total_demand = sum(building.heating_demand[cte.HOUR])
self.assertAlmostEqual(total_demand, building.heating_demand[cte.YEAR][0], 3)
total_demand = sum(building.heating_demand[cte.MONTH])
self.assertEqual(total_demand, building.heating_demand[cte.YEAR][0], 3)
if building.name != '12':
self.assertDictEqual(building.heating_demand, {})
self.assertDictEqual(building.cooling_demand, {})
self.assertDictEqual(building.domestic_hot_water_heat_demand, {})
self.assertDictEqual(building.lighting_electrical_demand, {})
self.assertDictEqual(building.appliances_electrical_demand, {})
def test_energy_plus_multiple_buildings_results_import(self):
ResultFactory('energy_plus_multiple_buildings', self._city, self._example_path).enrich()
csv_output_name = f'{self._city.name}_out.csv'
csv_output_path = (self._example_path / csv_output_name).resolve()
if csv_output_path.is_file():
for building in self._city.buildings:
self.assertIsNotNone(building.heating_demand)
self.assertIsNotNone(building.cooling_demand)
self.assertIsNotNone(building.domestic_hot_water_heat_demand)
self.assertIsNotNone(building.lighting_electrical_demand)
self.assertIsNotNone(building.appliances_electrical_demand)
total_demand = sum(building.heating_demand[cte.HOUR])
self.assertAlmostEqual(total_demand, building.heating_demand[cte.YEAR][0], 2)
total_demand = sum(building.heating_demand[cte.MONTH])
self.assertEqual(total_demand, building.heating_demand[cte.YEAR][0], 2)

View File

@ -39,11 +39,11 @@ class TestSystemsCatalog(TestCase):
catalog_categories = catalog.names()
archetypes = catalog.names()
self.assertEqual(15, len(archetypes['archetypes']))
self.assertEqual(34, len(archetypes['archetypes']))
systems = catalog.names('systems')
self.assertEqual(12, len(systems['systems']))
self.assertEqual(39, len(systems['systems']))
generation_equipments = catalog.names('generation_equipments')
self.assertEqual(27, len(generation_equipments['generation_equipments']))
self.assertEqual(49, len(generation_equipments['generation_equipments']))
with self.assertRaises(ValueError):
catalog.names('unknown')
@ -55,6 +55,7 @@ class TestSystemsCatalog(TestCase):
with self.assertRaises(IndexError):
catalog.get_entry('unknown')
def test_palma_catalog(self):
catalog = EnergySystemsCatalogFactory('palma').catalog
catalog_categories = catalog.names()

View File

@ -114,7 +114,8 @@ class TestSystemsFactory(TestCase):
ResultFactory('insel_monthly_energy_balance', self._city, self._output_path).enrich()
for building in self._city.buildings:
building.energy_systems_archetype_name = 'PV+ASHP+GasBoiler+TES'
building.energy_systems_archetype_name = ('Central Hydronic Air and Gas Source Heating System with Unitary Split '
'Cooling and Air Source HP DHW and Grid Tied PV')
EnergySystemsFactory('montreal_future', self._city).enrich()
# Need to assign energy systems to buildings:
for building in self._city.buildings:
@ -131,6 +132,7 @@ class TestSystemsFactory(TestCase):
self.assertLess(0, building.heating_consumption[cte.YEAR][0])
self.assertLess(0, building.cooling_consumption[cte.YEAR][0])
self.assertLess(0, building.domestic_hot_water_consumption[cte.YEAR][0])
if 'PV' in building.energy_systems_archetype_name:
self.assertLess(0, building.onsite_electrical_production[cte.YEAR][0])
def test_palma_system_results(self):