Compare commits

..

1 Commits

Author SHA1 Message Date
ec83b01c76 Working version for Majid, course 2023-06-06 14:40:08 -04:00
363 changed files with 553849 additions and 161003 deletions

View File

@ -9,4 +9,4 @@
**/hub/logs/
**/__pycache__/
**/.idea/
cerc_hub.egg-info

View File

@ -1,50 +0,0 @@
# LINUX_INSTALL
## Prepare your environment
### Install Miniconda
1. Get the link for the latest version of Miniconda from https://docs.conda.io/en/latest/miniconda.html
2. Download the installer using wget
````
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
````
3. Make the installer executable
````
chmod +x ./Miniconda3-latest-Linux-x86_64.sh
````
4. Run the installer
````
./Miniconda3-latest-Linux-x86_64.sh
````
5. Holder enter until you are prompted to accept the license terms. Enter yes.
6. Initialize the conda environment
````
conda init bash
````
7. Source .bashrc
````
source ~/.bashrc
````
8. Create a conda environment for the hub
````
conda create --name hub python=3.9.16
````
### Setup SRA
1. Get the sra binary and libshortwave.so library from Guille or Koa
2. Place the binary and the library into your directory of choice
3. Make a symlink for the binary and place it into /usr/local/bin/sra
````
sudo ln -s ~/sra /usr/local/bin/sra
````
4. Make a symlink for the library and place it into /usr/local/lib/libshortwave.so
````
sudo ln -s ~/libshortwave.so /usr/local/lib/libshortwave.so
````
### Setup INSEL
1. TBD
### Get a Python editor
You are welcome to use the Python editor of your preference. The CERC team generally uses PyCharm to develop the hub.
The latest version of PyCharm can be downloaded from [JetBrains website](https://www.jetbrains.com/pycharm/promo/?source=google&medium=cpc&campaign=14127625109&term=pycharm&content=536947779504&gad=1&gclid=CjwKCAjw0ZiiBhBKEiwA4PT9z2AxPfy39x_RcBqlYxJ6sm_s55T9qvA_sZ8ZfkhIVX6FOD-ySbmzARoCcpQQAvD_BwE).
For setup and installation instructions, please view the "Get a Python Editor"
from the [WINDOWS_INSTALL](https://nextgenerations-cities.encs.concordia.ca/gitea/CERC/hub/src/branch/main/hub/WINDOWS_INSTALL.md)
documentation.

View File

@ -1,16 +1,20 @@
# Functions and usages internally recognized within the hub
The hub uses a list of building functions that are the only ones recognized. All new categories should be added to the dictionaries that translate from the input formats to the hub functions and from the hub functions to the output formats.
The hub uses a list of building functions a building usages that are the only ones recognized. All new categories should be added to the dictionaries that translate from the input formats to the libs functions. From the libs functions to the libs usages and from the libs usages and libs functions to the output formats.
Input formats accepted:
* Function:
* pluto
* hft
Output formats accepted:
* Function:
* nrel
* nrcan
* eilat
* Usage:
* nrcan
* ca
* hft
* comnet
* eilat
Libs_functions:
* single family house

View File

@ -2,16 +2,16 @@
This is an installation guide for Windows, covering all the steps needed to begin developing code for the Urban
Simulation Platform 'Hub'. At the end of this process you will have installed and configured all the necessary applications,
set up your own project on CERC's Gitea and created your first python file.
set up your own project on CERC's Gitlab and created your first python file.
## Prepare your environment
g
To develop any new code for the Urban Simulation Platform you must have the right software applications installed and configured.
The Platform is written in python and so the applications you need are:
* Miniconda
* SRA Files
* Python Editor
You also need to register a user account with the CERC's code repository on Gitea and have the necessary permissions for
You also need to register a user account with the CERC's code repository on Gitlab and have the necessary permissions for
creating new code. For that purpose, please, contact Guillermo (guillermo.gutierrezmorote@concordia.ca) or
Koa (kekoa.wells@concordia.ca) as soon as possible.
@ -47,29 +47,6 @@ _The term '...' is not recognized as the name of a cmdlet, function,..._
To solve it, type 'Set-ExecutionPolicy Unrestricted' as shown in the image.
### Setup SRA
1. Get the SRA executable and dll files from Guille or Koa
2. Create a folder in "C:\Program Files\" called "sra"
![create_sra](docs/img_windows_install/img_34.png)
3. Copy shortwave_integer.exe and pthreadGC2.dll into the sra folder.
![create_sra](docs/img_windows_install/img_35.png)
4. Add the newly created sra folder to the Path, similar to step 2 from the Miniconda setup above.
![create_sra](docs/img_windows_install/img_36.png)
### Install and setup INSEL
1. Get the INSEL installer from Guille or Koa
2. Run the installer to completion using the default installation path
3. Add the INSEL installation folder to the Path
![create_sra](docs/img_windows_install/img_41.png)
### Get a Python editor
1. You will need a python editor in order to import the existing Hub source code and to write your own python code.
@ -78,7 +55,7 @@ an excellent open-source python editor.
2. Run the installer, and follow the installation instructions for PyCharm, you may change a few options,
but the default ones should be fine.
**NOTE:** If PyCharm asks you to create a Virtual Environment, click **Cancel**. You will do it later using Conda instead.
**NOTE:** If Pycharm asks you to create a Virtual Environment, click **Cancel**. You will do it later using Conda instead.
![creating_virtual_environment](docs/img_windows_install/img_31.png)
@ -93,12 +70,14 @@ You can find it also at **Git->Clone...**
![pycharm get from version control](docs/img_windows_install/img_6.png)
3. Select **Git** as the **Version control**. Open the [hub repository](https://nextgenerations-cities.encs.concordia.ca/gitea/CERC/hub)
on Gitea and copy the URL from your browser to use as the URL inside PyCharm.
3. Select **Git** as the **Version control**. For the URL use the link to the Hub repository, as seen below.
![pycharm get from version control screen](docs/img_windows_install/img_1.png)
![gitea get https](docs/img_windows_install/img_39.png)
(You can also copy this URL by going to the Hub repository in [Gitlab](https://rs-loy-gitlab.concordia.ca/Guille/hub.git)
and clicking on the **Copy URL** button, next to **Clone with HTTPS**)
![gitlab get https](docs/img_windows_install/img_17.png)
The Directory to store the Hub source code locally is automatically created for you. Edit this if you prefer it to be stored somewhere else.
@ -173,7 +152,7 @@ _lca_classes_,... And, click on the **Create** button.
3. Click on the **Git** button in the bottom-left corner to pop-up the window showing the Git information.
See your new branch has been created under _Local_.
4. Now we need to let the CERC Gitea repository know about this new branch. You do this by right-clicking on
4. Now we need to let the CERC Gitlab repository know about this new branch. You do this by right-clicking on
your branch and selecting **Push...** from the drop-down menu.
5. Then click on the **Push** button at the bottom-right of the **Push Commits** window.
@ -201,35 +180,33 @@ See the picture below.
![pycharm configuration screen](docs/img_windows_install/img_5.png)
## Set up a new project on Gitea
You will need an account before you can access the Gitea. Please contact Guillermo (guillermo.gutierrezmorote@concordia.ca) or
Koa (kekoa.wells@concordia.ca) to request an account.
## Set up a new project on Gitlab
1. Open a browser and go to the [CERC Gitea](https://nextgenerations-cities.encs.concordia.ca/). Click on the **+** in the top right
and select "New Repository" or press the **+** below the Organization tab.
1. Open a browser and to the [CERC Git](https://rs-loy-gitlab.concordia.ca/). Click on the blue **New project** button.
![git new project screen](docs/img_windows_install/img_37.png)
![git new project screen](docs/img_windows_install/img_14.png)
2. Choose the **Create blank project** option from the three options seen below.
3. Type in a name that describes your project: _hp_workflow_, _bus_system_optimization_...
(remember to follow the CERC naming conventions described in the [Coding Style](PYGUIDE.md)).
Ideally, uncheck the option **Make Repository Private**, and check the **Initialize Repository**
Check the option **Initialize repository with a README**, and ideally, check the **Visibility Level** to be **Public**.
Then click on the **Create project** button.
![git give a name](docs/img_windows_install/img_38.png)
![git give a name](docs/img_windows_install/img_15.png)
You should then see a confirmation screen with all the information about your new project.
## Get your project into Pycharm
1. Now you can make a clone of this project, within PyCharm. First, go to the page of your repository on the Gitea and copy the URL.
1. Now you can make a clone of this project, within PyCharm. First, copy the URL by clicking on the blue **Clone** button
and then click on the **Copy URL** button, next to the **Clone with HTTPS** link.
2. Switch back to PyCharm and close the Hub project by choosing **File->Close Project**. You will then see the
**Welcome To PyCharm** window again.
3. Clone a copy of your Project into PyCharm, following the steps 2-6 of the _GET THE CERC HUB SOURCE CODE_
section above, but using the URL link that you just copied for your Gitea project.
section above, but using the URL link that you just copied for your gitlab project.
4. Select **File->Settings** to open the **Settings** window. From the panel on the left click on
**Project:<project name> -> Project Structure**.
@ -265,5 +242,5 @@ city = GeometryFactory('citygml', path='myfile.gml').city
9. Always remember to push your own project changes as the last thing you do before ending your working day!
First, commit your changes by clicking on the green check in the top-right corner of Pycharm. Add a comment that explains briefly your changes.
Then, pull by clicking on the blue arrow to be sure that there are no conflicts between your version (local) and the remote one (Gitea).
Then, pull by clicking on the blue arrow to be sure that there are no conflicts between your version (local) and the remote one (gitlab).
Once the conflicts are solved and the merge in local is done, push the changes by clicking on the green arrow.

View File

@ -8,7 +8,7 @@ Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
class Catalog:
"""
Catalogs base class
Catalogs base class not implemented instance of the Catalog base class,
catalog_factories will inherit from this class.
"""

View File

@ -1,9 +1,3 @@
"""
Construction helper module
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Guille Gutierrez Guillermo.GutierrezMorote@concordia.ca
"""
from hub.helpers import constants as cte
@ -40,24 +34,12 @@ class ConstructionHelper:
@property
def reference_standard_to_construction_period(self):
"""
Get reference standard to construction period dictionary
:return: {}
"""
return self._reference_standard_to_construction_period
@property
def nrel_surfaces_types_to_hub_types(self):
"""
Get reference nrel surface type to hub type dictionary
:return: {}
"""
return self._nrel_surfaces_types_to_hub_types
@property
def nrcan_surfaces_types_to_hub_types(self):
"""
Get reference nrcan surface type to hub type dictionary
:return: {}
"""
return self._nrcan_surfaces_types_to_hub_types

View File

@ -1,238 +0,0 @@
"""
Eilat construction catalog
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
"""
import json
from pathlib import Path
from hub.catalog_factories.catalog import Catalog
from hub.catalog_factories.data_models.construction.content import Content
from hub.catalog_factories.construction.construction_helper import ConstructionHelper
from hub.catalog_factories.data_models.construction.construction import Construction
from hub.catalog_factories.data_models.construction.archetype import Archetype
from hub.catalog_factories.data_models.construction.window import Window
from hub.catalog_factories.data_models.construction.material import Material
from hub.catalog_factories.data_models.construction.layer import Layer
import hub.helpers.constants as cte
class EilatCatalog(Catalog):
"""
Eilat catalog class
"""
def __init__(self, path):
_path_archetypes = Path(path / 'eilat_archetypes.json').resolve()
_path_constructions = (path / 'eilat_constructions.json').resolve()
with open(_path_archetypes, 'r', encoding='utf-8') as file:
self._archetypes = json.load(file)
with open(_path_constructions, 'r', encoding='utf-8') as file:
self._constructions = json.load(file)
self._catalog_windows = self._load_windows()
self._catalog_materials = self._load_materials()
self._catalog_constructions = self._load_constructions()
self._catalog_archetypes = self._load_archetypes()
# store the full catalog data model in self._content
self._content = Content(self._catalog_archetypes,
self._catalog_constructions,
self._catalog_materials,
self._catalog_windows)
def _load_windows(self):
_catalog_windows = []
windows = self._constructions['transparent_surfaces']
for window in windows:
name = list(window.keys())[0]
window_id = name
g_value = window[name]['shgc']
window_type = window[name]['type']
frame_ratio = window[name]['frame_ratio']
overall_u_value = window[name]['u_value']
_catalog_windows.append(Window(window_id, frame_ratio, g_value, overall_u_value, name, window_type))
return _catalog_windows
def _load_materials(self):
_catalog_materials = []
materials = self._constructions['materials']
for material in materials:
name = list(material.keys())[0]
material_id = name
no_mass = material[name]['no_mass']
thermal_resistance = None
conductivity = None
density = None
specific_heat = None
solar_absorptance = None
thermal_absorptance = None
visible_absorptance = None
if no_mass:
thermal_resistance = material[name]['thermal_resistance']
else:
solar_absorptance = material[name]['solar_absorptance']
thermal_absorptance = str(1 - float(material[name]['thermal_emittance']))
visible_absorptance = material[name]['visible_absorptance']
conductivity = material[name]['conductivity']
density = material[name]['density']
specific_heat = material[name]['specific_heat']
_material = Material(material_id,
name,
solar_absorptance,
thermal_absorptance,
visible_absorptance,
no_mass,
thermal_resistance,
conductivity,
density,
specific_heat)
_catalog_materials.append(_material)
return _catalog_materials
def _load_constructions(self):
_catalog_constructions = []
constructions = self._constructions['opaque_surfaces']
for construction in constructions:
name = list(construction.keys())[0]
construction_id = name
construction_type = ConstructionHelper().nrcan_surfaces_types_to_hub_types[construction[name]['type']]
layers = []
for layer in construction[name]['layers']:
layer_id = layer
layer_name = layer
material_id = layer
thickness = construction[name]['layers'][layer]
for material in self._catalog_materials:
if str(material_id) == str(material.id):
layers.append(Layer(layer_id, layer_name, material, thickness))
break
_catalog_constructions.append(Construction(construction_id, construction_type, name, layers))
return _catalog_constructions
def _load_archetypes(self):
_catalog_archetypes = []
archetypes = self._archetypes['archetypes']
for archetype in archetypes:
archetype_id = f'{archetype["function"]}_{archetype["period_of_construction"]}_{archetype["climate_zone"]}'
function = archetype['function']
name = archetype_id
climate_zone = archetype['climate_zone']
construction_period = archetype['period_of_construction']
average_storey_height = archetype['average_storey_height']
extra_loses_due_to_thermal_bridges = archetype['extra_loses_due_thermal_bridges']
infiltration_rate_for_ventilation_system_off = archetype[
'infiltration_rate_for_ventilation_system_off'] / cte.HOUR_TO_SECONDS
infiltration_rate_for_ventilation_system_on = archetype[
'infiltration_rate_for_ventilation_system_on'] / cte.HOUR_TO_SECONDS
archetype_constructions = []
for archetype_construction in archetype['constructions']:
archetype_construction_type = ConstructionHelper().nrcan_surfaces_types_to_hub_types[archetype_construction]
archetype_construction_name = archetype['constructions'][archetype_construction]['opaque_surface_name']
for construction in self._catalog_constructions:
if archetype_construction_type == construction.type and construction.name == archetype_construction_name:
_construction = None
_window = None
_window_ratio = None
if 'transparent_surface_name' in archetype['constructions'][archetype_construction].keys():
_window_ratio = archetype['constructions'][archetype_construction]['transparent_ratio']
_window_id = archetype['constructions'][archetype_construction]['transparent_surface_name']
for window in self._catalog_windows:
if _window_id == window.id:
_window = window
break
_construction = Construction(construction.id,
construction.type,
construction.name,
construction.layers,
_window_ratio,
_window)
archetype_constructions.append(_construction)
break
_catalog_archetypes.append(Archetype(archetype_id,
name,
function,
climate_zone,
construction_period,
archetype_constructions,
average_storey_height,
None,
extra_loses_due_to_thermal_bridges,
None,
infiltration_rate_for_ventilation_system_off,
infiltration_rate_for_ventilation_system_on,
0,
0))
return _catalog_archetypes
def names(self, category=None):
"""
Get the catalog elements names
:parm: optional category filter
"""
if category is None:
_names = {'archetypes': [], 'constructions': [], 'materials': [], 'windows': []}
for archetype in self._content.archetypes:
_names['archetypes'].append(archetype.name)
for construction in self._content.constructions:
_names['constructions'].append(construction.name)
for material in self._content.materials:
_names['materials'].append(material.name)
for window in self._content.windows:
_names['windows'].append(window.name)
else:
_names = {category: []}
if category.lower() == 'archetypes':
for archetype in self._content.archetypes:
_names[category].append(archetype.name)
elif category.lower() == 'constructions':
for construction in self._content.constructions:
_names[category].append(construction.name)
elif category.lower() == 'materials':
for material in self._content.materials:
_names[category].append(material.name)
elif category.lower() == 'windows':
for window in self._content.windows:
_names[category].append(window.name)
else:
raise ValueError(f'Unknown category [{category}]')
return _names
def entries(self, category=None):
"""
Get the catalog elements
:parm: optional category filter
"""
if category is None:
return self._content
if category.lower() == 'archetypes':
return self._content.archetypes
if category.lower() == 'constructions':
return self._content.constructions
if category.lower() == 'materials':
return self._content.materials
if category.lower() == 'windows':
return self._content.windows
raise ValueError(f'Unknown category [{category}]')
def get_entry(self, name):
"""
Get one catalog element by names
:parm: entry name
"""
for entry in self._content.archetypes:
if entry.name.lower() == name.lower():
return entry
for entry in self._content.constructions:
if entry.name.lower() == name.lower():
return entry
for entry in self._content.materials:
if entry.name.lower() == name.lower():
return entry
for entry in self._content.windows:
if entry.name.lower() == name.lower():
return entry
raise IndexError(f"{name} doesn't exists in the catalog")

View File

@ -15,19 +15,15 @@ from hub.catalog_factories.data_models.construction.archetype import Archetype
from hub.catalog_factories.data_models.construction.window import Window
from hub.catalog_factories.data_models.construction.material import Material
from hub.catalog_factories.data_models.construction.layer import Layer
import hub.helpers.constants as cte
class NrcanCatalog(Catalog):
"""
Nrcan catalog class
"""
def __init__(self, path):
_path_archetypes = Path(path / 'nrcan_archetypes.json').resolve()
_path_constructions = (path / 'nrcan_constructions.json').resolve()
with open(_path_archetypes, 'r', encoding='utf-8') as file:
_path_constructions = (path / 'nrcan_constructions.json')
with open(_path_archetypes, 'r') as file:
self._archetypes = json.load(file)
with open(_path_constructions, 'r', encoding='utf-8') as file:
with open(_path_constructions, 'r') as file:
self._constructions = json.load(file)
self._catalog_windows = self._load_windows()
@ -122,18 +118,8 @@ class NrcanCatalog(Catalog):
average_storey_height = archetype['average_storey_height']
thermal_capacity = float(archetype['thermal_capacity']) * 1000
extra_loses_due_to_thermal_bridges = archetype['extra_loses_due_thermal_bridges']
infiltration_rate_for_ventilation_system_off = (
archetype['infiltration_rate_for_ventilation_system_off'] / cte.HOUR_TO_SECONDS
)
infiltration_rate_for_ventilation_system_on = (
archetype['infiltration_rate_for_ventilation_system_on'] / cte.HOUR_TO_SECONDS
)
infiltration_rate_area_for_ventilation_system_off = (
archetype['infiltration_rate_area_for_ventilation_system_off'] * 1
)
infiltration_rate_area_for_ventilation_system_on = (
archetype['infiltration_rate_area_for_ventilation_system_on'] * 1
)
infiltration_rate_for_ventilation_system_off = archetype['infiltration_rate_for_ventilation_system_off']
infiltration_rate_for_ventilation_system_on = archetype['infiltration_rate_for_ventilation_system_on']
archetype_constructions = []
for archetype_construction in archetype['constructions']:
@ -159,6 +145,7 @@ class NrcanCatalog(Catalog):
_window)
archetype_constructions.append(_construction)
break
_catalog_archetypes.append(Archetype(archetype_id,
name,
function,
@ -170,10 +157,7 @@ class NrcanCatalog(Catalog):
extra_loses_due_to_thermal_bridges,
None,
infiltration_rate_for_ventilation_system_off,
infiltration_rate_for_ventilation_system_on,
infiltration_rate_area_for_ventilation_system_off,
infiltration_rate_area_for_ventilation_system_on
))
infiltration_rate_for_ventilation_system_on))
return _catalog_archetypes
def names(self, category=None):
@ -216,15 +200,17 @@ class NrcanCatalog(Catalog):
"""
if category is None:
return self._content
if category.lower() == 'archetypes':
return self._content.archetypes
if category.lower() == 'constructions':
return self._content.constructions
if category.lower() == 'materials':
return self._content.materials
if category.lower() == 'windows':
return self._content.windows
raise ValueError(f'Unknown category [{category}]')
else:
if category.lower() == 'archetypes':
return self._content.archetypes
elif category.lower() == 'constructions':
return self._content.constructions
elif category.lower() == 'materials':
return self._content.materials
elif category.lower() == 'windows':
return self._content.windows
else:
raise ValueError(f'Unknown category [{category}]')
def get_entry(self, name):
"""

View File

@ -5,8 +5,8 @@ Copyright © 2022 Concordia CERC group
Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
"""
from pathlib import Path
import xmltodict
from pathlib import Path
from hub.catalog_factories.catalog import Catalog
from hub.catalog_factories.data_models.construction.window import Window
from hub.catalog_factories.data_models.construction.material import Material
@ -15,19 +15,15 @@ from hub.catalog_factories.data_models.construction.construction import Construc
from hub.catalog_factories.data_models.construction.content import Content
from hub.catalog_factories.data_models.construction.archetype import Archetype
from hub.catalog_factories.construction.construction_helper import ConstructionHelper
import hub.helpers.constants as cte
class NrelCatalog(Catalog):
"""
Nrel catalog class
"""
def __init__(self, path):
archetypes_path = str(Path(path / 'us_archetypes.xml').resolve())
constructions_path = str(Path(path / 'us_constructions.xml').resolve())
with open(constructions_path, 'r', encoding='utf-8') as xml:
with open(constructions_path) as xml:
self._constructions = xmltodict.parse(xml.read(), force_list=('material', 'window', 'construction', 'layer'))
with open(archetypes_path, 'r', encoding='utf-8') as xml:
with open(archetypes_path) as xml:
self._archetypes = xmltodict.parse(xml.read(), force_list=('archetype', 'construction'))
self._catalog_windows = self._load_windows()
self._catalog_materials = self._load_materials()
@ -62,9 +58,9 @@ class NrelCatalog(Catalog):
thermal_absorptance = float(material['thermal_absorptance']['#text'])
visible_absorptance = float(material['visible_absorptance']['#text'])
no_mass = False
thermal_resistance = None
conductivity = None
density = None
thermal_resistance = None,
conductivity = None,
density = None,
specific_heat = None
if 'no_mass' in material and material['no_mass'] == 'true':
no_mass = True
@ -125,10 +121,10 @@ class NrelCatalog(Catalog):
indirect_heated_ratio = float(archetype['indirect_heated_ratio']['#text'])
infiltration_rate_for_ventilation_system_off = float(
archetype['infiltration_rate_for_ventilation_system_off']['#text']
) / cte.HOUR_TO_SECONDS
)
infiltration_rate_for_ventilation_system_on = float(
archetype['infiltration_rate_for_ventilation_system_on']['#text']
) / cte.HOUR_TO_SECONDS
)
archetype_constructions = []
for archetype_construction in archetype['constructions']['construction']:
@ -162,9 +158,7 @@ class NrelCatalog(Catalog):
extra_loses_due_to_thermal_bridges,
indirect_heated_ratio,
infiltration_rate_for_ventilation_system_off,
infiltration_rate_for_ventilation_system_on,
0,
0))
infiltration_rate_for_ventilation_system_on))
return _catalog_archetypes
def names(self, category=None):
@ -207,15 +201,17 @@ class NrelCatalog(Catalog):
"""
if category is None:
return self._content
if category.lower() == 'archetypes':
return self._content.archetypes
if category.lower() == 'constructions':
return self._content.constructions
if category.lower() == 'materials':
return self._content.materials
if category.lower() == 'windows':
return self._content.windows
raise ValueError(f'Unknown category [{category}]')
else:
if category.lower() == 'archetypes':
return self._content.archetypes
elif category.lower() == 'constructions':
return self._content.constructions
elif category.lower() == 'materials':
return self._content.materials
elif category.lower() == 'windows':
return self._content.windows
else:
raise ValueError(f'Unknown category [{category}]')
def get_entry(self, name):
"""

View File

@ -1,242 +0,0 @@
"""
Palma construction catalog
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Cecilia Pérez Pérez cperez@irec.cat
"""
import json
from pathlib import Path
from hub.catalog_factories.catalog import Catalog
from hub.catalog_factories.data_models.construction.content import Content
from hub.catalog_factories.construction.construction_helper import ConstructionHelper
from hub.catalog_factories.data_models.construction.construction import Construction
from hub.catalog_factories.data_models.construction.archetype import Archetype
from hub.catalog_factories.data_models.construction.window import Window
from hub.catalog_factories.data_models.construction.material import Material
from hub.catalog_factories.data_models.construction.layer import Layer
import hub.helpers.constants as cte
class PalmaCatalog(Catalog):
"""
Palma catalog class
"""
def __init__(self, path):
_path_archetypes = Path(path / 'palma_archetypes.json').resolve()
_path_constructions = (path / 'palma_constructions.json').resolve()
with open(_path_archetypes, 'r', encoding='utf-8') as file:
self._archetypes = json.load(file)
with open(_path_constructions, 'r', encoding='utf-8') as file:
self._constructions = json.load(file)
self._catalog_windows = self._load_windows()
self._catalog_materials = self._load_materials()
self._catalog_constructions = self._load_constructions()
self._catalog_archetypes = self._load_archetypes()
# store the full catalog data model in self._content
self._content = Content(self._catalog_archetypes,
self._catalog_constructions,
self._catalog_materials,
self._catalog_windows)
def _load_windows(self):
_catalog_windows = []
windows = self._constructions['transparent_surfaces']
for window in windows:
name = list(window.keys())[0]
window_id = name
g_value = window[name]['shgc']
window_type = window[name]['type']
frame_ratio = window[name]['frame_ratio']
overall_u_value = window[name]['u_value']
_catalog_windows.append(Window(window_id, frame_ratio, g_value, overall_u_value, name, window_type))
return _catalog_windows
def _load_materials(self):
_catalog_materials = []
materials = self._constructions['materials']
for material in materials:
name = list(material.keys())[0]
material_id = name
no_mass = material[name]['no_mass']
thermal_resistance = None
conductivity = None
density = None
specific_heat = None
solar_absorptance = None
thermal_absorptance = None
visible_absorptance = None
if no_mass:
thermal_resistance = material[name]['thermal_resistance']
else:
solar_absorptance = material[name]['solar_absorptance']
thermal_absorptance = str(1 - float(material[name]['thermal_emittance']))
visible_absorptance = material[name]['visible_absorptance']
conductivity = material[name]['conductivity']
density = material[name]['density']
specific_heat = material[name]['specific_heat']
_material = Material(material_id,
name,
solar_absorptance,
thermal_absorptance,
visible_absorptance,
no_mass,
thermal_resistance,
conductivity,
density,
specific_heat)
_catalog_materials.append(_material)
return _catalog_materials
def _load_constructions(self):
_catalog_constructions = []
constructions = self._constructions['opaque_surfaces']
for construction in constructions:
name = list(construction.keys())[0]
construction_id = name
construction_type = ConstructionHelper().nrcan_surfaces_types_to_hub_types[construction[name]['type']]
layers = []
for layer in construction[name]['layers']:
layer_id = layer
layer_name = layer
material_id = layer
thickness = construction[name]['layers'][layer]
for material in self._catalog_materials:
if str(material_id) == str(material.id):
layers.append(Layer(layer_id, layer_name, material, thickness))
break
_catalog_constructions.append(Construction(construction_id, construction_type, name, layers))
return _catalog_constructions
def _load_archetypes(self):
_catalog_archetypes = []
archetypes = self._archetypes['archetypes']
for archetype in archetypes:
archetype_id = f'{archetype["function"]}_{archetype["period_of_construction"]}_{archetype["climate_zone"]}'
function = archetype['function']
name = archetype_id
climate_zone = archetype['climate_zone']
construction_period = archetype['period_of_construction']
average_storey_height = archetype['average_storey_height']
thermal_capacity = float(archetype['thermal_capacity']) * 1000
extra_loses_due_to_thermal_bridges = archetype['extra_loses_due_thermal_bridges']
infiltration_rate_for_ventilation_system_off = archetype['infiltration_rate_for_ventilation_system_off'] / cte.HOUR_TO_SECONDS
infiltration_rate_for_ventilation_system_on = archetype['infiltration_rate_for_ventilation_system_on'] / cte.HOUR_TO_SECONDS
infiltration_rate_area_for_ventilation_system_off = (
archetype['infiltration_rate_area_for_ventilation_system_off'] * 1
)
infiltration_rate_area_for_ventilation_system_on = (
archetype['infiltration_rate_area_for_ventilation_system_on'] * 1
)
archetype_constructions = []
for archetype_construction in archetype['constructions']:
archetype_construction_type = ConstructionHelper().nrcan_surfaces_types_to_hub_types[archetype_construction]
archetype_construction_name = archetype['constructions'][archetype_construction]['opaque_surface_name']
for construction in self._catalog_constructions:
if archetype_construction_type == construction.type and construction.name == archetype_construction_name:
_construction = None
_window = None
_window_ratio = None
if 'transparent_surface_name' in archetype['constructions'][archetype_construction].keys():
_window_ratio = archetype['constructions'][archetype_construction]['transparent_ratio']
_window_id = archetype['constructions'][archetype_construction]['transparent_surface_name']
for window in self._catalog_windows:
if _window_id == window.id:
_window = window
break
_construction = Construction(construction.id,
construction.type,
construction.name,
construction.layers,
_window_ratio,
_window)
archetype_constructions.append(_construction)
break
_catalog_archetypes.append(Archetype(archetype_id,
name,
function,
climate_zone,
construction_period,
archetype_constructions,
average_storey_height,
thermal_capacity,
extra_loses_due_to_thermal_bridges,
None,
infiltration_rate_for_ventilation_system_off,
infiltration_rate_for_ventilation_system_on,
infiltration_rate_area_for_ventilation_system_off,
infiltration_rate_area_for_ventilation_system_on))
return _catalog_archetypes
def names(self, category=None):
"""
Get the catalog elements names
:parm: optional category filter
"""
if category is None:
_names = {'archetypes': [], 'constructions': [], 'materials': [], 'windows': []}
for archetype in self._content.archetypes:
_names['archetypes'].append(archetype.name)
for construction in self._content.constructions:
_names['constructions'].append(construction.name)
for material in self._content.materials:
_names['materials'].append(material.name)
for window in self._content.windows:
_names['windows'].append(window.name)
else:
_names = {category: []}
if category.lower() == 'archetypes':
for archetype in self._content.archetypes:
_names[category].append(archetype.name)
elif category.lower() == 'constructions':
for construction in self._content.constructions:
_names[category].append(construction.name)
elif category.lower() == 'materials':
for material in self._content.materials:
_names[category].append(material.name)
elif category.lower() == 'windows':
for window in self._content.windows:
_names[category].append(window.name)
else:
raise ValueError(f'Unknown category [{category}]')
return _names
def entries(self, category=None):
"""
Get the catalog elements
:parm: optional category filter
"""
if category is None:
return self._content
if category.lower() == 'archetypes':
return self._content.archetypes
if category.lower() == 'constructions':
return self._content.constructions
if category.lower() == 'materials':
return self._content.materials
if category.lower() == 'windows':
return self._content.windows
raise ValueError(f'Unknown category [{category}]')
def get_entry(self, name):
"""
Get one catalog element by names
:parm: entry name
"""
for entry in self._content.archetypes:
if entry.name.lower() == name.lower():
return entry
for entry in self._content.constructions:
if entry.name.lower() == name.lower():
return entry
for entry in self._content.materials:
if entry.name.lower() == name.lower():
return entry
for entry in self._content.windows:
if entry.name.lower() == name.lower():
return entry
raise IndexError(f"{name} doesn't exists in the catalog")

View File

@ -4,23 +4,17 @@ SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
"""
import logging
from pathlib import Path
from typing import TypeVar
from hub.catalog_factories.construction.nrcan_catalog import NrcanCatalog
from hub.catalog_factories.construction.nrel_catalog import NrelCatalog
from hub.catalog_factories.construction.eilat_catalog import EilatCatalog
from hub.catalog_factories.construction.palma_catalog import PalmaCatalog
from hub.helpers.utils import validate_import_export_type
from hub.catalog_factories.construction.nrcan_catalog import NrcanCatalog
Catalog = TypeVar('Catalog')
class ConstructionCatalogFactory:
"""
Construction catalog factory class
"""
def __init__(self, handler, base_path=None):
if base_path is None:
base_path = Path(Path(__file__).parent.parent / 'data/construction')
@ -38,24 +32,10 @@ class ConstructionCatalogFactory:
@property
def _nrcan(self):
"""
Retrieve NRCAN catalog
Retrieve NREL catalog
"""
return NrcanCatalog(self._path)
@property
def _eilat(self):
"""
Retrieve Eilat catalog
"""
return EilatCatalog(self._path)
@property
def _palma(self):
"""
Retrieve Palma catalog
"""
return PalmaCatalog(self._path)
@property
def catalog(self) -> Catalog:
"""

View File

@ -18,12 +18,9 @@ from hub.catalog_factories.data_models.cost.income import Income
class MontrealCustomCatalog(Catalog):
"""
Montreal custom catalog class
"""
def __init__(self, path):
path = (path / 'montreal_costs.xml').resolve()
with open(path, 'r', encoding='utf-8') as xml:
path = (path / 'montreal_costs.xml')
with open(path) as xml:
self._archetypes = xmltodict.parse(xml.read(), force_list='archetype')
# store the full catalog data model in self._content

View File

@ -13,7 +13,7 @@ from hub.catalog_factories.cost.montreal_custom_catalog import MontrealCustomCat
Catalog = TypeVar('Catalog')
class CostsCatalogFactory:
class CostCatalogFactory:
"""
CostsCatalogFactory class
"""

View File

@ -9,9 +9,6 @@ from hub.catalog_factories.data_models.construction.construction import Construc
class Archetype:
"""
Archetype class
"""
def __init__(self, archetype_id,
name,
function,
@ -23,10 +20,7 @@ class Archetype:
extra_loses_due_to_thermal_bridges,
indirect_heated_ratio,
infiltration_rate_for_ventilation_system_off,
infiltration_rate_for_ventilation_system_on,
infiltration_rate_area_for_ventilation_system_off,
infiltration_rate_area_for_ventilation_system_on
):
infiltration_rate_for_ventilation_system_on):
self._id = archetype_id
self._name = name
self._function = function
@ -39,8 +33,6 @@ class Archetype:
self._indirect_heated_ratio = indirect_heated_ratio
self._infiltration_rate_for_ventilation_system_off = infiltration_rate_for_ventilation_system_off
self._infiltration_rate_for_ventilation_system_on = infiltration_rate_for_ventilation_system_on
self._infiltration_rate_area_for_ventilation_system_off = infiltration_rate_area_for_ventilation_system_off
self._infiltration_rate_area_for_ventilation_system_on = infiltration_rate_area_for_ventilation_system_on
@property
def id(self):
@ -125,7 +117,7 @@ class Archetype:
@property
def infiltration_rate_for_ventilation_system_off(self):
"""
Get archetype infiltration rate for ventilation system off in 1/s
Get archetype infiltration rate for ventilation system off in ACH
:return: float
"""
return self._infiltration_rate_for_ventilation_system_off
@ -133,46 +125,7 @@ class Archetype:
@property
def infiltration_rate_for_ventilation_system_on(self):
"""
Get archetype infiltration rate for ventilation system on in 1/s
Get archetype infiltration rate for ventilation system on in ACH
:return: float
"""
return self._infiltration_rate_for_ventilation_system_on
@property
def infiltration_rate_area_for_ventilation_system_off(self):
"""
Get archetype infiltration rate for ventilation system off in m3/sm2
:return: float
"""
return self._infiltration_rate_area_for_ventilation_system_off
@property
def infiltration_rate_area_for_ventilation_system_on(self):
"""
Get archetype infiltration rate for ventilation system on in m3/sm2
:return: float
"""
return self._infiltration_rate_for_ventilation_system_on
def to_dictionary(self):
"""Class content to dictionary"""
_constructions = []
for _construction in self.constructions:
_constructions.append(_construction.to_dictionary())
content = {'Archetype': {'id': self.id,
'name': self.name,
'function': self.function,
'climate zone': self.climate_zone,
'period of construction': self.construction_period,
'average storey height [m]': self.average_storey_height,
'thermal capacity [J/m3K]': self.thermal_capacity,
'extra loses due to thermal bridges [W/m2K]': self.extra_loses_due_to_thermal_bridges,
'indirect heated ratio': self.indirect_heated_ratio,
'infiltration rate for ventilation off [1/s]': self.infiltration_rate_for_ventilation_system_off,
'infiltration rate for ventilation on [1/s]': self.infiltration_rate_for_ventilation_system_on,
'infiltration rate area for ventilation off [m3/sm2]': self.infiltration_rate_area_for_ventilation_system_off,
'infiltration rate area for ventilation on [m3/sm2]': self.infiltration_rate_area_for_ventilation_system_on,
'constructions': _constructions
}
}
return content

View File

@ -4,15 +4,11 @@ SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
"""
from hub.catalog_factories.data_models.construction.layer import Layer
from hub.catalog_factories.data_models.construction.window import Window
class Construction:
"""
Construction class
"""
def __init__(self, construction_id, construction_type, name, layers, window_ratio=None, window=None):
self._id = construction_id
self._type = construction_type
@ -68,21 +64,3 @@ class Construction:
:return: Window
"""
return self._window
def to_dictionary(self):
"""Class content to dictionary"""
_layers = []
for _layer in self.layers:
_layers.append(_layer.to_dictionary())
_window = None
if self.window is not None:
_window = self.window.to_dictionary()
content = {'Construction': {'id': self.id,
'name': self.name,
'type': self.type,
'window ratio': self.window_ratio,
'window': _window,
'layers': _layers
}
}
return content

View File

@ -7,9 +7,6 @@ Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
class Content:
"""
Content class
"""
def __init__(self, archetypes, constructions, materials, windows):
self._archetypes = archetypes
self._constructions = constructions
@ -43,21 +40,3 @@ class Content:
All windows in the catalog
"""
return self._windows
def to_dictionary(self):
"""Class content to dictionary"""
_archetypes = []
for _archetype in self.archetypes:
_archetypes.append(_archetype.to_dictionary())
content = {'Archetypes': _archetypes}
return content
def __str__(self):
"""Print content"""
_archetypes = []
for _archetype in self.archetypes:
_archetypes.append(_archetype.to_dictionary())
content = {'Archetypes': _archetypes}
return str(content)

View File

@ -5,13 +5,8 @@ Copyright © 2022 Concordia CERC group
Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
"""
from hub.catalog_factories.data_models.construction.material import Material
class Layer:
"""
Layer class
"""
def __init__(self, layer_id, name, material, thickness):
self._id = layer_id
self._name = name
@ -35,7 +30,7 @@ class Layer:
return self._name
@property
def material(self) -> Material:
def material(self):
"""
Get layer material
:return: Material
@ -49,13 +44,3 @@ class Layer:
:return: None or float
"""
return self._thickness
def to_dictionary(self):
"""Class content to dictionary"""
content = {'Layer': {'id': self.id,
'name': self.name,
'thickness [m]': self.thickness,
'material': self.material.to_dictionary()
}
}
return content

View File

@ -7,9 +7,6 @@ Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
class Material:
"""
Material class
"""
def __init__(self, material_id,
name,
solar_absorptance,
@ -110,19 +107,3 @@ class Material:
:return: None or float
"""
return self._thermal_resistance
def to_dictionary(self):
"""Class content to dictionary"""
content = {'Material': {'id': self.id,
'name': self.name,
'is no-mass': self.no_mass,
'density [kg/m3]': self.density,
'specific heat [J/kgK]': self.specific_heat,
'conductivity [W/mK]': self.conductivity,
'thermal resistance [m2K/W]': self.thermal_resistance,
'solar absorptance': self.solar_absorptance,
'thermal absorptance': self.thermal_absorptance,
'visible absorptance': self.visible_absorptance
}
}
return content

View File

@ -7,9 +7,6 @@ Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
class Window:
"""
Window class
"""
def __init__(self, window_id, frame_ratio, g_value, overall_u_value, name, window_type=None):
self._id = window_id
self._frame_ratio = frame_ratio
@ -64,16 +61,4 @@ class Window:
Get transparent surface type, 'window' or 'skylight'
:return: str
"""
return self._type
def to_dictionary(self):
"""Class content to dictionary"""
content = {'Window': {'id': self.id,
'name': self.name,
'type': self.type,
'frame ratio': self.frame_ratio,
'g-value': self.g_value,
'overall U value [W/m2K]': self.overall_u_value
}
}
return content
return self.type

View File

@ -11,9 +11,6 @@ from hub.catalog_factories.data_models.cost.income import Income
class Archetype:
"""
Archetype class
"""
def __init__(self,
lod,
function,
@ -102,7 +99,7 @@ class Archetype:
@property
def end_of_life_cost(self):
"""
Get end of life cost in given currency per m2
Get end of life cost in given currency
:return: float
"""
return self._end_of_life_cost
@ -114,19 +111,3 @@ class Archetype:
:return: Income
"""
return self._income
def to_dictionary(self):
"""Class content to dictionary"""
content = {'Archetype': {'name': self.name,
'level of detail': self.lod,
'municipality': self.municipality,
'country': self.country,
'currency': self.currency,
'function': self.function,
'capital cost': self.capital_cost.to_dictionary(),
'operational cost': self.operational_cost.to_dictionary(),
'end of life cost [currency/m2]': self.end_of_life_cost,
'income': self.income.to_dictionary()
}
}
return content

View File

@ -10,9 +10,6 @@ from hub.catalog_factories.data_models.cost.chapter import Chapter
class CapitalCost:
"""
Capital cost class
"""
def __init__(self, general_chapters, design_allowance, overhead_and_profit):
self._general_chapters = general_chapters
self._design_allowance = design_allowance
@ -51,16 +48,3 @@ class CapitalCost:
if chapter.chapter_type == name:
return chapter
raise KeyError(f'Chapter name {name} not found')
def to_dictionary(self):
"""Class content to dictionary"""
_chapters = []
for _chapter in self.general_chapters:
_chapters.append(_chapter.to_dictionary())
content = {'Capital cost': {'design allowance': self.design_allowance,
'overhead and profit': self.overhead_and_profit,
'chapters': _chapters
}
}
return content

View File

@ -10,9 +10,6 @@ from hub.catalog_factories.data_models.cost.item_description import ItemDescript
class Chapter:
"""
Chapter class
"""
def __init__(self, chapter_type, items):
self._chapter_type = chapter_type
@ -43,15 +40,3 @@ class Chapter:
if item.type == name:
return item
raise KeyError(f'Item name {name} not found')
def to_dictionary(self):
"""Class content to dictionary"""
_items = []
for _item in self.items:
_items.append(_item.to_dictionary())
content = {'Chapter': {'chapter type': self.chapter_type,
'items': _items
}
}
return content

View File

@ -8,9 +8,6 @@ Code contributors: Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concord
class Content:
"""
Content class
"""
def __init__(self, archetypes):
self._archetypes = archetypes
@ -20,21 +17,3 @@ class Content:
All archetypes in the catalog
"""
return self._archetypes
def to_dictionary(self):
"""Class content to dictionary"""
_archetypes = []
for _archetype in self.archetypes:
_archetypes.append(_archetype.to_dictionary())
content = {'Archetypes': _archetypes}
return content
def __str__(self):
"""Print content"""
_archetypes = []
for _archetype in self.archetypes:
_archetypes.append(_archetype.to_dictionary())
content = {'Archetypes': _archetypes}
return str(content)

View File

@ -9,9 +9,6 @@ from typing import Union
class Fuel:
"""
Fuel class
"""
def __init__(self, fuel_type,
fixed_monthly=None,
fixed_power=None,
@ -43,12 +40,10 @@ class Fuel:
@property
def fixed_power(self) -> Union[None, float]:
"""
Get fixed operational costs depending on the peak power consumed in currency per month per W
Get fixed operational costs depending on the peak power consumed in currency per month per kW
:return: None or float
"""
if self._fixed_power is not None:
return self._fixed_power/1000
return None
return self._fixed_power
@property
def variable(self) -> Union[tuple[None, None], tuple[float, str]]:
@ -57,15 +52,3 @@ class Fuel:
:return: None, None or float, str
"""
return self._variable, self._variable_units
def to_dictionary(self):
"""Class content to dictionary"""
content = {'Fuel': {'fuel type': self.type,
'fixed operational costs [currency/month]': self.fixed_monthly,
'fixed operational costs depending on the peak power consumed [currency/month W]': self.fixed_power,
'variable operational costs': self.variable[0],
'units': self.variable[1]
}
}
return content

View File

@ -9,9 +9,6 @@ from typing import Union
class Income:
"""
Income class
"""
def __init__(self, construction_subsidy=None,
hvac_subsidy=None,
photovoltaic_subsidy=None,
@ -27,7 +24,7 @@ class Income:
@property
def construction_subsidy(self) -> Union[None, float]:
"""
Get subsidy for construction in percentage %
Get subsidy for construction in percentage
:return: None or float
"""
return self._construction_subsidy
@ -35,7 +32,7 @@ class Income:
@property
def hvac_subsidy(self) -> Union[None, float]:
"""
Get subsidy for HVAC system in percentage %
Get subsidy for HVAC system in percentage
:return: None or float
"""
return self._hvac_subsidy
@ -52,8 +49,7 @@ class Income:
def electricity_export(self) -> Union[None, float]:
"""
Get electricity export incomes in currency per J
:return: None or float
"""
:return: None or float"""
return self._electricity_export
@property
@ -63,15 +59,3 @@ class Income:
:return: None or float
"""
return self._reductions_tax
def to_dictionary(self):
"""Class content to dictionary"""
content = {'Income': {'construction subsidy [%]': self.construction_subsidy,
'hvac subsidy [%]': self.hvac_subsidy,
'photovoltaic subsidy [%]': self.photovoltaic_subsidy,
'electricity export [currency/J]': self.electricity_export,
'reductions tax': self.reductions_tax
}
}
return content

View File

@ -9,9 +9,6 @@ from typing import Union
class ItemDescription:
"""
Item description class
"""
def __init__(self, item_type,
initial_investment=None,
initial_investment_unit=None,
@ -69,18 +66,3 @@ class ItemDescription:
:return: None or float
"""
return self._lifetime
def to_dictionary(self):
"""Class content to dictionary"""
content = {'Item': {'type': self.type,
'initial investment': self.initial_investment[0],
'initial investment units': self.initial_investment[1],
'refurbishment': self.refurbishment[0],
'refurbishment units': self.refurbishment[1],
'reposition': self.reposition[0],
'reposition units': self.reposition[1],
'life time [years]': self.lifetime
}
}
return content

View File

@ -10,9 +10,6 @@ from hub.catalog_factories.data_models.cost.fuel import Fuel
class OperationalCost:
"""
Operational cost class
"""
def __init__(self, fuels, maintenance_heating, maintenance_cooling, maintenance_pv, co2):
self._fuels = fuels
self._maintenance_heating = maintenance_heating
@ -24,7 +21,7 @@ class OperationalCost:
def fuels(self) -> List[Fuel]:
"""
Get fuels listed in capital costs
:return: [Fuel]
:return: [FUEL]
"""
return self._fuels
@ -59,18 +56,3 @@ class OperationalCost:
:return: float
"""
return self._co2
def to_dictionary(self):
"""Class content to dictionary"""
_fuels = []
for _fuel in self.fuels:
_fuels.append(_fuel.to_dictionary())
content = {'Maintenance': {'fuels': _fuels,
'cost of maintaining the heating system [currency/W]': self.maintenance_heating,
'cost of maintaining the cooling system [currency/W]': self.maintenance_cooling,
'cost of maintaining the PV system [currency/W]': self.maintenance_pv,
'cost of CO2 emissions [currency/kgCO2]': self.co2
}
}
return content

View File

@ -1,9 +1,8 @@
"""
Energy System catalog archetype, understood as a cluster of energy systems
Energy System catalog archetype
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
Code contributors: Saeed Ranjbar saeed.ranjbar@concordia.ca
"""
from typing import List
@ -12,21 +11,27 @@ from hub.catalog_factories.data_models.energy_systems.system import System
class Archetype:
"""
Archetype class
"""
def __init__(self, name, systems):
def __init__(self, lod, name, systems):
self._lod = lod
self._name = name
self._systems = systems
@property
def lod(self):
"""
Get level of detail of the catalog
:return: string
"""
return self._lod
@property
def name(self):
"""
Get name
:return: string
"""
return self._name
return f'{self._name}_lod{self._lod}'
@property
def systems(self) -> List[System]:
@ -35,16 +40,3 @@ class Archetype:
:return: [Equipment]
"""
return self._systems
def to_dictionary(self):
"""Class content to dictionary"""
_systems = []
for _system in self.systems:
_systems.append(_system.to_dictionary())
content = {
'Archetype': {
'name': self.name,
'systems': _systems
}
}
return content

View File

@ -7,14 +7,12 @@ Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
class Content:
"""
Content class
"""
def __init__(self, archetypes, systems, generations=None, distributions=None):
def __init__(self, archetypes, systems, generations, distributions, emissions):
self._archetypes = archetypes
self._systems = systems
self._generations = generations
self._distributions = distributions
self._emissions = emissions
@property
def archetypes(self):
@ -44,20 +42,9 @@ class Content:
"""
return self._distributions
def to_dictionary(self):
"""Class content to dictionary"""
_archetypes = []
for _archetype in self.archetypes:
_archetypes.append(_archetype.to_dictionary())
content = {'Archetypes': _archetypes}
return content
def __str__(self):
"""Print content"""
_archetypes = []
for _archetype in self.archetypes:
_archetypes.append(_archetype.to_dictionary())
content = {'Archetypes': _archetypes}
return str(content)
@property
def emission_equipments(self):
"""
All emission equipments in the catalog
"""
return self._emissions

View File

@ -3,35 +3,20 @@ Energy System catalog distribution system
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
Code contributors: Saeed Ranjbar saeed.ranjbar@concordia.ca
"""
from typing import Union, List, TypeVar
from hub.catalog_factories.data_models.energy_systems.energy_storage_system import EnergyStorageSystem
from hub.catalog_factories.data_models.energy_systems.emission_system import EmissionSystem
GenerationSystem = TypeVar('GenerationSystem')
class DistributionSystem:
"""
Distribution system class
"""
def __init__(self, system_id, name, system_type, supply_temperature, distribution_consumption_fix_flow,
distribution_consumption_variable_flow, heat_losses):
def __init__(self, system_id, model_name=None, system_type=None, supply_temperature=None,
distribution_consumption_fix_flow=None, distribution_consumption_variable_flow=None, heat_losses=None,
generation_systems=None, energy_storage_systems=None, emission_systems=None):
self._system_id = system_id
self._model_name = model_name
self._name = name
self._type = system_type
self._supply_temperature = supply_temperature
self._distribution_consumption_fix_flow = distribution_consumption_fix_flow
self._distribution_consumption_variable_flow = distribution_consumption_variable_flow
self._heat_losses = heat_losses
self._generation_systems = generation_systems
self._energy_storage_systems = energy_storage_systems
self._emission_systems = emission_systems
@property
def id(self):
@ -41,13 +26,29 @@ class DistributionSystem:
"""
return self._system_id
@property
def model_name(self):
@id.setter
def id(self, value):
"""
Get model name
Set system id
:param value: float
"""
self._system_id = value
@property
def name(self):
"""
Get name
:return: string
"""
return self._model_name
return self._name
@name.setter
def name(self, value):
"""
Set name
:param value: string
"""
self._name = value
@property
def type(self):
@ -77,7 +78,7 @@ class DistributionSystem:
def distribution_consumption_variable_flow(self):
"""
Get distribution_consumption if the pump or fan work at variable mass or volume flow in ratio
over energy produced (J/J)
over energy produced (Wh/Wh)
:return: float
"""
return self._distribution_consumption_variable_flow
@ -85,56 +86,7 @@ class DistributionSystem:
@property
def heat_losses(self):
"""
Get heat_losses in ratio over energy produced in J/J
Get heat_losses in ratio over energy produced
:return: float
"""
return self._heat_losses
@property
def generation_systems(self) -> Union[None, List[GenerationSystem]]:
"""
Get generation systems connected to the distribution system
:return: [GenerationSystem]
"""
return self._generation_systems
@property
def energy_storage_systems(self) -> Union[None, List[EnergyStorageSystem]]:
"""
Get energy storage systems connected to this distribution system
:return: [EnergyStorageSystem]
"""
return self._energy_storage_systems
@property
def emission_systems(self) -> Union[None, List[EmissionSystem]]:
"""
Get energy emission systems connected to this distribution system
:return: [EmissionSystem]
"""
return self._emission_systems
def to_dictionary(self):
"""Class content to dictionary"""
_generation_systems = [_generation_system.to_dictionary() for _generation_system in
self.generation_systems] if self.generation_systems is not None else None
_energy_storage_systems = [_energy_storage_system.to_dictionary() for _energy_storage_system in
self.energy_storage_systems] if self.energy_storage_systems is not None else None
_emission_systems = [_emission_system.to_dictionary() for _emission_system in
self.emission_systems] if self.emission_systems is not None else None
content = {
'Layer': {
'id': self.id,
'model name': self.model_name,
'type': self.type,
'supply temperature [Celsius]': self.supply_temperature,
'distribution consumption if fix flow over peak power [W/W]': self.distribution_consumption_fix_flow,
'distribution consumption if variable flow over peak power [J/J]': self.distribution_consumption_variable_flow,
'heat losses per energy produced [J/J]': self.heat_losses,
'generation systems connected': _generation_systems,
'energy storage systems connected': _energy_storage_systems,
'emission systems connected': _emission_systems
}
}
return content

View File

@ -1,103 +0,0 @@
"""
Energy System catalog electrical storage system
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
Code contributors: Saeed Ranjbar saeed.ranjbar@concordia.ca
"""
from hub.catalog_factories.data_models.energy_systems.energy_storage_system import EnergyStorageSystem
class ElectricalStorageSystem(EnergyStorageSystem):
""""
Energy Storage System Class
"""
def __init__(self, storage_id, type_energy_stored=None, model_name=None, manufacturer=None, storage_type=None,
nominal_capacity=None, losses_ratio=None, rated_output_power=None, nominal_efficiency=None,
battery_voltage=None, depth_of_discharge=None, self_discharge_rate=None):
super().__init__(storage_id, model_name, manufacturer, nominal_capacity, losses_ratio)
self._type_energy_stored = type_energy_stored
self._storage_type = storage_type
self._rated_output_power = rated_output_power
self._nominal_efficiency = nominal_efficiency
self._battery_voltage = battery_voltage
self._depth_of_discharge = depth_of_discharge
self._self_discharge_rate = self_discharge_rate
@property
def type_energy_stored(self):
"""
Get type of energy stored from ['electrical', 'thermal']
:return: string
"""
return self._type_energy_stored
@property
def storage_type(self):
"""
Get storage type from ['lithium_ion', 'lead_acid', 'NiCd']
:return: string
"""
return self._storage_type
@property
def rated_output_power(self):
"""
Get the rated output power of storage system in Watts
:return: float
"""
return self._rated_output_power
@property
def nominal_efficiency(self):
"""
Get the nominal efficiency of the storage system
:return: float
"""
return self._nominal_efficiency
@property
def battery_voltage(self):
"""
Get the battery voltage in Volts
:return: float
"""
return self._battery_voltage
@property
def depth_of_discharge(self):
"""
Get the depth of discharge as a percentage
:return: float
"""
return self._depth_of_discharge
@property
def self_discharge_rate(self):
"""
Get the self discharge rate of battery as a percentage
:return: float
"""
return self._self_discharge_rate
def to_dictionary(self):
"""Class content to dictionary"""
content = {'Storage component': {
'storage id': self.id,
'type of energy stored': self.type_energy_stored,
'model name': self.model_name,
'manufacturer': self.manufacturer,
'storage type': self.storage_type,
'nominal capacity [J]': self.nominal_capacity,
'losses-ratio [J/J]': self.losses_ratio,
'rated power [W]': self.rated_output_power,
'nominal efficiency': self.nominal_efficiency,
'battery voltage [V]': self.battery_voltage,
'depth of discharge [%]': self.depth_of_discharge,
'self discharge rate': self.self_discharge_rate
}
}
return content

View File

@ -7,13 +7,10 @@ Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
class EmissionSystem:
"""
Emission system class
"""
def __init__(self, system_id, model_name=None, system_type=None, parasitic_energy_consumption=0):
def __init__(self, system_id, name, system_type, parasitic_energy_consumption):
self._system_id = system_id
self._model_name = model_name
self._name = name
self._type = system_type
self._parasitic_energy_consumption = parasitic_energy_consumption
@ -25,13 +22,29 @@ class EmissionSystem:
"""
return self._system_id
@property
def model_name(self):
@id.setter
def id(self, value):
"""
Get model name
Set system id
:param value: float
"""
self._system_id = value
@property
def name(self):
"""
Get name
:return: string
"""
return self._model_name
return self._name
@name.setter
def name(self, value):
"""
Set name
:param value: string
"""
self._name = value
@property
def type(self):
@ -44,17 +57,7 @@ class EmissionSystem:
@property
def parasitic_energy_consumption(self):
"""
Get parasitic_energy_consumption in ratio (J/J)
Get parasitic_energy_consumption in ratio (Wh/Wh)
:return: float
"""
return self._parasitic_energy_consumption
def to_dictionary(self):
"""Class content to dictionary"""
content = {'Layer': {'id': self.id,
'model name': self.model_name,
'type': self.type,
'parasitic energy consumption per energy produced [J/J]': self.parasitic_energy_consumption
}
}
return content

View File

@ -1,75 +0,0 @@
"""
Energy System catalog heat generation system
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Saeed Ranjbar saeed.ranjbar@concordia.ca
Code contributors: Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
"""
from abc import ABC
class EnergyStorageSystem(ABC):
""""
Energy Storage System Abstract Class
"""
def __init__(self, storage_id, model_name=None, manufacturer=None,
nominal_capacity=None, losses_ratio=None):
self._storage_id = storage_id
self._model_name = model_name
self._manufacturer = manufacturer
self._nominal_capacity = nominal_capacity
self._losses_ratio = losses_ratio
@property
def id(self):
"""
Get storage id
:return: string
"""
return self._storage_id
@property
def type_energy_stored(self):
"""
Get type of energy stored from ['electrical', 'thermal']
:return: string
"""
raise NotImplementedError
@property
def model_name(self):
"""
Get system model
:return: string
"""
return self._model_name
@property
def manufacturer(self):
"""
Get name of manufacturer
:return: string
"""
return self._manufacturer
@property
def nominal_capacity(self):
"""
Get the nominal capacity of the storage system in Jules
:return: float
"""
return self._nominal_capacity
@property
def losses_ratio(self):
"""
Get the losses-ratio of storage system in Jules lost / Jules stored
:return: float
"""
return self._losses_ratio
def to_dictionary(self):
"""Class content to dictionary"""
raise NotImplementedError

View File

@ -1,33 +1,30 @@
"""
Energy System catalog heat generation system
Energy System catalog generation system
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
Code contributors: Saeed Ranjbar saeed.ranjbar@concordia.ca
"""
from __future__ import annotations
from abc import ABC
from typing import List, Union
from hub.catalog_factories.data_models.energy_systems.energy_storage_system import EnergyStorageSystem
from hub.catalog_factories.data_models.energy_systems.distribution_system import DistributionSystem
from typing import Union
class GenerationSystem(ABC):
"""
Heat Generation system class
"""
class GenerationSystem:
def __init__(self, system_id, name, system_type, fuel_type, source_types, heat_efficiency, cooling_efficiency,
electricity_efficiency, source_temperature, source_mass_flow, storage, auxiliary_equipment):
def __init__(self, system_id, name, model_name=None, manufacturer=None, fuel_type=None,
distribution_systems=None, energy_storage_systems=None):
self._system_id = system_id
self._name = name
self._model_name = model_name
self._manufacturer = manufacturer
self._type = system_type
self._fuel_type = fuel_type
self._distribution_systems = distribution_systems
self._energy_storage_systems = energy_storage_systems
self._source_types = source_types
self._heat_efficiency = heat_efficiency
self._cooling_efficiency = cooling_efficiency
self._electricity_efficiency = electricity_efficiency
self._source_temperature = source_temperature
self._source_mass_flow = source_mass_flow
self._storage = storage
self._auxiliary_equipment = auxiliary_equipment
@property
def id(self):
@ -37,62 +34,106 @@ class GenerationSystem(ABC):
"""
return self._system_id
@id.setter
def id(self, value):
"""
Set system id
:param value: float
"""
self._system_id = value
@property
def name(self):
"""
Get system name
:return: string
"""
return self._name
@property
def system_type(self):
"""
Get type
:return: string
"""
raise NotImplementedError
@property
def model_name(self):
"""
Get system id
:return: float
"""
return self._model_name
@property
def manufacturer(self):
"""
Get name
:return: string
"""
return self._manufacturer
return self._name
@name.setter
def name(self, value):
"""
Set name
:param value: string
"""
self._name = value
@property
def type(self):
"""
Get type
:return: string
"""
return self._type
@property
def fuel_type(self):
"""
Get fuel_type from [renewable, gas, diesel, electricity, wood, coal, biogas]
Get fuel_type from [renewable, gas, diesel, electricity, wood, coal]
:return: string
"""
return self._fuel_type
@property
def distribution_systems(self) -> Union[None, List[DistributionSystem]]:
def source_types(self):
"""
Get distributions systems connected to this generation system
:return: [DistributionSystem]
Get source_type from [air, water, geothermal, district_heating, grid, on_site_electricity]
:return: [string]
"""
return self._distribution_systems
return self._source_types
@property
def energy_storage_systems(self) -> Union[None, List[EnergyStorageSystem]]:
def heat_efficiency(self):
"""
Get energy storage systems connected to this generation system
:return: [EnergyStorageSystem]
Get heat_efficiency
:return: float
"""
return self._energy_storage_systems
return self._heat_efficiency
def to_dictionary(self):
"""Class content to dictionary"""
raise NotImplementedError
@property
def cooling_efficiency(self):
"""
Get cooling_efficiency
:return: float
"""
return self._cooling_efficiency
@property
def electricity_efficiency(self):
"""
Get electricity_efficiency
:return: float
"""
return self._electricity_efficiency
@property
def source_temperature(self):
"""
Get source_temperature in degree Celsius
:return: float
"""
return self._source_temperature
@property
def source_mass_flow(self):
"""
Get source_mass_flow in kg/s
:return: float
"""
return self._source_mass_flow
@property
def storage(self):
"""
Get boolean storage exists
:return: bool
"""
return self._storage
@property
def auxiliary_equipment(self) -> Union[None, GenerationSystem]:
"""
Get auxiliary_equipment
:return: GenerationSystem
"""
return self._auxiliary_equipment

View File

@ -1,344 +0,0 @@
"""
Energy System catalog non PV generation system
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
Code contributors: Saeed Ranjbar saeed.ranjbar@concordia.ca
"""
from typing import Union
from hub.catalog_factories.data_models.energy_systems.performance_curves import PerformanceCurves
from hub.catalog_factories.data_models.energy_systems.generation_system import GenerationSystem
class NonPvGenerationSystem(GenerationSystem):
"""
Non PV Generation system class
"""
def __init__(self, system_id, name, system_type, model_name=None, manufacturer=None, fuel_type=None,
nominal_heat_output=None, maximum_heat_output=None, minimum_heat_output=None, source_medium=None,
supply_medium=None, heat_efficiency=None, nominal_cooling_output=None, maximum_cooling_output=None,
minimum_cooling_output=None, cooling_efficiency=None, electricity_efficiency=None,
source_temperature=None, source_mass_flow=None, nominal_electricity_output=None,
maximum_heat_supply_temperature=None, minimum_heat_supply_temperature=None,
maximum_cooling_supply_temperature=None, minimum_cooling_supply_temperature=None, heat_output_curve=None,
heat_fuel_consumption_curve=None, heat_efficiency_curve=None, cooling_output_curve=None,
cooling_fuel_consumption_curve=None, cooling_efficiency_curve=None,
distribution_systems=None, energy_storage_systems=None, domestic_hot_water=False,
reversible=None, simultaneous_heat_cold=None):
super().__init__(system_id=system_id, name=name, model_name=model_name, manufacturer=manufacturer,
fuel_type=fuel_type, distribution_systems=distribution_systems,
energy_storage_systems=energy_storage_systems)
self._system_type = system_type
self._nominal_heat_output = nominal_heat_output
self._maximum_heat_output = maximum_heat_output
self._minimum_heat_output = minimum_heat_output
self._heat_efficiency = heat_efficiency
self._nominal_cooling_output = nominal_cooling_output
self._maximum_cooling_output = maximum_cooling_output
self._minimum_cooling_output = minimum_cooling_output
self._cooling_efficiency = cooling_efficiency
self._electricity_efficiency = electricity_efficiency
self._nominal_electricity_output = nominal_electricity_output
self._source_medium = source_medium
self._source_temperature = source_temperature
self._source_mass_flow = source_mass_flow
self._supply_medium = supply_medium
self._maximum_heat_supply_temperature = maximum_heat_supply_temperature
self._minimum_heat_supply_temperature = minimum_heat_supply_temperature
self._maximum_cooling_supply_temperature = maximum_cooling_supply_temperature
self._minimum_cooling_supply_temperature = minimum_cooling_supply_temperature
self._heat_output_curve = heat_output_curve
self._heat_fuel_consumption_curve = heat_fuel_consumption_curve
self._heat_efficiency_curve = heat_efficiency_curve
self._cooling_output_curve = cooling_output_curve
self._cooling_fuel_consumption_curve = cooling_fuel_consumption_curve
self._cooling_efficiency_curve = cooling_efficiency_curve
self._domestic_hot_water = domestic_hot_water
self._reversible = reversible
self._simultaneous_heat_cold = simultaneous_heat_cold
@property
def system_type(self):
"""
Get type
:return: string
"""
return self._system_type
@property
def nominal_heat_output(self):
"""
Get nominal heat output of heat generation devices in W
:return: float
"""
return self._nominal_heat_output
@property
def maximum_heat_output(self):
"""
Get maximum heat output of heat generation devices in W
:return: float
"""
return self._maximum_heat_output
@property
def minimum_heat_output(self):
"""
Get minimum heat output of heat generation devices in W
:return: float
"""
return self._minimum_heat_output
@property
def source_medium(self):
"""
Get source_type from [air, water, ground, district_heating, grid, on_site_electricity]
:return: string
"""
return self._source_medium
@property
def supply_medium(self):
"""
Get the supply medium from ['air', 'water']
:return: string
"""
return self._supply_medium
@property
def heat_efficiency(self):
"""
Get heat_efficiency
:return: float
"""
return self._heat_efficiency
@property
def nominal_cooling_output(self):
"""
Get nominal cooling output of heat generation devices in W
:return: float
"""
return self._nominal_cooling_output
@property
def maximum_cooling_output(self):
"""
Get maximum heat output of heat generation devices in W
:return: float
"""
return self._maximum_cooling_output
@property
def minimum_cooling_output(self):
"""
Get minimum heat output of heat generation devices in W
:return: float
"""
return self._minimum_cooling_output
@property
def cooling_efficiency(self):
"""
Get cooling_efficiency
:return: float
"""
return self._cooling_efficiency
@property
def electricity_efficiency(self):
"""
Get electricity_efficiency
:return: float
"""
return self._electricity_efficiency
@property
def source_temperature(self):
"""
Get source_temperature in degree Celsius
:return: float
"""
return self._source_temperature
@property
def source_mass_flow(self):
"""
Get source_mass_flow in kg/s
:return: float
"""
return self._source_mass_flow
@property
def nominal_electricity_output(self):
"""
Get nominal_power_output of electricity generation devices or inverters in W
:return: float
"""
return self._nominal_electricity_output
@property
def maximum_heat_supply_temperature(self):
"""
Get the maximum heat supply temperature in degree Celsius
:return: float
"""
return self._minimum_heat_supply_temperature
@property
def minimum_heat_supply_temperature(self):
"""
Get the minimum heat supply temperature in degree Celsius
:return: float
"""
return self._minimum_heat_supply_temperature
@property
def maximum_cooling_supply_temperature(self):
"""
Get the maximum cooling supply temperature in degree Celsius
:return: float
"""
return self._maximum_cooling_supply_temperature
@property
def minimum_cooling_supply_temperature(self):
"""
Get the minimum cooling supply temperature in degree Celsius
:return: float
"""
return self._minimum_cooling_supply_temperature
@property
def heat_output_curve(self) -> Union[None, PerformanceCurves]:
"""
Get the heat output curve of the heat generation device
:return: PerformanceCurve
"""
return self._heat_output_curve
@property
def heat_fuel_consumption_curve(self) -> Union[None, PerformanceCurves]:
"""
Get the heating fuel consumption curve of the heat generation device
:return: PerformanceCurve
"""
return self._heat_fuel_consumption_curve
@property
def heat_efficiency_curve(self) -> Union[None, PerformanceCurves]:
"""
Get the heating efficiency curve of the heat generation device
:return: PerformanceCurve
"""
return self._heat_efficiency_curve
@property
def cooling_output_curve(self) -> Union[None, PerformanceCurves]:
"""
Get the heat output curve of the heat generation device
:return: PerformanceCurve
"""
return self._cooling_output_curve
@property
def cooling_fuel_consumption_curve(self) -> Union[None, PerformanceCurves]:
"""
Get the heating fuel consumption curve of the heat generation device
:return: PerformanceCurve
"""
return self._cooling_fuel_consumption_curve
@property
def cooling_efficiency_curve(self) -> Union[None, PerformanceCurves]:
"""
Get the heating efficiency curve of the heat generation device
:return: PerformanceCurve
"""
return self._cooling_efficiency_curve
@property
def domestic_hot_water(self):
"""
Get the ability to produce domestic hot water
:return: bool
"""
return self._domestic_hot_water
@property
def reversibility(self):
"""
Get the ability to produce heating and cooling
:return: bool
"""
return self._reversible
@property
def simultaneous_heat_cold(self):
"""
Get the ability to produce heating and cooling at the same time
:return: bool
"""
return self._simultaneous_heat_cold
def to_dictionary(self):
"""Class content to dictionary"""
_distribution_systems = [_distribution_system.to_dictionary() for _distribution_system in
self.distribution_systems] if self.distribution_systems is not None else None
_energy_storage_systems = [_energy_storage_system.to_dictionary() for _energy_storage_system in
self.energy_storage_systems] if self.energy_storage_systems is not None else None
_heat_output_curve = self.heat_output_curve.to_dictionary() if (
self.heat_output_curve is not None) else None
_heat_fuel_consumption_curve = self.heat_fuel_consumption_curve.to_dictionary() if (
self.heat_fuel_consumption_curve is not None) else None
_heat_efficiency_curve = self.heat_efficiency_curve.to_dictionary() if (
self.heat_efficiency_curve is not None) else None
_cooling_output_curve = self.cooling_output_curve.to_dictionary() if (
self.cooling_output_curve is not None) else None
_cooling_fuel_consumption_curve = self.cooling_fuel_consumption_curve.to_dictionary() if (
self.cooling_fuel_consumption_curve is not None) else None
_cooling_efficiency_curve = self.cooling_efficiency_curve.to_dictionary() if (
self.cooling_efficiency_curve is not None) else None
content = {
'Energy Generation component':
{
'id': self.id,
'model name': self.model_name,
'manufacturer': self.manufacturer,
'type': self.system_type,
'fuel type': self.fuel_type,
'nominal heat output [W]': self.nominal_heat_output,
'maximum heat output [W]': self.maximum_heat_output,
'minimum heat output [W]': self.minimum_heat_output,
'source medium': self.source_medium,
'supply medium': self.supply_medium,
'source temperature [Celsius]': self.source_temperature,
'source mass flow [kg/s]': self.source_mass_flow,
'heat efficiency': self.heat_efficiency,
'nominal cooling output [W]': self.nominal_cooling_output,
'maximum cooling output [W]': self.maximum_cooling_output,
'minimum cooling output [W]': self.minimum_cooling_output,
'cooling efficiency': self.cooling_efficiency,
'electricity efficiency': self.electricity_efficiency,
'nominal power output [W]': self.nominal_electricity_output,
'maximum heating supply temperature [Celsius]': self.maximum_heat_supply_temperature,
'minimum heating supply temperature [Celsius]': self.minimum_heat_supply_temperature,
'maximum cooling supply temperature [Celsius]': self.maximum_cooling_supply_temperature,
'minimum cooling supply temperature [Celsius]': self.minimum_cooling_supply_temperature,
'heat output curve': self.heat_output_curve,
'heat fuel consumption curve': self.heat_fuel_consumption_curve,
'heat efficiency curve': _heat_efficiency_curve,
'cooling output curve': self.cooling_output_curve,
'cooling fuel consumption curve': self.cooling_fuel_consumption_curve,
'cooling efficiency curve': self.cooling_efficiency_curve,
'distribution systems connected': _distribution_systems,
'storage systems connected': _energy_storage_systems,
'domestic hot water production capability': self.domestic_hot_water,
'reversible cycle': self.reversibility,
'simultaneous heat and cooling production': self.simultaneous_heat_cold
}
}
return content

View File

@ -1,72 +0,0 @@
"""
Energy System catalog heat generation system
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Saeed Ranjbar saeed.ranjbar@concordia.ca
Code contributors: Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
"""
from __future__ import annotations
class PerformanceCurves:
"""
Parameter function class
"""
def __init__(self, curve_type, dependant_variable, parameters, coefficients):
self._curve_type = curve_type
self._dependant_variable = dependant_variable
self._parameters = parameters
self._coefficients = coefficients
@property
def curve_type(self):
"""
The type of the fit function from the following
Linear =>>> y = a + b*x
Exponential =>>> y = a*(b**x)
Second degree polynomial =>>> y = a + b*x + c*(x**2)
Power =>>> y = a*(x**b)
Bi-Quadratic =>>> y = a + b*x + c*(x**2) + d*z + e*(z**2) + f*x*z
Get the type of function from ['linear', 'exponential', 'second degree polynomial', 'power', 'bi-quadratic']
:return: string
"""
return self._curve_type
@property
def dependant_variable(self):
"""
y (e.g. COP in COP = a*source temperature**2 + b*source temperature + c*source temperature*supply temperature +
d*supply temperature + e*supply temperature**2 + f)
"""
return self._dependant_variable
@property
def parameters(self):
"""
Get the list of parameters involved in fitting process as ['x', 'z'] (e.g. [source temperature, supply temperature]
in COP=)
:return: string
"""
return self._parameters
@property
def coefficients(self):
"""
Get the coefficients of the functions as list of ['a', 'b', 'c', 'd', 'e', 'f']
:return: [coefficients]
"""
return self._coefficients
def to_dictionary(self):
"""Class content to dictionary"""
content = {'Parameter Function': {
'curve type': self.curve_type,
'dependant variable': self.dependant_variable,
'parameter(s)': self.parameters,
'coefficients': self.coefficients,
}
}
return content

View File

@ -1,165 +0,0 @@
"""
Energy System catalog heat generation system
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Saeed Ranjbar saeed.ranjbar@concordia.ca
Code contributors: Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
"""
from hub.catalog_factories.data_models.energy_systems.generation_system import GenerationSystem
class PvGenerationSystem(GenerationSystem):
"""
Electricity Generation system class
"""
def __init__(self, system_id, name, system_type, model_name=None, manufacturer=None, electricity_efficiency=None,
nominal_electricity_output=None, nominal_ambient_temperature=None, nominal_cell_temperature=None,
nominal_radiation=None, standard_test_condition_cell_temperature=None,
standard_test_condition_maximum_power=None, standard_test_condition_radiation=None,
cell_temperature_coefficient=None, width=None, height=None, distribution_systems=None,
energy_storage_systems=None):
super().__init__(system_id=system_id, name=name, model_name=model_name,
manufacturer=manufacturer, fuel_type='renewable', distribution_systems=distribution_systems,
energy_storage_systems=energy_storage_systems)
self._system_type = system_type
self._electricity_efficiency = electricity_efficiency
self._nominal_electricity_output = nominal_electricity_output
self._nominal_ambient_temperature = nominal_ambient_temperature
self._nominal_cell_temperature = nominal_cell_temperature
self._nominal_radiation = nominal_radiation
self._standard_test_condition_cell_temperature = standard_test_condition_cell_temperature
self._standard_test_condition_maximum_power = standard_test_condition_maximum_power
self._standard_test_condition_radiation = standard_test_condition_radiation
self._cell_temperature_coefficient = cell_temperature_coefficient
self._width = width
self._height = height
@property
def system_type(self):
"""
Get type
:return: string
"""
return self._system_type
@property
def nominal_electricity_output(self):
"""
Get nominal_power_output of electricity generation devices or inverters in W
:return: float
"""
return self._nominal_electricity_output
@property
def electricity_efficiency(self):
"""
Get electricity_efficiency
:return: float
"""
return self._electricity_efficiency
@property
def nominal_ambient_temperature(self):
"""
Get nominal ambient temperature of PV panels in degree Celsius
:return: float
"""
return self._nominal_ambient_temperature
@property
def nominal_cell_temperature(self):
"""
Get nominal cell temperature of PV panels in degree Celsius
:return: float
"""
return self._nominal_cell_temperature
@property
def nominal_radiation(self):
"""
Get nominal radiation of PV panels
:return: float
"""
return self._nominal_radiation
@property
def standard_test_condition_cell_temperature(self):
"""
Get standard test condition cell temperature of PV panels in degree Celsius
:return: float
"""
return self._standard_test_condition_cell_temperature
@property
def standard_test_condition_maximum_power(self):
"""
Get standard test condition maximum power of PV panels in W
:return: float
"""
return self._standard_test_condition_maximum_power
@property
def standard_test_condition_radiation(self):
"""
Get standard test condition cell temperature of PV panels in W/m2
:return: float
"""
return self._standard_test_condition_radiation
@property
def cell_temperature_coefficient(self):
"""
Get cell temperature coefficient of PV module
:return: float
"""
return self._cell_temperature_coefficient
@property
def width(self):
"""
Get PV module width in m
:return: float
"""
return self._width
@property
def height(self):
"""
Get PV module height in m
:return: float
"""
return self._height
def to_dictionary(self):
"""Class content to dictionary"""
_distribution_systems = [_distribution_system.to_dictionary() for _distribution_system in
self.distribution_systems] if self.distribution_systems is not None else None
_energy_storage_systems = [_energy_storage_system.to_dictionary() for _energy_storage_system in
self.energy_storage_systems] if self.energy_storage_systems is not None else None
content = {
'Energy Generation component':
{
'id': self.id,
'model name': self.model_name,
'manufacturer': self.manufacturer,
'type': self.system_type,
'fuel type': self.fuel_type,
'electricity efficiency': self.electricity_efficiency,
'nominal power output [W]': self.nominal_electricity_output,
'nominal ambient temperature [Celsius]': self.nominal_ambient_temperature,
'nominal cell temperature [Celsius]': self.nominal_cell_temperature,
'nominal radiation [W/m2]': self.nominal_radiation,
'standard test condition cell temperature [Celsius]': self.standard_test_condition_cell_temperature,
'standard test condition maximum power [W]': self.standard_test_condition_maximum_power,
'standard test condition radiation [W/m2]': self.standard_test_condition_radiation,
'cell temperature coefficient': self.cell_temperature_coefficient,
'width': self.width,
'height': self.height,
'distribution systems connected': _distribution_systems,
'storage systems connected': _energy_storage_systems
}
}
return content

View File

@ -1,36 +1,42 @@
"""
Energy Systems catalog System
Energy System catalog equipment
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
Code contributors: Saeed Ranjbar saeed.ranjbar@concordia.ca
"""
from typing import Union, List
from pathlib import Path
from typing import Union
from hub.catalog_factories.data_models.energy_systems.generation_system import GenerationSystem
from hub.catalog_factories.data_models.energy_systems.distribution_system import DistributionSystem
from hub.catalog_factories.data_models.energy_systems.emission_system import EmissionSystem
class System:
"""
System class
"""
def __init__(self,
lod,
system_id,
name,
demand_types,
name=None,
generation_systems=None,
distribution_systems=None,
configuration_schema=None):
generation_system,
distribution_system,
emission_system):
self._lod = lod
self._system_id = system_id
self._name = name
self._demand_types = demand_types
self._generation_systems = generation_systems
self._distribution_systems = distribution_systems
self._configuration_schema = configuration_schema
self._generation_system = generation_system
self._distribution_system = distribution_system
self._emission_system = emission_system
@property
def lod(self):
"""
Get level of detail of the catalog
:return: string
"""
return self._lod
@property
def id(self):
@ -43,57 +49,39 @@ class System:
@property
def name(self):
"""
Get the system name
Get name
:return: string
"""
return self._name
return f'{self._name}_lod{self._lod}'
@property
def demand_types(self):
"""
Get demand able to cover from ['heating', 'cooling', 'domestic_hot_water', 'electricity']
Get demand able to cover from [heating, cooling, domestic_hot_water, electricity]
:return: [string]
"""
return self._demand_types
@property
def generation_systems(self) -> Union[None, List[GenerationSystem]]:
def generation_system(self) -> GenerationSystem:
"""
Get generation systems
:return: [GenerationSystem]
Get generation system
:return: GenerationSystem
"""
return self._generation_systems
return self._generation_system
@property
def distribution_systems(self) -> Union[None, List[DistributionSystem]]:
def distribution_system(self) -> Union[None, DistributionSystem]:
"""
Get distribution systems
:return: [DistributionSystem]
Get distribution system
:return: DistributionSystem
"""
return self._distribution_systems
return self._distribution_system
@property
def configuration_schema(self) -> Path:
def emission_system(self) -> Union[None, EmissionSystem]:
"""
Get system configuration schema
:return: Path
Get emission system
:return: EmissionSystem
"""
return self._configuration_schema
def to_dictionary(self):
"""Class content to dictionary"""
_generation_systems = []
for _generation in self.generation_systems:
_generation_systems.append(_generation.to_dictionary())
_distribution_systems = [_distribution.to_dictionary() for _distribution in
self.distribution_systems] if self.distribution_systems is not None else None
content = {'system': {'id': self.id,
'name': self.name,
'demand types': self.demand_types,
'generation system(s)': _generation_systems,
'distribution system(s)': _distribution_systems,
'configuration schema path': self.configuration_schema
}
}
return content
return self._emission_system

View File

@ -1,126 +0,0 @@
"""
Energy System catalog thermal storage system
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
Code contributors: Saeed Ranjbar saeed.ranjbar@concordia.ca
"""
from hub.catalog_factories.data_models.energy_systems.energy_storage_system import EnergyStorageSystem
from hub.catalog_factories.data_models.construction.layer import Layer
from hub.catalog_factories.data_models.construction.material import Material
class ThermalStorageSystem(EnergyStorageSystem):
""""
Energy Storage System Class
"""
def __init__(self, storage_id, type_energy_stored=None, model_name=None, manufacturer=None, storage_type=None,
nominal_capacity=None, losses_ratio=None, volume=None, height=None, layers=None,
maximum_operating_temperature=None, storage_medium=None, heating_coil_capacity=None):
super().__init__(storage_id, model_name, manufacturer, nominal_capacity, losses_ratio)
self._type_energy_stored = type_energy_stored
self._storage_type = storage_type
self._volume = volume
self._height = height
self._layers = layers
self._maximum_operating_temperature = maximum_operating_temperature
self._storage_medium = storage_medium
self._heating_coil_capacity = heating_coil_capacity
@property
def type_energy_stored(self):
"""
Get type of energy stored from ['electrical', 'thermal']
:return: string
"""
return self._type_energy_stored
@property
def storage_type(self):
"""
Get storage type from ['thermal', 'sensible', 'latent']
:return: string
"""
return self._storage_type
@property
def volume(self):
"""
Get the physical volume of the storage system in cubic meters
:return: float
"""
return self._volume
@property
def height(self):
"""
Get the diameter of the storage system in meters
:return: float
"""
return self._height
@property
def layers(self) -> [Layer]:
"""
Get construction layers
:return: [layer]
"""
return self._layers
@property
def maximum_operating_temperature(self):
"""
Get maximum operating temperature of the storage system in degree Celsius
:return: float
"""
return self._maximum_operating_temperature
@property
def storage_medium(self) -> Material:
"""
Get thermodynamic characteristics of the storage medium
:return: [material
"""
return self._storage_medium
@property
def heating_coil_capacity(self):
"""
Get heating coil capacity in Watts
:return: [material
"""
return self._heating_coil_capacity
def to_dictionary(self):
"""Class content to dictionary"""
_layers = None
_medias = None
if self.layers is not None:
_layers = []
for _layer in self.layers:
_layers.append(_layer.to_dictionary())
if self.storage_medium is not None:
_medias = self.storage_medium.to_dictionary()
content = {
'Storage component':
{
'storage id': self.id,
'type of energy stored': self.type_energy_stored,
'model name': self.model_name,
'manufacturer': self.manufacturer,
'storage type': self.storage_type,
'nominal capacity [J]': self.nominal_capacity,
'losses-ratio [J/J]': self.losses_ratio,
'volume [m3]': self.volume,
'height [m]': self.height,
'layers': _layers,
'maximum operating temperature [Celsius]': self.maximum_operating_temperature,
'storage_medium': self.storage_medium.to_dictionary(),
'heating coil capacity [W]': self.heating_coil_capacity
}
}
return content

View File

@ -7,9 +7,6 @@ Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
class Content:
"""
Content class
"""
def __init__(self, vegetations, plants, soils):
self._vegetations = vegetations
self._plants = plants
@ -35,21 +32,3 @@ class Content:
All soils in the catalog
"""
return self._soils
def to_dictionary(self):
"""Class content to dictionary"""
_archetypes = []
for _archetype in self.vegetations:
_archetypes.append(_archetype.to_dictionary())
content = {'Archetypes': _archetypes}
return content
def __str__(self):
"""Print content"""
_archetypes = []
for _archetype in self.vegetations:
_archetypes.append(_archetype.to_dictionary())
content = {'Archetypes': _archetypes}
return str(content)

View File

@ -9,9 +9,6 @@ from hub.catalog_factories.data_models.greenery.soil import Soil as hub_soil
class Plant:
"""
Plant class
"""
def __init__(self, category, plant):
self._name = plant.name
self._category = category
@ -96,22 +93,3 @@ class Plant:
:return: [Soil]
"""
return self._grows_on
def to_dictionary(self):
"""Class content to dictionary"""
_soils = []
for _soil in self.grows_on:
_soils.append(_soil.to_dictionary())
content = {'Plant': {'name': self.name,
'category': self.category,
'height [m]': self.height,
'leaf area index': self.leaf_area_index,
'leaf reflectivity': self.leaf_reflectivity,
'leaf emissivity': self.leaf_emissivity,
'minimal stomatal resistance [s/m]': self.minimal_stomatal_resistance,
'co2 sequestration [kg????]': self.co2_sequestration,
'soils where it grows on': _soils
}
}
return content

View File

@ -5,13 +5,10 @@ Copyright © 2022 Concordia CERC group
Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
"""
from hub.catalog_factories.data_models.greenery.plant import Plant as HubPlant
from hub.catalog_factories.data_models.greenery.plant import Plant as hub_plant
class PlantPercentage(HubPlant):
"""
Plant percentage class
"""
class PlantPercentage(hub_plant):
def __init__(self, percentage, plant_category, plant):
super().__init__(plant_category, plant)
@ -24,23 +21,3 @@ class PlantPercentage(HubPlant):
:return: float
"""
return self._percentage
def to_dictionary(self):
"""Class content to dictionary"""
_soils = []
for _soil in self.grows_on:
_soils.append(_soil.to_dictionary())
content = {'Plant': {'name': self.name,
'percentage': self.percentage,
'category': self.category,
'height [m]': self.height,
'leaf area index': self.leaf_area_index,
'leaf reflectivity': self.leaf_reflectivity,
'leaf emissivity': self.leaf_emissivity,
'minimal stomatal resistance [s/m]': self.minimal_stomatal_resistance,
'co2 sequestration [kg????]': self.co2_sequestration,
'soils where it grows on': _soils
}
}
return content

View File

@ -7,9 +7,6 @@ Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
class Soil:
"""
Soil class
"""
def __init__(self, soil):
self._name = soil.name
self._roughness = soil.roughness
@ -110,20 +107,3 @@ class Soil:
:return: float
"""
return self._initial_volumetric_moisture_content
def to_dictionary(self):
"""Class content to dictionary"""
content = {'Soil': {'name': self.name,
# 'roughness': self.roughness, # todo: this line prints value=2????
'dry conductivity [W/m2K]': self.dry_conductivity,
'dry density [kg/m3]': self.dry_density,
'dry specific heat [J/kgK]': self.dry_specific_heat,
'thermal absorptance': self.thermal_absorptance,
'solar absorptance': self.solar_absorptance,
'visible absorptance': self.visible_absorptance,
'saturation volumetric moisture content [units??]': self.saturation_volumetric_moisture_content,
'residual volumetric moisture content [units??]': self.residual_volumetric_moisture_content
}
}
return content

View File

@ -9,9 +9,6 @@ from hub.catalog_factories.data_models.greenery.plant_percentage import PlantPer
class Vegetation:
"""
Vegetation class
"""
def __init__(self, category, vegetation, plant_percentages):
self._name = vegetation.name
self._category = category
@ -171,28 +168,3 @@ class Vegetation:
:return: float
"""
return self._soil_initial_volumetric_moisture_content
def to_dictionary(self):
"""Class content to dictionary"""
_plants = []
for _plant in self.plant_percentages:
_plants.append(_plant.to_dictionary())
content = {'Archetype': {'name': self.name,
'category': self.category,
'air gap thickness [m]': self.air_gap,
'soil thickness [m]': self.soil_thickness,
'soil name': self.soil_name,
# 'soil roughness': self.soil_roughness, # todo: this line prints value=2????
'dry soil conductivity [W/m2K]': self.dry_soil_conductivity,
'dry soil density [kg/m3]': self.dry_soil_density,
'dry soil specific heat [J/kgK]': self.dry_soil_specific_heat,
'soil thermal absorptance': self.soil_thermal_absorptance,
'soil solar absorptance': self.soil_solar_absorptance,
'soil visible absorptance': self.soil_visible_absorptance,
'soil saturation volumetric moisture content [units??]': self.soil_saturation_volumetric_moisture_content,
'soil residual volumetric moisture content [units??]': self.soil_residual_volumetric_moisture_content,
'plants': _plants
}
}
return content

View File

@ -24,7 +24,7 @@ class Appliances:
@property
def density(self) -> Union[None, float]:
"""
Get appliances density in W/m2
Get appliances density in Watts per m2
:return: None or float
"""
return self._density
@ -61,16 +61,3 @@ class Appliances:
:return: None or [Schedule]
"""
return self._schedules
def to_dictionary(self):
"""Class content to dictionary"""
_schedules = []
for _schedule in self.schedules:
_schedules.append(_schedule.to_dictionary())
content = {'Appliances': {'density [W/m2]': self.density,
'convective fraction': self.convective_fraction,
'radiative fraction': self.radiative_fraction,
'latent fraction': self.latent_fraction,
'schedules': _schedules}
}
return content

View File

@ -8,9 +8,6 @@ from hub.catalog_factories.data_models.usages.usage import Usage
class Content:
"""
Content class
"""
def __init__(self, usages):
self._usages = usages
@ -21,20 +18,3 @@ class Content:
"""
return self._usages
def to_dictionary(self):
"""Class content to dictionary"""
_usages = []
for _usage in self.usages:
_usages.append(_usage.to_dictionary())
content = {'Usages': _usages}
return content
def __str__(self):
"""Print content"""
_usages = []
for _usage in self.usages:
_usages.append(_usage.to_dictionary())
content = {'Usages': _usages}
return str(content)

View File

@ -52,15 +52,3 @@ class DomesticHotWater:
:return: None or [Schedule]
"""
return self._schedules
def to_dictionary(self):
"""Class content to dictionary"""
_schedules = []
for _schedule in self.schedules:
_schedules.append(_schedule.to_dictionary())
content = {'Domestic hot water': {'density [W/m2]': self.density,
'peak flow [m3/sm2]': self.peak_flow,
'service temperature [Celsius]': self.service_temperature,
'schedules': _schedules}
}
return content

View File

@ -0,0 +1,22 @@
"""
Usage catalog internal gain
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
"""
class InternalGain:
"""
InternalGain class
"""
def __init__(self, internal_gain_type, average_internal_gain, convective_fraction, radiative_fraction, latent_fraction, schedules):
self._type = internal_gain_type
self._average_internal_gain = average_internal_gain
self._convective_fraction = convective_fraction
self._radiative_fraction = radiative_fraction
self._latent_fraction = latent_fraction
self._schedules = schedules

View File

@ -11,9 +11,6 @@ from hub.catalog_factories.data_models.usages.schedule import Schedule
class Lighting:
"""
Lighting class
"""
def __init__(self, density, convective_fraction, radiative_fraction, latent_fraction, schedules):
self._density = density
self._convective_fraction = convective_fraction
@ -61,16 +58,3 @@ class Lighting:
:return: None or [Schedule]
"""
return self._schedules
def to_dictionary(self):
"""Class content to dictionary"""
_schedules = []
for _schedule in self.schedules:
_schedules.append(_schedule.to_dictionary())
content = {'Lighting': {'density [W/m2]': self.density,
'convective fraction': self.convective_fraction,
'radiative fraction': self.radiative_fraction,
'latent fraction': self.latent_fraction,
'schedules': _schedules}
}
return content

View File

@ -65,16 +65,3 @@ class Occupancy:
:return: None or [Schedule]
"""
return self._schedules
def to_dictionary(self):
"""Class content to dictionary"""
_schedules = []
for _schedule in self.schedules:
_schedules.append(_schedule.to_dictionary())
content = {'Occupancy': {'occupancy density [persons/m2]': self.occupancy_density,
'sensible convective internal gain [W/m2]': self.sensible_convective_internal_gain,
'sensible radiative internal gain [W/m2]': self.sensible_radiative_internal_gain,
'latent internal gain [W/m2]': self.latent_internal_gain,
'schedules': _schedules}
}
return content

View File

@ -73,14 +73,3 @@ class Schedule:
:return: None or [str]
"""
return self._day_types
def to_dictionary(self):
"""Class content to dictionary"""
content = {'Schedule': {'type': self.type,
'time range': self.time_range,
'time step': self.time_step,
'data type': self.data_type,
'day types': self.day_types,
'values': self.values}
}
return content

View File

@ -76,23 +76,3 @@ class ThermalControl:
:return: None or [Schedule]
"""
return self._cooling_set_point_schedules
def to_dictionary(self):
"""Class content to dictionary"""
_hvac_schedules = []
for _schedule in self.hvac_availability_schedules:
_hvac_schedules.append(_schedule.to_dictionary())
_heating_set_point_schedules = []
for _schedule in self.heating_set_point_schedules:
_heating_set_point_schedules.append(_schedule.to_dictionary())
_cooling_set_point_schedules = []
for _schedule in self.cooling_set_point_schedules:
_cooling_set_point_schedules.append(_schedule.to_dictionary())
content = {'Thermal control': {'mean heating set point [Celsius]': self.mean_heating_set_point,
'heating set back [Celsius]': self.heating_set_back,
'mean cooling set point [Celsius]': self.mean_cooling_set_point,
'hvac availability schedules': _hvac_schedules,
'heating set point schedules': _heating_set_point_schedules,
'cooling set point schedules': _cooling_set_point_schedules}
}
return content

View File

@ -8,15 +8,12 @@ from typing import Union
from hub.catalog_factories.data_models.usages.appliances import Appliances
from hub.catalog_factories.data_models.usages.lighting import Lighting
from hub.catalog_factories.data_models.usages.occupancy import Occupancy
from hub.catalog_factories.data_models.usages.ocupancy import Occupancy
from hub.catalog_factories.data_models.usages.thermal_control import ThermalControl
from hub.catalog_factories.data_models.usages.domestic_hot_water import DomesticHotWater
class Usage:
"""
Usage class
"""
def __init__(self, name,
hours_day,
days_year,
@ -65,7 +62,7 @@ class Usage:
@property
def mechanical_air_change(self) -> Union[None, float]:
"""
Get usage zone mechanical air change in air change per second (1/s)
Get usage zone mechanical air change in air change per hour (ACH)
:return: None or float
"""
return self._mechanical_air_change
@ -125,19 +122,3 @@ class Usage:
:return: None or DomesticHotWater
"""
return self._domestic_hot_water
def to_dictionary(self):
"""Class content to dictionary"""
content = {'Usage': {'name': self.name,
'hours a day': self.hours_day,
'days a year': self.days_year,
'mechanical air change [ACH]': self.mechanical_air_change,
'ventilation rate [m3/sm2]': self.ventilation_rate,
'occupancy': self.occupancy.to_dictionary(),
'lighting': self.lighting.to_dictionary(),
'appliances': self.appliances.to_dictionary(),
'thermal control': self.thermal_control.to_dictionary(),
'domestic hot water': self.domestic_hot_water.to_dictionary()
}
}
return content

View File

@ -1,55 +1,51 @@
"""
Montreal custom energy systems catalog module
Montreal custom energy systems catalog
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
"""
from ast import literal_eval
import xmltodict
from hub.catalog_factories.catalog import Catalog
from hub.catalog_factories.data_models.energy_systems.system import System
from hub.catalog_factories.data_models.energy_systems.content import Content
from hub.catalog_factories.data_models.energy_systems.non_pv_generation_system import NonPvGenerationSystem
from hub.catalog_factories.data_models.energy_systems.pv_generation_system import PvGenerationSystem
from hub.catalog_factories.data_models.energy_systems.generation_system import GenerationSystem
from hub.catalog_factories.data_models.energy_systems.distribution_system import DistributionSystem
from hub.catalog_factories.data_models.energy_systems.emission_system import EmissionSystem
from hub.catalog_factories.data_models.energy_systems.archetype import Archetype
from hub.catalog_factories.data_models.energy_systems.thermal_storage_system import ThermalStorageSystem
from hub.catalog_factories.data_models.energy_systems.electrical_storage_system import ElectricalStorageSystem
class MontrealCustomCatalog(Catalog):
"""
Montreal custom energy systems catalog class
"""
def __init__(self, path):
path = str(path / 'montreal_custom_systems.xml')
with open(path, 'r', encoding='utf-8') as xml:
with open(path) as xml:
self._archetypes = xmltodict.parse(xml.read(), force_list=('system', 'system_cluster', 'equipment',
'demand', 'system_id'))
self._lod = float(self._archetypes['catalog']['@lod'])
self._catalog_generation_equipments = self._load_generation_equipments()
self._catalog_emission_equipments = self._load_emission_equipments()
self._catalog_distribution_equipments = self._load_distribution_equipments()
self._catalog_emission_equipments = self._load_emission_equipments()
self._catalog_systems = self._load_systems()
self._catalog_archetypes = self._load_archetypes()
# store the full catalog data model in self._content
self._content = Content(self._catalog_archetypes,
self._catalog_systems,
self._catalog_generation_equipments,
self._catalog_distribution_equipments)
self._catalog_distribution_equipments,
self._catalog_emission_equipments)
def _load_generation_equipments(self):
_equipments = []
_storages = []
equipments = self._archetypes['catalog']['generation_equipments']['equipment']
for equipment in equipments:
equipment_id = float(equipment['@id'])
equipment_type = equipment['@type']
fuel_type = equipment['@fuel_type']
model_name = equipment['name']
name = equipment['name']
heating_efficiency = None
if 'heating_efficiency' in equipment:
heating_efficiency = float(equipment['heating_efficiency'])
@ -59,38 +55,21 @@ class MontrealCustomCatalog(Catalog):
electricity_efficiency = None
if 'electrical_efficiency' in equipment:
electricity_efficiency = float(equipment['electrical_efficiency'])
storage = eval(equipment['storage'].capitalize())
generation_system = GenerationSystem(equipment_id,
name,
equipment_type,
fuel_type,
None,
heating_efficiency,
cooling_efficiency,
electricity_efficiency,
None,
None,
storage,
None)
storage_systems = None
storage = literal_eval(equipment['storage'].capitalize())
if storage:
if equipment_type == 'electricity generator':
storage_system = ElectricalStorageSystem(equipment_id)
else:
storage_system = ThermalStorageSystem(equipment_id)
storage_systems = [storage_system]
if model_name == 'PV system':
system_type = 'Photovoltaic'
generation_system = PvGenerationSystem(equipment_id,
name=None,
system_type= system_type,
model_name=model_name,
electricity_efficiency=electricity_efficiency,
energy_storage_systems=storage_systems
)
else:
generation_system = NonPvGenerationSystem(equipment_id,
name=None,
model_name=model_name,
system_type=equipment_type,
fuel_type=fuel_type,
heat_efficiency=heating_efficiency,
cooling_efficiency=cooling_efficiency,
electricity_efficiency=electricity_efficiency,
energy_storage_systems=storage_systems,
domestic_hot_water=False
)
_equipments.append(generation_system)
return _equipments
def _load_distribution_equipments(self):
@ -99,7 +78,7 @@ class MontrealCustomCatalog(Catalog):
for equipment in equipments:
equipment_id = float(equipment['@id'])
equipment_type = equipment['@type']
model_name = equipment['name']
name = equipment['name']
distribution_heat_losses = None
if 'distribution_heat_losses' in equipment:
distribution_heat_losses = float(equipment['distribution_heat_losses']['#text']) / 100
@ -108,22 +87,15 @@ class MontrealCustomCatalog(Catalog):
distribution_consumption_fix_flow = float(equipment['distribution_consumption_fix_flow']['#text']) / 100
distribution_consumption_variable_flow = None
if 'distribution_consumption_variable_flow' in equipment:
distribution_consumption_variable_flow = float(
equipment['distribution_consumption_variable_flow']['#text']) / 100
emission_equipment = equipment['dissipation_id']
_emission_equipments = None
for equipment_archetype in self._catalog_emission_equipments:
if int(equipment_archetype.id) == int(emission_equipment):
_emission_equipments = [equipment_archetype]
distribution_consumption_variable_flow = float(equipment['distribution_consumption_variable_flow']['#text']) / 100
distribution_system = DistributionSystem(equipment_id,
model_name=model_name,
system_type=equipment_type,
distribution_consumption_fix_flow=distribution_consumption_fix_flow,
distribution_consumption_variable_flow=distribution_consumption_variable_flow,
heat_losses=distribution_heat_losses,
emission_systems=_emission_equipments)
name,
equipment_type,
None,
distribution_consumption_fix_flow,
distribution_consumption_variable_flow,
distribution_heat_losses)
_equipments.append(distribution_system)
return _equipments
@ -134,15 +106,15 @@ class MontrealCustomCatalog(Catalog):
for equipment in equipments:
equipment_id = float(equipment['@id'])
equipment_type = equipment['@type']
model_name = equipment['name']
parasitic_consumption = 0
name = equipment['name']
parasitic_consumption = None
if 'parasitic_consumption' in equipment:
parasitic_consumption = float(equipment['parasitic_consumption']['#text']) / 100
emission_system = EmissionSystem(equipment_id,
model_name=model_name,
system_type=equipment_type,
parasitic_energy_consumption=parasitic_consumption)
name,
equipment_type,
parasitic_consumption)
_equipments.append(emission_system)
return _equipments
@ -155,21 +127,28 @@ class MontrealCustomCatalog(Catalog):
name = system['name']
demands = system['demands']['demand']
generation_equipment = system['equipments']['generation_id']
_generation_equipments = None
_generation_equipment = None
for equipment_archetype in self._catalog_generation_equipments:
if int(equipment_archetype.id) == int(generation_equipment):
_generation_equipments = [equipment_archetype]
_generation_equipment = equipment_archetype
distribution_equipment = system['equipments']['distribution_id']
_distribution_equipments = None
_distribution_equipment = None
for equipment_archetype in self._catalog_distribution_equipments:
if int(equipment_archetype.id) == int(distribution_equipment):
_distribution_equipments = [equipment_archetype]
_distribution_equipment = equipment_archetype
emission_equipment = system['equipments']['dissipation_id']
_emission_equipment = None
for equipment_archetype in self._catalog_emission_equipments:
if int(equipment_archetype.id) == int(emission_equipment):
_emission_equipment = equipment_archetype
_catalog_systems.append(System(system_id,
_catalog_systems.append(System(self._lod,
system_id,
name,
demands,
name=name,
generation_systems=_generation_equipments,
distribution_systems=_distribution_equipments))
_generation_equipment,
_distribution_equipment,
_emission_equipment))
return _catalog_systems
def _load_archetypes(self):
@ -183,7 +162,7 @@ class MontrealCustomCatalog(Catalog):
for system_archetype in self._catalog_systems:
if int(system_archetype.id) == int(system):
_systems.append(system_archetype)
_catalog_archetypes.append(Archetype(name, _systems))
_catalog_archetypes.append(Archetype(self._lod, name, _systems))
return _catalog_archetypes
def names(self, category=None):
@ -193,15 +172,17 @@ class MontrealCustomCatalog(Catalog):
"""
if category is None:
_names = {'archetypes': [], 'systems': [], 'generation_equipments': [], 'distribution_equipments': [],
'emission_equipments': []}
'emission_equipments':[]}
for archetype in self._content.archetypes:
_names['archetypes'].append(archetype.name)
for system in self._content.systems:
_names['systems'].append(system.name)
for equipment in self._content.generation_equipments:
_names['generation_equipments'].append(equipment.model_name)
_names['generation_equipments'].append(equipment.name)
for equipment in self._content.distribution_equipments:
_names['distribution_equipments'].append(equipment.model_name)
_names['distribution_equipments'].append(equipment.name)
for equipment in self._content.emission_equipments:
_names['emission_equipments'].append(equipment.name)
else:
_names = {category: []}
if category.lower() == 'archetypes':
@ -212,10 +193,13 @@ class MontrealCustomCatalog(Catalog):
_names[category].append(system.name)
elif category.lower() == 'generation_equipments':
for system in self._content.generation_equipments:
_names[category].append(system.model_name)
_names[category].append(system.name)
elif category.lower() == 'distribution_equipments':
for system in self._content.distribution_equipments:
_names[category].append(system.model_name)
_names[category].append(system.name)
elif category.lower() == 'emission_equipments':
for system in self._content.emission_equipments:
_names[category].append(system.name)
else:
raise ValueError(f'Unknown category [{category}]')
return _names
@ -227,14 +211,19 @@ class MontrealCustomCatalog(Catalog):
"""
if category is None:
return self._content
if category.lower() == 'archetypes':
return self._content.archetypes
if category.lower() == 'systems':
return self._content.systems
if category.lower() == 'generation_equipments':
return self._content.generation_equipments
if category.lower() == 'distribution_equipments':
return self._content.distribution_equipments
else:
if category.lower() == 'archetypes':
return self._content.archetypes
elif category.lower() == 'systems':
return self._content.systems
elif category.lower() == 'generation_equipments':
return self._content.generation_equipments
elif category.lower() == 'distribution_equipments':
return self._content.distribution_equipments
elif category.lower() == 'emission_equipments':
return self._content.emission_equipments
else:
raise ValueError(f'Unknown category [{category}]')
def get_entry(self, name):
"""
@ -248,9 +237,12 @@ class MontrealCustomCatalog(Catalog):
if entry.name.lower() == name.lower():
return entry
for entry in self._content.generation_equipments:
if entry.model_name.lower() == name.lower():
if entry.name.lower() == name.lower():
return entry
for entry in self._content.distribution_equipments:
if entry.model_name.lower() == name.lower():
if entry.name.lower() == name.lower():
return entry
for entry in self._content.emission_equipments:
if entry.name.lower() == name.lower():
return entry
raise IndexError(f"{name} doesn't exists in the catalog")

View File

@ -1,559 +0,0 @@
"""
Montreal future energy system catalog
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Saeed Ranjbar saeed.ranjbar@concordia.ca
"""
import xmltodict
from pathlib import Path
from hub.catalog_factories.catalog import Catalog
from hub.catalog_factories.data_models.energy_systems.distribution_system import DistributionSystem
from hub.catalog_factories.data_models.energy_systems.emission_system import EmissionSystem
from hub.catalog_factories.data_models.energy_systems.system import System
from hub.catalog_factories.data_models.energy_systems.content import Content
from hub.catalog_factories.data_models.energy_systems.non_pv_generation_system import NonPvGenerationSystem
from hub.catalog_factories.data_models.energy_systems.pv_generation_system import PvGenerationSystem
from hub.catalog_factories.data_models.energy_systems.thermal_storage_system import ThermalStorageSystem
from hub.catalog_factories.data_models.energy_systems.performance_curves import PerformanceCurves
from hub.catalog_factories.data_models.energy_systems.archetype import Archetype
from hub.catalog_factories.data_models.construction.material import Material
from hub.catalog_factories.data_models.construction.layer import Layer
class MontrealFutureSystemCatalogue(Catalog):
"""
North america energy system catalog class
"""
def __init__(self, path):
path = str(path / 'montreal_future_systems.xml')
with open(path, 'r', encoding='utf-8') as xml:
self._archetypes = xmltodict.parse(xml.read(),
force_list=['pv_generation_component', 'templateStorages', 'demand'])
self._storage_components = self._load_storage_components()
self._generation_components = self._load_generation_components()
self._energy_emission_components = self._load_emission_equipments()
self._distribution_components = self._load_distribution_equipments()
self._systems = self._load_systems()
self._system_archetypes = self._load_archetypes()
self._content = Content(self._system_archetypes,
self._systems,
generations=self._generation_components,
distributions=self._distribution_components)
def _load_generation_components(self):
generation_components = []
non_pv_generation_components = self._archetypes['EnergySystemCatalog']['energy_generation_components'][
'non_pv_generation_component']
if non_pv_generation_components is not None:
for non_pv in non_pv_generation_components:
system_id = non_pv['system_id']
name = non_pv['name']
system_type = non_pv['system_type']
model_name = non_pv['model_name']
manufacturer = non_pv['manufacturer']
fuel_type = non_pv['fuel_type']
distribution_systems = non_pv['distribution_systems']
energy_storage_systems = None
if non_pv['energy_storage_systems'] is not None:
storage_component = non_pv['energy_storage_systems']['storage_id']
storage_systems = self._search_storage_equipment(self._load_storage_components(), storage_component)
energy_storage_systems = storage_systems
nominal_heat_output = non_pv['nominal_heat_output']
maximum_heat_output = non_pv['maximum_heat_output']
minimum_heat_output = non_pv['minimum_heat_output']
source_medium = non_pv['source_medium']
supply_medium = non_pv['supply_medium']
heat_efficiency = non_pv['heat_efficiency']
nominal_cooling_output = non_pv['nominal_cooling_output']
maximum_cooling_output = non_pv['maximum_cooling_output']
minimum_cooling_output = non_pv['minimum_cooling_output']
cooling_efficiency = non_pv['cooling_efficiency']
electricity_efficiency = non_pv['electricity_efficiency']
source_temperature = non_pv['source_temperature']
source_mass_flow = non_pv['source_mass_flow']
nominal_electricity_output = non_pv['nominal_electricity_output']
maximum_heat_supply_temperature = non_pv['maximum_heat_supply_temperature']
minimum_heat_supply_temperature = non_pv['minimum_heat_supply_temperature']
maximum_cooling_supply_temperature = non_pv['maximum_cooling_supply_temperature']
minimum_cooling_supply_temperature = non_pv['minimum_cooling_supply_temperature']
heat_output_curve = None
heat_fuel_consumption_curve = None
heat_efficiency_curve = None
cooling_output_curve = None
cooling_fuel_consumption_curve = None
cooling_efficiency_curve = None
if non_pv['heat_output_curve'] is not None:
curve_type = non_pv['heat_output_curve']['curve_type']
dependant_variable = non_pv['heat_output_curve']['dependant_variable']
parameters = non_pv['heat_output_curve']['parameters']
coefficients = list(non_pv['heat_output_curve']['coefficients'].values())
heat_output_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
if non_pv['heat_fuel_consumption_curve'] is not None:
curve_type = non_pv['heat_fuel_consumption_curve']['curve_type']
dependant_variable = non_pv['heat_fuel_consumption_curve']['dependant_variable']
parameters = non_pv['heat_fuel_consumption_curve']['parameters']
coefficients = list(non_pv['heat_fuel_consumption_curve']['coefficients'].values())
heat_fuel_consumption_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
if non_pv['heat_efficiency_curve'] is not None:
curve_type = non_pv['heat_efficiency_curve']['curve_type']
dependant_variable = non_pv['heat_efficiency_curve']['dependant_variable']
parameters = non_pv['heat_efficiency_curve']['parameters']
coefficients = list(non_pv['heat_efficiency_curve']['coefficients'].values())
heat_efficiency_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
if non_pv['cooling_output_curve'] is not None:
curve_type = non_pv['cooling_output_curve']['curve_type']
dependant_variable = non_pv['cooling_output_curve']['dependant_variable']
parameters = non_pv['cooling_output_curve']['parameters']
coefficients = list(non_pv['cooling_output_curve']['coefficients'].values())
cooling_output_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
if non_pv['cooling_fuel_consumption_curve'] is not None:
curve_type = non_pv['cooling_fuel_consumption_curve']['curve_type']
dependant_variable = non_pv['cooling_fuel_consumption_curve']['dependant_variable']
parameters = non_pv['cooling_fuel_consumption_curve']['parameters']
coefficients = list(non_pv['cooling_fuel_consumption_curve']['coefficients'].values())
cooling_fuel_consumption_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
if non_pv['cooling_efficiency_curve'] is not None:
curve_type = non_pv['cooling_efficiency_curve']['curve_type']
dependant_variable = non_pv['cooling_efficiency_curve']['dependant_variable']
parameters = non_pv['cooling_efficiency_curve']['parameters']
coefficients = list(non_pv['cooling_efficiency_curve']['coefficients'].values())
cooling_efficiency_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
dhw = None
if non_pv['domestic_hot_water'] is not None:
if non_pv['domestic_hot_water'] == 'True':
dhw = True
else:
dhw = False
reversible = None
if non_pv['reversible'] is not None:
if non_pv['reversible'] == 'True':
reversible = True
else:
reversible = False
dual_supply = None
if non_pv['simultaneous_heat_cold'] is not None:
if non_pv['simultaneous_heat_cold'] == 'True':
dual_supply = True
else:
dual_supply = False
non_pv_component = NonPvGenerationSystem(system_id=system_id,
name=name,
system_type=system_type,
model_name=model_name,
manufacturer=manufacturer,
fuel_type=fuel_type,
nominal_heat_output=nominal_heat_output,
maximum_heat_output=maximum_heat_output,
minimum_heat_output=minimum_heat_output,
source_medium=source_medium,
supply_medium=supply_medium,
heat_efficiency=heat_efficiency,
nominal_cooling_output=nominal_cooling_output,
maximum_cooling_output=maximum_cooling_output,
minimum_cooling_output=minimum_cooling_output,
cooling_efficiency=cooling_efficiency,
electricity_efficiency=electricity_efficiency,
source_temperature=source_temperature,
source_mass_flow=source_mass_flow,
nominal_electricity_output=nominal_electricity_output,
maximum_heat_supply_temperature=maximum_heat_supply_temperature,
minimum_heat_supply_temperature=minimum_heat_supply_temperature,
maximum_cooling_supply_temperature=maximum_cooling_supply_temperature,
minimum_cooling_supply_temperature=minimum_cooling_supply_temperature,
heat_output_curve=heat_output_curve,
heat_fuel_consumption_curve=heat_fuel_consumption_curve,
heat_efficiency_curve=heat_efficiency_curve,
cooling_output_curve=cooling_output_curve,
cooling_fuel_consumption_curve=cooling_fuel_consumption_curve,
cooling_efficiency_curve=cooling_efficiency_curve,
distribution_systems=distribution_systems,
energy_storage_systems=energy_storage_systems,
domestic_hot_water=dhw,
reversible=reversible,
simultaneous_heat_cold=dual_supply)
generation_components.append(non_pv_component)
pv_generation_components = self._archetypes['EnergySystemCatalog']['energy_generation_components'][
'pv_generation_component']
if pv_generation_components is not None:
for pv in pv_generation_components:
system_id = pv['system_id']
name = pv['name']
system_type = pv['system_type']
model_name = pv['model_name']
manufacturer = pv['manufacturer']
electricity_efficiency = pv['electricity_efficiency']
nominal_electricity_output = pv['nominal_electricity_output']
nominal_ambient_temperature = pv['nominal_ambient_temperature']
nominal_cell_temperature = pv['nominal_cell_temperature']
nominal_radiation = pv['nominal_radiation']
standard_test_condition_cell_temperature = pv['standard_test_condition_cell_temperature']
standard_test_condition_maximum_power = pv['standard_test_condition_maximum_power']
standard_test_condition_radiation = pv['standard_test_condition_radiation']
cell_temperature_coefficient = pv['cell_temperature_coefficient']
width = pv['width']
height = pv['height']
distribution_systems = pv['distribution_systems']
energy_storage_systems = None
if pv['energy_storage_systems'] is not None:
storage_component = pv['energy_storage_systems']['storage_id']
storage_systems = self._search_storage_equipment(self._load_storage_components(), storage_component)
energy_storage_systems = storage_systems
pv_component = PvGenerationSystem(system_id=system_id,
name=name,
system_type=system_type,
model_name=model_name,
manufacturer=manufacturer,
electricity_efficiency=electricity_efficiency,
nominal_electricity_output=nominal_electricity_output,
nominal_ambient_temperature=nominal_ambient_temperature,
nominal_cell_temperature=nominal_cell_temperature,
nominal_radiation=nominal_radiation,
standard_test_condition_cell_temperature=
standard_test_condition_cell_temperature,
standard_test_condition_maximum_power=standard_test_condition_maximum_power,
standard_test_condition_radiation=standard_test_condition_radiation,
cell_temperature_coefficient=cell_temperature_coefficient,
width=width,
height=height,
distribution_systems=distribution_systems,
energy_storage_systems=energy_storage_systems)
generation_components.append(pv_component)
return generation_components
def _load_distribution_equipments(self):
_equipments = []
distribution_systems = self._archetypes['EnergySystemCatalog']['distribution_systems']['distribution_system']
if distribution_systems is not None:
for distribution_system in distribution_systems:
system_id = None
model_name = None
system_type = None
supply_temperature = None
distribution_consumption_fix_flow = None
distribution_consumption_variable_flow = None
heat_losses = None
generation_systems = None
energy_storage_systems = None
emission_systems = None
distribution_equipment = DistributionSystem(system_id=system_id,
model_name=model_name,
system_type=system_type,
supply_temperature=supply_temperature,
distribution_consumption_fix_flow=distribution_consumption_fix_flow,
distribution_consumption_variable_flow=
distribution_consumption_variable_flow,
heat_losses=heat_losses,
generation_systems=generation_systems,
energy_storage_systems=energy_storage_systems,
emission_systems=emission_systems
)
_equipments.append(distribution_equipment)
return _equipments
def _load_emission_equipments(self):
_equipments = []
dissipation_systems = self._archetypes['EnergySystemCatalog']['dissipation_systems']['dissipation_system']
if dissipation_systems is not None:
for dissipation_system in dissipation_systems:
system_id = None
model_name = None
system_type = None
parasitic_energy_consumption = 0
emission_system = EmissionSystem(system_id=system_id,
model_name=model_name,
system_type=system_type,
parasitic_energy_consumption=parasitic_energy_consumption)
_equipments.append(emission_system)
return _equipments
def _load_storage_components(self):
storage_components = []
thermal_storages = self._archetypes['EnergySystemCatalog']['energy_storage_components']['thermalStorages']
template_storages = self._archetypes['EnergySystemCatalog']['energy_storage_components']['templateStorages']
for tes in thermal_storages:
storage_id = tes['storage_id']
type_energy_stored = tes['type_energy_stored']
model_name = tes['model_name']
manufacturer = tes['manufacturer']
storage_type = tes['storage_type']
volume = tes['physical_characteristics']['volume']
height = tes['physical_characteristics']['height']
maximum_operating_temperature = tes['maximum_operating_temperature']
materials = self._load_materials()
insulation_material_id = tes['insulation']['material_id']
insulation_material = self._search_material(materials, insulation_material_id)
material_id = tes['physical_characteristics']['material_id']
tank_material = self._search_material(materials, material_id)
thickness = float(tes['insulation']['insulationThickness']) / 100 # from cm to m
insulation_layer = Layer(None, 'insulation', insulation_material, thickness)
thickness = float(tes['physical_characteristics']['tankThickness']) / 100 # from cm to m
tank_layer = Layer(None, 'tank', tank_material, thickness)
media = self._load_media()
media_id = tes['storage_medium']['medium_id']
medium = self._search_media(media, media_id)
layers = [insulation_layer, tank_layer]
nominal_capacity = tes['nominal_capacity']
losses_ratio = tes['losses_ratio']
heating_coil_capacity = tes['heating_coil_capacity']
storage_component = ThermalStorageSystem(storage_id=storage_id,
model_name=model_name,
type_energy_stored=type_energy_stored,
manufacturer=manufacturer,
storage_type=storage_type,
nominal_capacity=nominal_capacity,
losses_ratio=losses_ratio,
volume=volume,
height=height,
layers=layers,
maximum_operating_temperature=maximum_operating_temperature,
storage_medium=medium,
heating_coil_capacity=heating_coil_capacity)
storage_components.append(storage_component)
for template in template_storages:
storage_id = template['storage_id']
storage_type = template['storage_type']
type_energy_stored = template['type_energy_stored']
maximum_operating_temperature = template['maximum_operating_temperature']
height = float(template['physical_characteristics']['height'])
materials = self._load_materials()
insulation_material_id = template['insulation']['material_id']
insulation_material = self._search_material(materials, insulation_material_id)
material_id = template['physical_characteristics']['material_id']
tank_material = self._search_material(materials, material_id)
thickness = float(template['insulation']['insulationThickness']) / 100 # from cm to m
insulation_layer = Layer(None, 'insulation', insulation_material, thickness)
thickness = float(template['physical_characteristics']['tankThickness']) / 100 # from cm to m
tank_layer = Layer(None, 'tank', tank_material, thickness)
layers = [insulation_layer, tank_layer]
media = self._load_media()
media_id = template['storage_medium']['medium_id']
medium = self._search_media(media, media_id)
model_name = template['model_name']
manufacturer = template['manufacturer']
nominal_capacity = template['nominal_capacity']
losses_ratio = template['losses_ratio']
volume = template['physical_characteristics']['volume']
heating_coil_capacity = template['heating_coil_capacity']
storage_component = ThermalStorageSystem(storage_id=storage_id,
model_name=model_name,
type_energy_stored=type_energy_stored,
manufacturer=manufacturer,
storage_type=storage_type,
nominal_capacity=nominal_capacity,
losses_ratio=losses_ratio,
volume=volume,
height=height,
layers=layers,
maximum_operating_temperature=maximum_operating_temperature,
storage_medium=medium,
heating_coil_capacity=heating_coil_capacity)
storage_components.append(storage_component)
return storage_components
def _load_systems(self):
base_path = Path(Path(__file__).parent.parent.parent / 'data/energy_systems')
_catalog_systems = []
systems = self._archetypes['EnergySystemCatalog']['systems']['system']
for system in systems:
system_id = system['id']
name = system['name']
demands = system['demands']['demand']
generation_components = system['components']['generation_id']
generation_systems = self._search_generation_equipment(self._load_generation_components(), generation_components)
configuration_schema = Path(base_path / system['schema'])
energy_system = System(system_id=system_id,
name=name,
demand_types=demands,
generation_systems=generation_systems,
distribution_systems=None,
configuration_schema=configuration_schema)
_catalog_systems.append(energy_system)
return _catalog_systems
def _load_archetypes(self):
_system_archetypes = []
system_clusters = self._archetypes['EnergySystemCatalog']['system_archetypes']['system_archetype']
for system_cluster in system_clusters:
name = system_cluster['name']
systems = system_cluster['systems']['system_id']
integer_system_ids = [int(item) for item in systems]
_systems = []
for system_archetype in self._systems:
if int(system_archetype.id) in integer_system_ids:
_systems.append(system_archetype)
_system_archetypes.append(Archetype(name=name, systems=_systems))
return _system_archetypes
def _load_materials(self):
materials = []
_materials = self._archetypes['EnergySystemCatalog']['materials']['material']
for _material in _materials:
material_id = _material['material_id']
name = _material['name']
conductivity = _material['conductivity']
solar_absorptance = _material['solar_absorptance']
thermal_absorptance = _material['thermal_absorptance']
density = _material['density']
specific_heat = _material['specific_heat']
no_mass = _material['no_mass']
visible_absorptance = _material['visible_absorptance']
thermal_resistance = _material['thermal_resistance']
material = Material(material_id,
name,
solar_absorptance=solar_absorptance,
thermal_absorptance=thermal_absorptance,
density=density,
conductivity=conductivity,
thermal_resistance=thermal_resistance,
visible_absorptance=visible_absorptance,
no_mass=no_mass,
specific_heat=specific_heat)
materials.append(material)
return materials
@staticmethod
def _search_material(materials, material_id):
_material = None
for material in materials:
if int(material.id) == int(material_id):
_material = material
break
if _material is None:
raise ValueError(f'Material with the id = [{material_id}] not found in catalog ')
return _material
def _load_media(self):
media = []
_media = [self._archetypes['EnergySystemCatalog']['media']['medium']]
for _medium in _media:
medium_id = _medium['medium_id']
density = _medium['density']
name = _medium['name']
conductivity = _medium['conductivity']
solar_absorptance = _medium['solar_absorptance']
thermal_absorptance = _medium['thermal_absorptance']
specific_heat = _medium['specific_heat']
no_mass = _medium['no_mass']
visible_absorptance = _medium['visible_absorptance']
thermal_resistance = _medium['thermal_resistance']
medium = Material(material_id=medium_id,
name=name,
solar_absorptance=solar_absorptance,
thermal_absorptance=thermal_absorptance,
visible_absorptance=visible_absorptance,
no_mass=no_mass,
thermal_resistance=thermal_resistance,
conductivity=conductivity,
density=density,
specific_heat=specific_heat)
media.append(medium)
return media
@staticmethod
def _search_media(media, medium_id):
_medium = None
for medium in media:
if int(medium.id) == int(medium_id):
_medium = medium
break
if _medium is None:
raise ValueError(f'media with the id = [{medium_id}] not found in catalog ')
return _medium
@staticmethod
def _search_generation_equipment(generation_systems, generation_id):
_generation_systems = []
if isinstance(generation_id, list):
integer_ids = [int(item) for item in generation_id]
for generation in generation_systems:
if int(generation.id) in integer_ids:
_generation_systems.append(generation)
else:
integer_id = int(generation_id)
for generation in generation_systems:
if int(generation.id) == integer_id:
_generation_systems.append(generation)
if len(_generation_systems) == 0:
_generation_systems = None
raise ValueError(f'The system with the following id is not found in catalog [{generation_id}]')
return _generation_systems
@staticmethod
def _search_storage_equipment(storage_systems, storage_id):
_storage_systems = []
for storage in storage_systems:
if storage.id in storage_id:
_storage_systems.append(storage)
if len(_storage_systems) == 0:
_storage_systems = None
raise ValueError(f'The system with the following id is not found in catalog [{storage_id}]')
return _storage_systems
def names(self, category=None):
"""
Get the catalog elements names
:parm: optional category filter
"""
if category is None:
_names = {'archetypes': [], 'systems': [], 'generation_equipments': [], 'storage_equipments': []}
for archetype in self._content.archetypes:
_names['archetypes'].append(archetype.name)
for system in self._content.systems:
_names['systems'].append(system.name)
for equipment in self._content.generation_equipments:
_names['generation_equipments'].append(equipment.name)
else:
_names = {category: []}
if category.lower() == 'archetypes':
for archetype in self._content.archetypes:
_names[category].append(archetype.name)
elif category.lower() == 'systems':
for system in self._content.systems:
_names[category].append(system.name)
elif category.lower() == 'generation_equipments':
for system in self._content.generation_equipments:
_names[category].append(system.name)
else:
raise ValueError(f'Unknown category [{category}]')
return _names
def entries(self, category=None):
"""
Get the catalog elements
:parm: optional category filter
"""
if category is None:
return self._content
if category.lower() == 'archetypes':
return self._content.archetypes
if category.lower() == 'systems':
return self._content.systems
if category.lower() == 'generation_equipments':
return self._content.generation_equipments
raise ValueError(f'Unknown category [{category}]')
def get_entry(self, name):
"""
Get one catalog element by names
:parm: entry name
"""
for entry in self._content.archetypes:
if entry.name.lower() == name.lower():
return entry
for entry in self._content.systems:
if entry.name.lower() == name.lower():
return entry
for entry in self._content.generation_equipments:
if entry.name.lower() == name.lower():
return entry
raise IndexError(f"{name} doesn't exists in the catalog")

View File

@ -1,520 +0,0 @@
"""
Palma energy system catalog
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Saeed Ranjbar saeed.ranjbar@concordia.ca
"""
import xmltodict
from pathlib import Path
from hub.catalog_factories.catalog import Catalog
from hub.catalog_factories.data_models.energy_systems.distribution_system import DistributionSystem
from hub.catalog_factories.data_models.energy_systems.emission_system import EmissionSystem
from hub.catalog_factories.data_models.energy_systems.system import System
from hub.catalog_factories.data_models.energy_systems.content import Content
from hub.catalog_factories.data_models.energy_systems.non_pv_generation_system import NonPvGenerationSystem
from hub.catalog_factories.data_models.energy_systems.pv_generation_system import PvGenerationSystem
from hub.catalog_factories.data_models.energy_systems.thermal_storage_system import ThermalStorageSystem
from hub.catalog_factories.data_models.energy_systems.performance_curves import PerformanceCurves
from hub.catalog_factories.data_models.energy_systems.archetype import Archetype
from hub.catalog_factories.data_models.construction.material import Material
from hub.catalog_factories.data_models.construction.layer import Layer
class PalmaSystemCatalogue(Catalog):
"""
North america energy system catalog class
"""
def __init__(self, path):
path = str(path / 'palma_systems.xml')
with open(path, 'r', encoding='utf-8') as xml:
self._archetypes = xmltodict.parse(xml.read(),
force_list=['pv_generation_component', 'demand'])
self._storage_components = self._load_storage_components()
self._generation_components = self._load_generation_components()
self._energy_emission_components = self._load_emission_equipments()
self._distribution_components = self._load_distribution_equipments()
self._systems = self._load_systems()
self._system_archetypes = self._load_archetypes()
self._content = Content(self._system_archetypes,
self._systems,
generations=self._generation_components,
distributions=self._distribution_components)
def _load_generation_components(self):
generation_components = []
non_pv_generation_components = self._archetypes['EnergySystemCatalog']['energy_generation_components'][
'non_pv_generation_component']
if non_pv_generation_components is not None:
for non_pv in non_pv_generation_components:
system_id = non_pv['system_id']
name = non_pv['name']
system_type = non_pv['system_type']
model_name = non_pv['model_name']
manufacturer = non_pv['manufacturer']
fuel_type = non_pv['fuel_type']
distribution_systems = non_pv['distribution_systems']
energy_storage_systems = None
if non_pv['energy_storage_systems'] is not None:
storage_component = non_pv['energy_storage_systems']['storage_id']
storage_systems = self._search_storage_equipment(self._load_storage_components(), storage_component)
energy_storage_systems = storage_systems
nominal_heat_output = non_pv['nominal_heat_output']
maximum_heat_output = non_pv['maximum_heat_output']
minimum_heat_output = non_pv['minimum_heat_output']
source_medium = non_pv['source_medium']
supply_medium = non_pv['supply_medium']
heat_efficiency = non_pv['heat_efficiency']
nominal_cooling_output = non_pv['nominal_cooling_output']
maximum_cooling_output = non_pv['maximum_cooling_output']
minimum_cooling_output = non_pv['minimum_cooling_output']
cooling_efficiency = non_pv['cooling_efficiency']
electricity_efficiency = non_pv['electricity_efficiency']
source_temperature = non_pv['source_temperature']
source_mass_flow = non_pv['source_mass_flow']
nominal_electricity_output = non_pv['nominal_electricity_output']
maximum_heat_supply_temperature = non_pv['maximum_heat_supply_temperature']
minimum_heat_supply_temperature = non_pv['minimum_heat_supply_temperature']
maximum_cooling_supply_temperature = non_pv['maximum_cooling_supply_temperature']
minimum_cooling_supply_temperature = non_pv['minimum_cooling_supply_temperature']
heat_output_curve = None
heat_fuel_consumption_curve = None
heat_efficiency_curve = None
cooling_output_curve = None
cooling_fuel_consumption_curve = None
cooling_efficiency_curve = None
if non_pv['heat_output_curve'] is not None:
curve_type = non_pv['heat_output_curve']['curve_type']
dependant_variable = non_pv['heat_output_curve']['dependant_variable']
parameters = non_pv['heat_output_curve']['parameters']
coefficients = list(non_pv['heat_output_curve']['coefficients'].values())
heat_output_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
if non_pv['heat_fuel_consumption_curve'] is not None:
curve_type = non_pv['heat_fuel_consumption_curve']['curve_type']
dependant_variable = non_pv['heat_fuel_consumption_curve']['dependant_variable']
parameters = non_pv['heat_fuel_consumption_curve']['parameters']
coefficients = list(non_pv['heat_fuel_consumption_curve']['coefficients'].values())
heat_fuel_consumption_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
if non_pv['heat_efficiency_curve'] is not None:
curve_type = non_pv['heat_efficiency_curve']['curve_type']
dependant_variable = non_pv['heat_efficiency_curve']['dependant_variable']
parameters = non_pv['heat_efficiency_curve']['parameters']
coefficients = list(non_pv['heat_efficiency_curve']['coefficients'].values())
heat_efficiency_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
if non_pv['cooling_output_curve'] is not None:
curve_type = non_pv['cooling_output_curve']['curve_type']
dependant_variable = non_pv['cooling_output_curve']['dependant_variable']
parameters = non_pv['cooling_output_curve']['parameters']
coefficients = list(non_pv['cooling_output_curve']['coefficients'].values())
cooling_output_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
if non_pv['cooling_fuel_consumption_curve'] is not None:
curve_type = non_pv['cooling_fuel_consumption_curve']['curve_type']
dependant_variable = non_pv['cooling_fuel_consumption_curve']['dependant_variable']
parameters = non_pv['cooling_fuel_consumption_curve']['parameters']
coefficients = list(non_pv['cooling_fuel_consumption_curve']['coefficients'].values())
cooling_fuel_consumption_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
if non_pv['cooling_efficiency_curve'] is not None:
curve_type = non_pv['cooling_efficiency_curve']['curve_type']
dependant_variable = non_pv['cooling_efficiency_curve']['dependant_variable']
parameters = non_pv['cooling_efficiency_curve']['parameters']
coefficients = list(non_pv['cooling_efficiency_curve']['coefficients'].values())
cooling_efficiency_curve = PerformanceCurves(curve_type, dependant_variable, parameters, coefficients)
dhw = None
if non_pv['domestic_hot_water'] is not None:
if non_pv['domestic_hot_water'] == 'True':
dhw = True
else:
dhw = False
reversible = None
if non_pv['reversible'] is not None:
if non_pv['reversible'] == 'True':
reversible = True
else:
reversible = False
dual_supply = None
if non_pv['simultaneous_heat_cold'] is not None:
if non_pv['simultaneous_heat_cold'] == 'True':
dual_supply = True
else:
dual_supply = False
non_pv_component = NonPvGenerationSystem(system_id=system_id,
name=name,
system_type=system_type,
model_name=model_name,
manufacturer=manufacturer,
fuel_type=fuel_type,
nominal_heat_output=nominal_heat_output,
maximum_heat_output=maximum_heat_output,
minimum_heat_output=minimum_heat_output,
source_medium=source_medium,
supply_medium=supply_medium,
heat_efficiency=heat_efficiency,
nominal_cooling_output=nominal_cooling_output,
maximum_cooling_output=maximum_cooling_output,
minimum_cooling_output=minimum_cooling_output,
cooling_efficiency=cooling_efficiency,
electricity_efficiency=electricity_efficiency,
source_temperature=source_temperature,
source_mass_flow=source_mass_flow,
nominal_electricity_output=nominal_electricity_output,
maximum_heat_supply_temperature=maximum_heat_supply_temperature,
minimum_heat_supply_temperature=minimum_heat_supply_temperature,
maximum_cooling_supply_temperature=maximum_cooling_supply_temperature,
minimum_cooling_supply_temperature=minimum_cooling_supply_temperature,
heat_output_curve=heat_output_curve,
heat_fuel_consumption_curve=heat_fuel_consumption_curve,
heat_efficiency_curve=heat_efficiency_curve,
cooling_output_curve=cooling_output_curve,
cooling_fuel_consumption_curve=cooling_fuel_consumption_curve,
cooling_efficiency_curve=cooling_efficiency_curve,
distribution_systems=distribution_systems,
energy_storage_systems=energy_storage_systems,
domestic_hot_water=dhw,
reversible=reversible,
simultaneous_heat_cold=dual_supply)
generation_components.append(non_pv_component)
pv_generation_components = self._archetypes['EnergySystemCatalog']['energy_generation_components'][
'pv_generation_component']
if pv_generation_components is not None:
for pv in pv_generation_components:
system_id = pv['system_id']
name = pv['name']
system_type = pv['system_type']
model_name = pv['model_name']
manufacturer = pv['manufacturer']
electricity_efficiency = pv['electricity_efficiency']
nominal_electricity_output = pv['nominal_electricity_output']
nominal_ambient_temperature = pv['nominal_ambient_temperature']
nominal_cell_temperature = pv['nominal_cell_temperature']
nominal_radiation = pv['nominal_radiation']
standard_test_condition_cell_temperature = pv['standard_test_condition_cell_temperature']
standard_test_condition_maximum_power = pv['standard_test_condition_maximum_power']
standard_test_condition_radiation = pv['standard_test_condition_radiation']
cell_temperature_coefficient = pv['cell_temperature_coefficient']
width = pv['width']
height = pv['height']
distribution_systems = pv['distribution_systems']
energy_storage_systems = None
if pv['energy_storage_systems'] is not None:
storage_component = pv['energy_storage_systems']['storage_id']
storage_systems = self._search_storage_equipment(self._load_storage_components(), storage_component)
energy_storage_systems = storage_systems
pv_component = PvGenerationSystem(system_id=system_id,
name=name,
system_type=system_type,
model_name=model_name,
manufacturer=manufacturer,
electricity_efficiency=electricity_efficiency,
nominal_electricity_output=nominal_electricity_output,
nominal_ambient_temperature=nominal_ambient_temperature,
nominal_cell_temperature=nominal_cell_temperature,
nominal_radiation=nominal_radiation,
standard_test_condition_cell_temperature=
standard_test_condition_cell_temperature,
standard_test_condition_maximum_power=standard_test_condition_maximum_power,
standard_test_condition_radiation=standard_test_condition_radiation,
cell_temperature_coefficient=cell_temperature_coefficient,
width=width,
height=height,
distribution_systems=distribution_systems,
energy_storage_systems=energy_storage_systems)
generation_components.append(pv_component)
return generation_components
def _load_distribution_equipments(self):
_equipments = []
distribution_systems = self._archetypes['EnergySystemCatalog']['distribution_systems']['distribution_system']
if distribution_systems is not None:
for distribution_system in distribution_systems:
system_id = None
model_name = None
system_type = None
supply_temperature = None
distribution_consumption_fix_flow = None
distribution_consumption_variable_flow = None
heat_losses = None
generation_systems = None
energy_storage_systems = None
emission_systems = None
distribution_equipment = DistributionSystem(system_id=system_id,
model_name=model_name,
system_type=system_type,
supply_temperature=supply_temperature,
distribution_consumption_fix_flow=distribution_consumption_fix_flow,
distribution_consumption_variable_flow=
distribution_consumption_variable_flow,
heat_losses=heat_losses,
generation_systems=generation_systems,
energy_storage_systems=energy_storage_systems,
emission_systems=emission_systems
)
_equipments.append(distribution_equipment)
return _equipments
def _load_emission_equipments(self):
_equipments = []
dissipation_systems = self._archetypes['EnergySystemCatalog']['dissipation_systems']['dissipation_system']
if dissipation_systems is not None:
for dissipation_system in dissipation_systems:
system_id = None
model_name = None
system_type = None
parasitic_energy_consumption = 0
emission_system = EmissionSystem(system_id=system_id,
model_name=model_name,
system_type=system_type,
parasitic_energy_consumption=parasitic_energy_consumption)
_equipments.append(emission_system)
return _equipments
def _load_storage_components(self):
storage_components = []
thermal_storages = self._archetypes['EnergySystemCatalog']['energy_storage_components']['thermalStorages']
for tes in thermal_storages:
storage_id = tes['storage_id']
type_energy_stored = tes['type_energy_stored']
model_name = tes['model_name']
manufacturer = tes['manufacturer']
storage_type = tes['storage_type']
volume = tes['physical_characteristics']['volume']
height = tes['physical_characteristics']['height']
maximum_operating_temperature = tes['maximum_operating_temperature']
materials = self._load_materials()
insulation_material_id = tes['insulation']['material_id']
insulation_material = self._search_material(materials, insulation_material_id)
material_id = tes['physical_characteristics']['material_id']
tank_material = self._search_material(materials, material_id)
thickness = float(tes['insulation']['insulationThickness']) / 100 # from cm to m
insulation_layer = Layer(None, 'insulation', insulation_material, thickness)
thickness = float(tes['physical_characteristics']['tankThickness']) / 100 # from cm to m
tank_layer = Layer(None, 'tank', tank_material, thickness)
media = self._load_media()
media_id = tes['storage_medium']['medium_id']
medium = self._search_media(media, media_id)
layers = [insulation_layer, tank_layer]
nominal_capacity = tes['nominal_capacity']
losses_ratio = tes['losses_ratio']
heating_coil_capacity = tes['heating_coil_capacity']
storage_component = ThermalStorageSystem(storage_id=storage_id,
model_name=model_name,
type_energy_stored=type_energy_stored,
manufacturer=manufacturer,
storage_type=storage_type,
nominal_capacity=nominal_capacity,
losses_ratio=losses_ratio,
volume=volume,
height=height,
layers=layers,
maximum_operating_temperature=maximum_operating_temperature,
storage_medium=medium,
heating_coil_capacity=heating_coil_capacity)
storage_components.append(storage_component)
return storage_components
def _load_systems(self):
base_path = Path(Path(__file__).parent.parent.parent / 'data/energy_systems')
_catalog_systems = []
systems = self._archetypes['EnergySystemCatalog']['systems']['system']
for system in systems:
system_id = system['id']
name = system['name']
demands = system['demands']['demand']
generation_components = system['components']['generation_id']
generation_systems = self._search_generation_equipment(self._load_generation_components(), generation_components)
configuration_schema = None
if system['schema'] is not None:
configuration_schema = Path(base_path / system['schema'])
energy_system = System(system_id=system_id,
name=name,
demand_types=demands,
generation_systems=generation_systems,
distribution_systems=None,
configuration_schema=configuration_schema)
_catalog_systems.append(energy_system)
return _catalog_systems
def _load_archetypes(self):
_system_archetypes = []
system_clusters = self._archetypes['EnergySystemCatalog']['system_archetypes']['system_archetype']
for system_cluster in system_clusters:
name = system_cluster['name']
systems = system_cluster['systems']['system_id']
integer_system_ids = [int(item) for item in systems]
_systems = []
for system_archetype in self._systems:
if int(system_archetype.id) in integer_system_ids:
_systems.append(system_archetype)
_system_archetypes.append(Archetype(name=name, systems=_systems))
return _system_archetypes
def _load_materials(self):
materials = []
_materials = self._archetypes['EnergySystemCatalog']['materials']['material']
for _material in _materials:
material_id = _material['material_id']
name = _material['name']
conductivity = _material['conductivity']
solar_absorptance = _material['solar_absorptance']
thermal_absorptance = _material['thermal_absorptance']
density = _material['density']
specific_heat = _material['specific_heat']
no_mass = _material['no_mass']
visible_absorptance = _material['visible_absorptance']
thermal_resistance = _material['thermal_resistance']
material = Material(material_id,
name,
solar_absorptance=solar_absorptance,
thermal_absorptance=thermal_absorptance,
density=density,
conductivity=conductivity,
thermal_resistance=thermal_resistance,
visible_absorptance=visible_absorptance,
no_mass=no_mass,
specific_heat=specific_heat)
materials.append(material)
return materials
@staticmethod
def _search_material(materials, material_id):
_material = None
for material in materials:
if int(material.id) == int(material_id):
_material = material
break
if _material is None:
raise ValueError(f'Material with the id = [{material_id}] not found in catalog ')
return _material
def _load_media(self):
media = []
_media = [self._archetypes['EnergySystemCatalog']['media']['medium']]
for _medium in _media:
medium_id = _medium['medium_id']
density = _medium['density']
name = _medium['name']
conductivity = _medium['conductivity']
solar_absorptance = _medium['solar_absorptance']
thermal_absorptance = _medium['thermal_absorptance']
specific_heat = _medium['specific_heat']
no_mass = _medium['no_mass']
visible_absorptance = _medium['visible_absorptance']
thermal_resistance = _medium['thermal_resistance']
medium = Material(material_id=medium_id,
name=name,
solar_absorptance=solar_absorptance,
thermal_absorptance=thermal_absorptance,
visible_absorptance=visible_absorptance,
no_mass=no_mass,
thermal_resistance=thermal_resistance,
conductivity=conductivity,
density=density,
specific_heat=specific_heat)
media.append(medium)
return media
@staticmethod
def _search_media(media, medium_id):
_medium = None
for medium in media:
if int(medium.id) == int(medium_id):
_medium = medium
break
if _medium is None:
raise ValueError(f'media with the id = [{medium_id}] not found in catalog ')
return _medium
@staticmethod
def _search_generation_equipment(generation_systems, generation_id):
_generation_systems = []
if isinstance(generation_id, list):
integer_ids = [int(item) for item in generation_id]
for generation in generation_systems:
if int(generation.id) in integer_ids:
_generation_systems.append(generation)
else:
integer_id = int(generation_id)
for generation in generation_systems:
if int(generation.id) == integer_id:
_generation_systems.append(generation)
if len(_generation_systems) == 0:
_generation_systems = None
raise ValueError(f'The system with the following id is not found in catalog [{generation_id}]')
return _generation_systems
@staticmethod
def _search_storage_equipment(storage_systems, storage_id):
_storage_systems = []
for storage in storage_systems:
if storage.id in storage_id:
_storage_systems.append(storage)
if len(_storage_systems) == 0:
_storage_systems = None
raise ValueError(f'The system with the following id is not found in catalog [{storage_id}]')
return _storage_systems
def names(self, category=None):
"""
Get the catalog elements names
:parm: optional category filter
"""
if category is None:
_names = {'archetypes': [], 'systems': [], 'generation_equipments': [], 'storage_equipments': []}
for archetype in self._content.archetypes:
_names['archetypes'].append(archetype.name)
for system in self._content.systems:
_names['systems'].append(system.name)
for equipment in self._content.generation_equipments:
_names['generation_equipments'].append(equipment.name)
else:
_names = {category: []}
if category.lower() == 'archetypes':
for archetype in self._content.archetypes:
_names[category].append(archetype.name)
elif category.lower() == 'systems':
for system in self._content.systems:
_names[category].append(system.name)
elif category.lower() == 'generation_equipments':
for system in self._content.generation_equipments:
_names[category].append(system.name)
else:
raise ValueError(f'Unknown category [{category}]')
return _names
def entries(self, category=None):
"""
Get the catalog elements
:parm: optional category filter
"""
if category is None:
return self._content
if category.lower() == 'archetypes':
return self._content.archetypes
if category.lower() == 'systems':
return self._content.systems
if category.lower() == 'generation_equipments':
return self._content.generation_equipments
raise ValueError(f'Unknown category [{category}]')
def get_entry(self, name):
"""
Get one catalog element by names
:parm: entry name
"""
for entry in self._content.archetypes:
if entry.name.lower() == name.lower():
return entry
for entry in self._content.systems:
if entry.name.lower() == name.lower():
return entry
for entry in self._content.generation_equipments:
if entry.name.lower() == name.lower():
return entry
raise IndexError(f"{name} doesn't exists in the catalog")

View File

@ -4,22 +4,16 @@ SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Pilar Monsalvete Álvarez de Uribarri pilar.monsalvete@concordia.ca
"""
import logging
from pathlib import Path
from typing import TypeVar
from hub.catalog_factories.energy_systems.montreal_custom_catalog import MontrealCustomCatalog
from hub.catalog_factories.energy_systems.montreal_future_system_catalogue import MontrealFutureSystemCatalogue
from hub.catalog_factories.energy_systems.palma_system_catalgue import PalmaSystemCatalogue
from hub.helpers.utils import validate_import_export_type
Catalog = TypeVar('Catalog')
class EnergySystemsCatalogFactory:
"""
Energy system catalog factory class
"""
def __init__(self, handler, base_path=None):
if base_path is None:
base_path = Path(Path(__file__).parent.parent / 'data/energy_systems')
@ -34,20 +28,6 @@ class EnergySystemsCatalogFactory:
"""
return MontrealCustomCatalog(self._path)
@property
def _montreal_future(self):
"""
Retrieve North American catalog
"""
return MontrealFutureSystemCatalogue(self._path)
@property
def _palma(self):
"""
Retrieve Palma catalog
"""
return PalmaSystemCatalogue(self._path)
@property
def catalog(self) -> Catalog:
"""

View File

@ -15,304 +15,304 @@ getEClassifier = partial(Ecore.getEClassifier, searchspace=eClassifiers)
Management = EEnum('Management', literals=['Intensive', 'Extensive', 'SemiIntensive', 'NA'])
Roughness = EEnum('Roughness', literals=['VeryRough', 'Rough',
'MediumRough', 'MediumSmooth', 'Smooth', 'VerySmooth'])
'MediumRough', 'MediumSmooth', 'Smooth', 'VerySmooth'])
class Soil(EObject, metaclass=MetaEClass):
name = EAttribute(eType=EString, unique=True, derived=False, changeable=True)
roughness = EAttribute(eType=Roughness, unique=True, derived=False,
changeable=True, default_value=Roughness.MediumRough)
conductivityOfDrySoil = EAttribute(
eType=EString, unique=True, derived=False, changeable=True, default_value='1.0 W/(m*K)')
densityOfDrySoil = EAttribute(eType=EString, unique=True, derived=False,
changeable=True, default_value='1100 kg/m³')
specificHeatOfDrySoil = EAttribute(
eType=EString, unique=True, derived=False, changeable=True, default_value='1200 J/(kg*K)')
thermalAbsorptance = EAttribute(eType=EString, unique=True,
derived=False, changeable=True, default_value='0.9')
solarAbsorptance = EAttribute(eType=EString, unique=True,
derived=False, changeable=True, default_value='0.7')
visibleAbsorptance = EAttribute(eType=EString, unique=True,
derived=False, changeable=True, default_value='0.75')
saturationVolumetricMoistureContent = EAttribute(
eType=EString, unique=True, derived=False, changeable=True, default_value='0.0')
residualVolumetricMoistureContent = EAttribute(
eType=EString, unique=True, derived=False, changeable=True, default_value='0.05')
initialVolumetricMoistureContent = EAttribute(
eType=EString, unique=True, derived=False, changeable=True, default_value='0.1')
name = EAttribute(eType=EString, unique=True, derived=False, changeable=True)
roughness = EAttribute(eType=Roughness, unique=True, derived=False,
changeable=True, default_value=Roughness.MediumRough)
conductivityOfDrySoil = EAttribute(
eType=EString, unique=True, derived=False, changeable=True, default_value='1.0 W/(m*K)')
densityOfDrySoil = EAttribute(eType=EString, unique=True, derived=False,
changeable=True, default_value='1100 kg/m³')
specificHeatOfDrySoil = EAttribute(
eType=EString, unique=True, derived=False, changeable=True, default_value='1200 J/(kg*K)')
thermalAbsorptance = EAttribute(eType=EString, unique=True,
derived=False, changeable=True, default_value='0.9')
solarAbsorptance = EAttribute(eType=EString, unique=True,
derived=False, changeable=True, default_value='0.7')
visibleAbsorptance = EAttribute(eType=EString, unique=True,
derived=False, changeable=True, default_value='0.75')
saturationVolumetricMoistureContent = EAttribute(
eType=EString, unique=True, derived=False, changeable=True, default_value='0.0')
residualVolumetricMoistureContent = EAttribute(
eType=EString, unique=True, derived=False, changeable=True, default_value='0.05')
initialVolumetricMoistureContent = EAttribute(
eType=EString, unique=True, derived=False, changeable=True, default_value='0.1')
def __init__(self, *, name=None, roughness=None, conductivityOfDrySoil=None, densityOfDrySoil=None, specificHeatOfDrySoil=None, thermalAbsorptance=None, solarAbsorptance=None, visibleAbsorptance=None, saturationVolumetricMoistureContent=None, residualVolumetricMoistureContent=None, initialVolumetricMoistureContent=None):
# if kwargs:
# raise AttributeError('unexpected arguments: {}'.format(kwargs))
def __init__(self, *, name=None, roughness=None, conductivityOfDrySoil=None, densityOfDrySoil=None, specificHeatOfDrySoil=None, thermalAbsorptance=None, solarAbsorptance=None, visibleAbsorptance=None, saturationVolumetricMoistureContent=None, residualVolumetricMoistureContent=None, initialVolumetricMoistureContent=None):
# if kwargs:
# raise AttributeError('unexpected arguments: {}'.format(kwargs))
super().__init__()
super().__init__()
if name is not None:
self.name = name
if name is not None:
self.name = name
if roughness is not None:
self.roughness = roughness
if roughness is not None:
self.roughness = roughness
if conductivityOfDrySoil is not None:
self.conductivityOfDrySoil = conductivityOfDrySoil
if conductivityOfDrySoil is not None:
self.conductivityOfDrySoil = conductivityOfDrySoil
if densityOfDrySoil is not None:
self.densityOfDrySoil = densityOfDrySoil
if densityOfDrySoil is not None:
self.densityOfDrySoil = densityOfDrySoil
if specificHeatOfDrySoil is not None:
self.specificHeatOfDrySoil = specificHeatOfDrySoil
if specificHeatOfDrySoil is not None:
self.specificHeatOfDrySoil = specificHeatOfDrySoil
if thermalAbsorptance is not None:
self.thermalAbsorptance = thermalAbsorptance
if thermalAbsorptance is not None:
self.thermalAbsorptance = thermalAbsorptance
if solarAbsorptance is not None:
self.solarAbsorptance = solarAbsorptance
if solarAbsorptance is not None:
self.solarAbsorptance = solarAbsorptance
if visibleAbsorptance is not None:
self.visibleAbsorptance = visibleAbsorptance
if visibleAbsorptance is not None:
self.visibleAbsorptance = visibleAbsorptance
if saturationVolumetricMoistureContent is not None:
self.saturationVolumetricMoistureContent = saturationVolumetricMoistureContent
if saturationVolumetricMoistureContent is not None:
self.saturationVolumetricMoistureContent = saturationVolumetricMoistureContent
if residualVolumetricMoistureContent is not None:
self.residualVolumetricMoistureContent = residualVolumetricMoistureContent
if residualVolumetricMoistureContent is not None:
self.residualVolumetricMoistureContent = residualVolumetricMoistureContent
if initialVolumetricMoistureContent is not None:
self.initialVolumetricMoistureContent = initialVolumetricMoistureContent
if initialVolumetricMoistureContent is not None:
self.initialVolumetricMoistureContent = initialVolumetricMoistureContent
class Plant(EObject, metaclass=MetaEClass):
name = EAttribute(eType=EString, unique=True, derived=False, changeable=True)
height = EAttribute(eType=EString, unique=True, derived=False,
changeable=True, default_value='0.1 m')
leafAreaIndex = EAttribute(eType=EString, unique=True, derived=False,
changeable=True, default_value='2.5')
leafReflectivity = EAttribute(eType=EString, unique=True,
derived=False, changeable=True, default_value='0.1')
leafEmissivity = EAttribute(eType=EString, unique=True, derived=False,
changeable=True, default_value='0.9')
minimalStomatalResistance = EAttribute(
eType=EString, unique=True, derived=False, changeable=True, default_value='100.0 s/m')
co2Sequestration = EAttribute(eType=EString, unique=True, derived=False,
changeable=True, default_value='kgCO₂eq')
growsOn = EReference(ordered=True, unique=True, containment=False, derived=False, upper=-1)
name = EAttribute(eType=EString, unique=True, derived=False, changeable=True)
height = EAttribute(eType=EString, unique=True, derived=False,
changeable=True, default_value='0.1 m')
leafAreaIndex = EAttribute(eType=EString, unique=True, derived=False,
changeable=True, default_value='2.5')
leafReflectivity = EAttribute(eType=EString, unique=True,
derived=False, changeable=True, default_value='0.1')
leafEmissivity = EAttribute(eType=EString, unique=True, derived=False,
changeable=True, default_value='0.9')
minimalStomatalResistance = EAttribute(
eType=EString, unique=True, derived=False, changeable=True, default_value='100.0 s/m')
co2Sequestration = EAttribute(eType=EString, unique=True, derived=False,
changeable=True, default_value='kgCO₂eq')
growsOn = EReference(ordered=True, unique=True, containment=False, derived=False, upper=-1)
def __init__(self, *, name=None, height=None, leafAreaIndex=None, leafReflectivity=None, leafEmissivity=None, minimalStomatalResistance=None, growsOn=None, co2Sequestration=None):
# if kwargs:
# raise AttributeError('unexpected arguments: {}'.format(kwargs))
def __init__(self, *, name=None, height=None, leafAreaIndex=None, leafReflectivity=None, leafEmissivity=None, minimalStomatalResistance=None, growsOn=None, co2Sequestration=None):
# if kwargs:
# raise AttributeError('unexpected arguments: {}'.format(kwargs))
super().__init__()
super().__init__()
if name is not None:
self.name = name
if name is not None:
self.name = name
if height is not None:
self.height = height
if height is not None:
self.height = height
if leafAreaIndex is not None:
self.leafAreaIndex = leafAreaIndex
if leafAreaIndex is not None:
self.leafAreaIndex = leafAreaIndex
if leafReflectivity is not None:
self.leafReflectivity = leafReflectivity
if leafReflectivity is not None:
self.leafReflectivity = leafReflectivity
if leafEmissivity is not None:
self.leafEmissivity = leafEmissivity
if leafEmissivity is not None:
self.leafEmissivity = leafEmissivity
if minimalStomatalResistance is not None:
self.minimalStomatalResistance = minimalStomatalResistance
if minimalStomatalResistance is not None:
self.minimalStomatalResistance = minimalStomatalResistance
if co2Sequestration is not None:
self.co2Sequestration = co2Sequestration
if co2Sequestration is not None:
self.co2Sequestration = co2Sequestration
if growsOn:
self.growsOn.extend(growsOn)
if growsOn:
self.growsOn.extend(growsOn)
class SupportEnvelope(EObject, metaclass=MetaEClass):
roughness = EAttribute(eType=Roughness, unique=True, derived=False,
changeable=True, default_value=Roughness.MediumRough)
solarAbsorptance = EAttribute(eType=EDouble, unique=True,
derived=False, changeable=True, default_value=0.0)
conductivity = EAttribute(eType=EDouble, unique=True, derived=False,
changeable=True, default_value=0.0)
visibleAbsorptance = EAttribute(eType=EDouble, unique=True,
derived=False, changeable=True, default_value=0.0)
specificHeat = EAttribute(eType=EDouble, unique=True, derived=False,
changeable=True, default_value=0.0)
density = EAttribute(eType=EDouble, unique=True, derived=False,
changeable=True, default_value=0.0)
thermalAbsorptance = EAttribute(eType=EDouble, unique=True,
roughness = EAttribute(eType=Roughness, unique=True, derived=False,
changeable=True, default_value=Roughness.MediumRough)
solarAbsorptance = EAttribute(eType=EDouble, unique=True,
derived=False, changeable=True, default_value=0.0)
conductivity = EAttribute(eType=EDouble, unique=True, derived=False,
changeable=True, default_value=0.0)
visibleAbsorptance = EAttribute(eType=EDouble, unique=True,
derived=False, changeable=True, default_value=0.0)
specificHeat = EAttribute(eType=EDouble, unique=True, derived=False,
changeable=True, default_value=0.0)
density = EAttribute(eType=EDouble, unique=True, derived=False,
changeable=True, default_value=0.0)
thermalAbsorptance = EAttribute(eType=EDouble, unique=True,
derived=False, changeable=True, default_value=0.0)
def __init__(self, *, roughness=None, solarAbsorptance=None, conductivity=None, visibleAbsorptance=None, specificHeat=None, density=None, thermalAbsorptance=None):
# if kwargs:
# raise AttributeError('unexpected arguments: {}'.format(kwargs))
def __init__(self, *, roughness=None, solarAbsorptance=None, conductivity=None, visibleAbsorptance=None, specificHeat=None, density=None, thermalAbsorptance=None):
# if kwargs:
# raise AttributeError('unexpected arguments: {}'.format(kwargs))
super().__init__()
super().__init__()
if roughness is not None:
self.roughness = roughness
if roughness is not None:
self.roughness = roughness
if solarAbsorptance is not None:
self.solarAbsorptance = solarAbsorptance
if solarAbsorptance is not None:
self.solarAbsorptance = solarAbsorptance
if conductivity is not None:
self.conductivity = conductivity
if conductivity is not None:
self.conductivity = conductivity
if visibleAbsorptance is not None:
self.visibleAbsorptance = visibleAbsorptance
if visibleAbsorptance is not None:
self.visibleAbsorptance = visibleAbsorptance
if specificHeat is not None:
self.specificHeat = specificHeat
if specificHeat is not None:
self.specificHeat = specificHeat
if density is not None:
self.density = density
if density is not None:
self.density = density
if thermalAbsorptance is not None:
self.thermalAbsorptance = thermalAbsorptance
if thermalAbsorptance is not None:
self.thermalAbsorptance = thermalAbsorptance
class GreeneryCatalog(EObject, metaclass=MetaEClass):
name = EAttribute(eType=EString, unique=True, derived=False, changeable=True)
description = EAttribute(eType=EString, unique=True, derived=False, changeable=True)
source = EAttribute(eType=EString, unique=True, derived=False, changeable=True)
plantCategories = EReference(ordered=True, unique=True,
containment=True, derived=False, upper=-1)
vegetationCategories = EReference(ordered=True, unique=True,
containment=True, derived=False, upper=-1)
soils = EReference(ordered=True, unique=True, containment=True, derived=False, upper=-1)
name = EAttribute(eType=EString, unique=True, derived=False, changeable=True)
description = EAttribute(eType=EString, unique=True, derived=False, changeable=True)
source = EAttribute(eType=EString, unique=True, derived=False, changeable=True)
plantCategories = EReference(ordered=True, unique=True,
containment=True, derived=False, upper=-1)
vegetationCategories = EReference(ordered=True, unique=True,
containment=True, derived=False, upper=-1)
soils = EReference(ordered=True, unique=True, containment=True, derived=False, upper=-1)
def __init__(self, *, name=None, description=None, source=None, plantCategories=None, vegetationCategories=None, soils=None):
# if kwargs:
# raise AttributeError('unexpected arguments: {}'.format(kwargs))
def __init__(self, *, name=None, description=None, source=None, plantCategories=None, vegetationCategories=None, soils=None):
# if kwargs:
# raise AttributeError('unexpected arguments: {}'.format(kwargs))
super().__init__()
super().__init__()
if name is not None:
self.name = name
if name is not None:
self.name = name
if description is not None:
self.description = description
if description is not None:
self.description = description
if source is not None:
self.source = source
if source is not None:
self.source = source
if plantCategories:
self.plantCategories.extend(plantCategories)
if plantCategories:
self.plantCategories.extend(plantCategories)
if vegetationCategories:
self.vegetationCategories.extend(vegetationCategories)
if vegetationCategories:
self.vegetationCategories.extend(vegetationCategories)
if soils:
self.soils.extend(soils)
if soils:
self.soils.extend(soils)
class PlantCategory(EObject, metaclass=MetaEClass):
"""Excluding (that is non-overlapping) categories like Trees, Hedeges, Grasses that help users finding a specific biol. plant species."""
name = EAttribute(eType=EString, unique=True, derived=False, changeable=True)
plants = EReference(ordered=True, unique=True, containment=True, derived=False, upper=-1)
"""Excluding (that is non-overlapping) categories like Trees, Hedeges, Grasses that help users finding a specific biol. plant species."""
name = EAttribute(eType=EString, unique=True, derived=False, changeable=True)
plants = EReference(ordered=True, unique=True, containment=True, derived=False, upper=-1)
def __init__(self, *, name=None, plants=None):
# if kwargs:
# raise AttributeError('unexpected arguments: {}'.format(kwargs))
def __init__(self, *, name=None, plants=None):
# if kwargs:
# raise AttributeError('unexpected arguments: {}'.format(kwargs))
super().__init__()
super().__init__()
if name is not None:
self.name = name
if name is not None:
self.name = name
if plants:
self.plants.extend(plants)
if plants:
self.plants.extend(plants)
class IrrigationSchedule(EObject, metaclass=MetaEClass):
name = EAttribute(eType=EString, unique=True, derived=False, changeable=True)
name = EAttribute(eType=EString, unique=True, derived=False, changeable=True)
def __init__(self, *, name=None):
# if kwargs:
# raise AttributeError('unexpected arguments: {}'.format(kwargs))
def __init__(self, *, name=None):
# if kwargs:
# raise AttributeError('unexpected arguments: {}'.format(kwargs))
super().__init__()
super().__init__()
if name is not None:
self.name = name
if name is not None:
self.name = name
class Vegetation(EObject, metaclass=MetaEClass):
"""Plant life or total plant cover (as of an area)"""
name = EAttribute(eType=EString, unique=True, derived=False, changeable=True)
thicknessOfSoil = EAttribute(eType=EString, unique=True, derived=False,
changeable=True, default_value='20 cm')
management = EAttribute(eType=Management, unique=True, derived=False,
changeable=True, default_value=Management.NA)
airGap = EAttribute(eType=EString, unique=True, derived=False,
changeable=True, default_value='0.0 cm')
soil = EReference(ordered=True, unique=True, containment=False, derived=False)
plants = EReference(ordered=True, unique=True, containment=True, derived=False, upper=-1)
"""Plant life or total plant cover (as of an area)"""
name = EAttribute(eType=EString, unique=True, derived=False, changeable=True)
thicknessOfSoil = EAttribute(eType=EString, unique=True, derived=False,
changeable=True, default_value='20 cm')
management = EAttribute(eType=Management, unique=True, derived=False,
changeable=True, default_value=Management.NA)
airGap = EAttribute(eType=EString, unique=True, derived=False,
changeable=True, default_value='0.0 cm')
soil = EReference(ordered=True, unique=True, containment=False, derived=False)
plants = EReference(ordered=True, unique=True, containment=True, derived=False, upper=-1)
def __init__(self, *, name=None, thicknessOfSoil=None, soil=None, plants=None, management=None, airGap=None):
# if kwargs:
# raise AttributeError('unexpected arguments: {}'.format(kwargs))
def __init__(self, *, name=None, thicknessOfSoil=None, soil=None, plants=None, management=None, airGap=None):
# if kwargs:
# raise AttributeError('unexpected arguments: {}'.format(kwargs))
super().__init__()
super().__init__()
if name is not None:
self.name = name
if name is not None:
self.name = name
if thicknessOfSoil is not None:
self.thicknessOfSoil = thicknessOfSoil
if thicknessOfSoil is not None:
self.thicknessOfSoil = thicknessOfSoil
if management is not None:
self.management = management
if management is not None:
self.management = management
if airGap is not None:
self.airGap = airGap
if airGap is not None:
self.airGap = airGap
if soil is not None:
self.soil = soil
if soil is not None:
self.soil = soil
if plants:
self.plants.extend(plants)
if plants:
self.plants.extend(plants)
class VegetationCategory(EObject, metaclass=MetaEClass):
"""Excluding (that is non-overlapping) categories to help users finding a specific vegetation template."""
name = EAttribute(eType=EString, unique=True, derived=False, changeable=True)
vegetationTemplates = EReference(ordered=True, unique=True,
containment=True, derived=False, upper=-1)
"""Excluding (that is non-overlapping) categories to help users finding a specific vegetation template."""
name = EAttribute(eType=EString, unique=True, derived=False, changeable=True)
vegetationTemplates = EReference(ordered=True, unique=True,
containment=True, derived=False, upper=-1)
def __init__(self, *, vegetationTemplates=None, name=None):
# if kwargs:
# raise AttributeError('unexpected arguments: {}'.format(kwargs))
def __init__(self, *, vegetationTemplates=None, name=None):
# if kwargs:
# raise AttributeError('unexpected arguments: {}'.format(kwargs))
super().__init__()
super().__init__()
if name is not None:
self.name = name
if name is not None:
self.name = name
if vegetationTemplates:
self.vegetationTemplates.extend(vegetationTemplates)
if vegetationTemplates:
self.vegetationTemplates.extend(vegetationTemplates)
class PlantPercentage(EObject, metaclass=MetaEClass):
percentage = EAttribute(eType=EString, unique=True, derived=False,
changeable=True, default_value='100')
plant = EReference(ordered=True, unique=True, containment=False, derived=False)
percentage = EAttribute(eType=EString, unique=True, derived=False,
changeable=True, default_value='100')
plant = EReference(ordered=True, unique=True, containment=False, derived=False)
def __init__(self, *, percentage=None, plant=None):
# if kwargs:
# raise AttributeError('unexpected arguments: {}'.format(kwargs))
def __init__(self, *, percentage=None, plant=None):
# if kwargs:
# raise AttributeError('unexpected arguments: {}'.format(kwargs))
super().__init__()
super().__init__()
if percentage is not None:
self.percentage = percentage
if percentage is not None:
self.percentage = percentage
if plant is not None:
self.plant = plant
if plant is not None:
self.plant = plant

View File

@ -5,36 +5,33 @@ Copyright © 2022 Concordia CERC group
Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
"""
from pathlib import Path
from pyecore.resources import ResourceSet, URI
from hub.catalog_factories.greenery.ecore_greenery.greenerycatalog import GreeneryCatalog as Gc
from hub.catalog_factories.greenery.ecore_greenery.greenerycatalog import GreeneryCatalog as gc
from hub.catalog_factories.catalog import Catalog
from hub.catalog_factories.data_models.greenery.vegetation import Vegetation as HubVegetation
from hub.catalog_factories.data_models.greenery.plant import Plant as HubPlant
from hub.catalog_factories.data_models.greenery.soil import Soil as HubSoil
from hub.catalog_factories.data_models.greenery.plant_percentage import PlantPercentage as HubPlantPercentage
from pathlib import Path
from hub.catalog_factories.data_models.greenery.vegetation import Vegetation as libs_vegetation
from hub.catalog_factories.data_models.greenery.plant import Plant as libs_plant
from hub.catalog_factories.data_models.greenery.soil import Soil as libs_soil
from hub.catalog_factories.data_models.greenery.plant_percentage import PlantPercentage as libs_pp
from hub.catalog_factories.data_models.greenery.content import Content as GreeneryContent
class GreeneryCatalog(Catalog):
"""
Greenery catalog class
"""
def __init__(self, path):
base_path = Path(Path(__file__).parent / 'ecore_greenery/greenerycatalog_no_quantities.ecore').resolve()
base_path = Path(Path(__file__).parent / 'ecore_greenery' / 'greenerycatalog_no_quantities.ecore')
resource_set = ResourceSet()
data_model = resource_set.get_resource(URI(str(base_path)))
data_model_root = data_model.contents[0]
resource_set.metamodel_registry[data_model_root.nsURI] = data_model_root
resource = resource_set.get_resource(URI(str(path)))
catalog_data: Gc = resource.contents[0]
catalog_data: gc = resource.contents[0]
plants = []
for plant_category in catalog_data.plantCategories:
name = plant_category.name
for plant in plant_category.plants:
plants.append(HubPlant(name, plant))
plants.append(libs_plant(name, plant))
vegetations = []
for vegetation_category in catalog_data.vegetationCategories:
@ -48,19 +45,17 @@ class GreeneryCatalog(Catalog):
if plant.name == plant_percentage.plant.name:
plant_category = plant.category
break
plant_percentages.append(
HubPlantPercentage(plant_percentage.percentage, plant_category, plant_percentage.plant)
)
vegetations.append(HubVegetation(name, vegetation, plant_percentages))
plant_percentages.append(libs_pp(plant_percentage.percentage, plant_category, plant_percentage.plant))
vegetations.append(libs_vegetation(name, vegetation, plant_percentages))
plants = []
for plant_category in catalog_data.plantCategories:
name = plant_category.name
for plant in plant_category.plants:
plants.append(HubPlant(name, plant))
plants.append(libs_plant(name, plant))
soils = []
for soil in catalog_data.soils:
soils.append(HubSoil(soil))
soils.append(libs_soil(soil))
self._content = GreeneryContent(vegetations, plants, soils)
@ -108,15 +103,14 @@ class GreeneryCatalog(Catalog):
raise IndexError(f"{name} doesn't exists in the catalog")
def entries(self, category=None):
"""
Get all entries from the greenery catalog optionally filtered by category
"""
if category is None:
return self._content
if category.lower() == 'vegetations':
return self._content.vegetations
if category.lower() == 'plants':
return self._content.plants
if category.lower() == 'soils':
return self._content.soils
raise ValueError(f'Unknown category [{category}]')
else:
if category.lower() == 'vegetations':
return self._content.vegetations
elif category.lower() == 'plants':
return self._content.plants
elif category.lower() == 'soils':
return self._content.soils
else:
raise ValueError(f'Unknown category [{category}]')

View File

@ -4,12 +4,12 @@ SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
"""
import logging
from pathlib import Path
from typing import TypeVar
from hub.catalog_factories.greenery.greenery_catalog import GreeneryCatalog
from hub.helpers.utils import validate_import_export_type
Catalog = TypeVar('Catalog')
@ -19,8 +19,9 @@ class GreeneryCatalogFactory:
"""
def __init__(self, handler, base_path=None):
if base_path is None:
base_path = (Path(__file__).parent.parent / 'data/greenery').resolve()
base_path = Path(Path(__file__).parent.parent / 'data/greenery')
self._handler = '_' + handler.lower()
class_funcs = validate_import_export_type(GreeneryCatalogFactory, handler)
self._path = base_path
@property

View File

@ -14,7 +14,7 @@ from hub.catalog_factories.catalog import Catalog
from hub.catalog_factories.data_models.usages.appliances import Appliances
from hub.catalog_factories.data_models.usages.content import Content
from hub.catalog_factories.data_models.usages.lighting import Lighting
from hub.catalog_factories.data_models.usages.occupancy import Occupancy
from hub.catalog_factories.data_models.usages.ocupancy import Occupancy
from hub.catalog_factories.data_models.usages.domestic_hot_water import DomesticHotWater
from hub.catalog_factories.data_models.usages.schedule import Schedule
from hub.catalog_factories.data_models.usages.thermal_control import ThermalControl
@ -24,15 +24,13 @@ from hub.helpers.configuration_helper import ConfigurationHelper as ch
class ComnetCatalog(Catalog):
"""
Comnet catalog class
"""
def __init__(self, path):
self._comnet_archetypes_path = str(path / 'comnet_archetypes.xlsx')
self._comnet_schedules_path = str(path / 'comnet_schedules_archetypes.xlsx')
self._archetypes = self._read_archetype_file()
self._schedules = self._read_schedules_file()
# todo: comment with @Guille, this hypotheses should go in the import factory?
sensible_convective = ch().comnet_occupancy_sensible_convective
sensible_radiative = ch().comnet_occupancy_sensible_radiant
lighting_convective = ch().comnet_lighting_convective
@ -150,13 +148,13 @@ class ComnetCatalog(Catalog):
if day == cte.SATURDAY:
start = start + 1
end = end + 1
elif day in (cte.SUNDAY, cte.HOLIDAY):
elif day == cte.SUNDAY or day == cte.HOLIDAY:
start = start + 2
end = end + 2
_schedule_values[day] = _extracted_data.iloc[start:end, 3:27].to_numpy().tolist()[0]
_schedule = []
for day in _schedule_values:
if schedule_name in ('ClgSetPt', 'HtgSetPt', 'WtrHtrSetPt'):
if schedule_name == 'ClgSetPt' or schedule_name == 'HtgSetPt' or schedule_name == 'WtrHtrSetPt':
# to celsius
if 'n.a.' in _schedule_values[day]:
_schedule_values[day] = None
@ -190,14 +188,14 @@ class ComnetCatalog(Catalog):
schedules_key = {}
for j in range(0, number_usage_types-1):
usage_parameters = _extracted_data.iloc[j]
usage_type = usage_parameters.iloc[0]
lighting_data[usage_type] = usage_parameters.iloc[1:6].values.tolist()
plug_loads_data[usage_type] = usage_parameters.iloc[8:13].values.tolist()
occupancy_data[usage_type] = usage_parameters.iloc[17:20].values.tolist()
ventilation_rate[usage_type] = usage_parameters.iloc[20:21].item()
water_heating[usage_type] = usage_parameters.iloc[23:24].item()
process_data[usage_type] = usage_parameters.iloc[24:26].values.tolist()
schedules_key[usage_type] = usage_parameters.iloc[27:28].item()
usage_type = usage_parameters[0]
lighting_data[usage_type] = usage_parameters[1:6].values.tolist()
plug_loads_data[usage_type] = usage_parameters[8:13].values.tolist()
occupancy_data[usage_type] = usage_parameters[17:20].values.tolist()
ventilation_rate[usage_type] = usage_parameters[20:21].item()
water_heating[usage_type] = usage_parameters[23:24].item()
process_data[usage_type] = usage_parameters[24:26].values.tolist()
schedules_key[usage_type] = usage_parameters[27:28].item()
return {'lighting': lighting_data,
'plug loads': plug_loads_data,

View File

@ -1,234 +0,0 @@
"""
Eilat usage catalog
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
"""
import io
from typing import Dict
import pandas as pd
import hub.helpers.constants as cte
from hub.catalog_factories.catalog import Catalog
from hub.catalog_factories.data_models.usages.appliances import Appliances
from hub.catalog_factories.data_models.usages.content import Content
from hub.catalog_factories.data_models.usages.lighting import Lighting
from hub.catalog_factories.data_models.usages.occupancy import Occupancy
from hub.catalog_factories.data_models.usages.domestic_hot_water import DomesticHotWater
from hub.catalog_factories.data_models.usages.schedule import Schedule
from hub.catalog_factories.data_models.usages.thermal_control import ThermalControl
from hub.catalog_factories.data_models.usages.usage import Usage
from hub.catalog_factories.usage.usage_helper import UsageHelper
from hub.helpers.configuration_helper import ConfigurationHelper as ch
class EilatCatalog(Catalog):
"""
Eilat catalog class
"""
def __init__(self, path):
self._eilat_archetypes_path = str(path / 'eilat_archetypes.xlsx')
self._eilat_schedules_path = str(path / 'eilat_schedules_archetypes.xlsx')
self._archetypes = self._read_archetype_file()
self._schedules = self._read_schedules_file()
sensible_convective = ch().comnet_occupancy_sensible_convective
sensible_radiative = ch().comnet_occupancy_sensible_radiant
lighting_convective = ch().comnet_lighting_convective
lighting_radiative = ch().comnet_lighting_radiant
lighting_latent = ch().comnet_lighting_latent
appliances_convective = ch().comnet_plugs_convective
appliances_radiative = ch().comnet_plugs_radiant
appliances_latent = ch().comnet_plugs_latent
usages = []
for schedule_key in self._archetypes['schedules_key']:
eilat_usage = schedule_key
schedule_name = self._archetypes['schedules_key'][schedule_key]
hours_day = None
days_year = None
occupancy_archetype = self._archetypes['occupancy'][eilat_usage]
lighting_archetype = self._archetypes['lighting'][eilat_usage]
appliances_archetype = self._archetypes['plug loads'][eilat_usage]
mechanical_air_change = None # eilat provides ventilation rate only
ventilation_rate = self._archetypes['ventilation rate'][eilat_usage]
# convert cfm/ft2 to m3/m2.s
ventilation_rate = ventilation_rate / (cte.METERS_TO_FEET * cte.MINUTES_TO_SECONDS)
domestic_hot_water_archetype = self._archetypes['water heating'][eilat_usage]
# get occupancy
occupancy_density = occupancy_archetype[0] / pow(cte.METERS_TO_FEET, 2)
sensible_heat_gain = occupancy_archetype[1] * cte.BTU_H_TO_WATTS
latent_heat_gain = occupancy_archetype[1] * cte.BTU_H_TO_WATTS
if occupancy_density != 0:
occupancy_density = 1 / occupancy_density
sensible_convective_internal_gain = occupancy_density * sensible_heat_gain * sensible_convective
sensible_radiative_internal_gain = occupancy_density * sensible_heat_gain * sensible_radiative
latent_internal_gain = occupancy_density * latent_heat_gain
occupancy = Occupancy(occupancy_density,
sensible_convective_internal_gain,
sensible_radiative_internal_gain,
latent_internal_gain,
self._schedules[schedule_name]['Occupancy'])
# get lighting
density = lighting_archetype[4] * pow(cte.METERS_TO_FEET, 2)
lighting = Lighting(density,
lighting_convective,
lighting_radiative,
lighting_latent,
self._schedules[schedule_name]['Lights'])
# get appliances
density = appliances_archetype[0]
if density == 'n.a.':
density = 0
# convert W/ft2 to W/m2
density = float(density) * pow(cte.METERS_TO_FEET, 2)
appliances = Appliances(density,
appliances_convective,
appliances_radiative,
appliances_latent,
self._schedules[schedule_name]['Receptacle'])
# get thermal control
thermal_control = ThermalControl(None,
None,
None,
self._schedules[schedule_name]['HVAC Avail'],
self._schedules[schedule_name]['HtgSetPt'],
self._schedules[schedule_name]['ClgSetPt']
)
# get domestic hot water
density = domestic_hot_water_archetype
# convert Btu/h/occ to W/m2
density = float(density) * cte.BTU_H_TO_WATTS * occupancy_density
domestic_hot_water_service_temperature = self._schedules[schedule_name]['WtrHtrSetPt'][0].values[0]
domestic_hot_water = DomesticHotWater(density,
None,
domestic_hot_water_service_temperature,
self._schedules[schedule_name]['Service Hot Water']
)
usages.append(Usage(eilat_usage,
hours_day,
days_year,
mechanical_air_change,
ventilation_rate,
occupancy,
lighting,
appliances,
thermal_control,
domestic_hot_water))
self._content = Content(usages)
def _read_schedules_file(self) -> Dict:
dictionary = {}
eilat_usages = UsageHelper().eilat_schedules_key_to_eilat_schedules
eilat_days = UsageHelper().comnet_days
eilat_data_types = UsageHelper().comnet_data_type_to_hub_data_type
for usage_name in eilat_usages:
with open(self._eilat_schedules_path, 'rb') as xls:
_extracted_data = pd.read_excel(
io.BytesIO(xls.read()),
sheet_name=eilat_usages[usage_name],
skiprows=[0, 1, 2, 3], nrows=39, usecols="A:AA"
)
_schedules = {}
for row in range(0, 39, 3):
_schedule_values = {}
schedule_name = _extracted_data.loc[row:row, 'Description'].item()
schedule_data_type = eilat_data_types[_extracted_data.loc[row:row, 'Type'].item()]
for day in eilat_days:
# Monday to Friday
start = row
end = row + 1
if day == cte.FRIDAY:
start = start + 1
end = end + 1
elif day in (cte.SATURDAY, cte.HOLIDAY):
start = start + 2
end = end + 2
_schedule_values[day] = _extracted_data.iloc[start:end, 3:27].to_numpy().tolist()[0]
_schedule = []
for day in _schedule_values:
if schedule_name in ('ClgSetPt', 'HtgSetPt', 'WtrHtrSetPt'):
# to celsius
if 'n.a.' in _schedule_values[day]:
_schedule_values[day] = None
else:
_schedule_values[day] = [(float(value)-32)*5/9 for value in _schedule_values[day]]
_schedule.append(Schedule(schedule_name, _schedule_values[day], schedule_data_type, cte.HOUR, cte.DAY, [day]))
_schedules[schedule_name] = _schedule
dictionary[usage_name] = _schedules
return dictionary
def _read_archetype_file(self) -> Dict:
"""
reads xlsx files containing usage information into a dictionary
:return : Dict
"""
number_usage_types = 3
with open(self._eilat_archetypes_path, 'rb') as xls:
_extracted_data = pd.read_excel(
io.BytesIO(xls.read()),
sheet_name="Modeling Data",
skiprows=[0, 1, 2],
nrows=number_usage_types + 1, usecols="A:AB"
)
lighting_data = {}
plug_loads_data = {}
occupancy_data = {}
ventilation_rate = {}
water_heating = {}
process_data = {}
schedules_key = {}
for j in range(0, number_usage_types):
usage_parameters = _extracted_data.iloc[j]
usage_type = usage_parameters.iloc[0]
lighting_data[usage_type] = usage_parameters[1:6].values.tolist()
plug_loads_data[usage_type] = usage_parameters[8:13].values.tolist()
occupancy_data[usage_type] = usage_parameters[17:20].values.tolist()
ventilation_rate[usage_type] = usage_parameters[20:21].item()
water_heating[usage_type] = usage_parameters[23:24].item()
process_data[usage_type] = usage_parameters[24:26].values.tolist()
schedules_key[usage_type] = usage_parameters[27:28].item()
return {'lighting': lighting_data,
'plug loads': plug_loads_data,
'occupancy': occupancy_data,
'ventilation rate': ventilation_rate,
'water heating': water_heating,
'process': process_data,
'schedules_key': schedules_key
}
def names(self, category=None):
"""
Get the catalog elements names
:parm: for usage catalog category filter does nothing as there is only one category (usages)
"""
_names = {'usages': []}
for usage in self._content.usages:
_names['usages'].append(usage.name)
return _names
def entries(self, category=None):
"""
Get the catalog elements
:parm: for usage catalog category filter does nothing as there is only one category (usages)
"""
return self._content
def get_entry(self, name):
"""
Get one catalog element by names
:parm: entry name
"""
for usage in self._content.usages:
if usage.name.lower() == name.lower():
return usage
raise IndexError(f"{name} doesn't exists in the catalog")

View File

@ -8,8 +8,6 @@ Code contributors: Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concord
import json
import urllib.request
from pathlib import Path
import xmltodict
import hub.helpers.constants as cte
@ -17,7 +15,7 @@ from hub.catalog_factories.catalog import Catalog
from hub.catalog_factories.data_models.usages.appliances import Appliances
from hub.catalog_factories.data_models.usages.content import Content
from hub.catalog_factories.data_models.usages.lighting import Lighting
from hub.catalog_factories.data_models.usages.occupancy import Occupancy
from hub.catalog_factories.data_models.usages.ocupancy import Occupancy
from hub.catalog_factories.data_models.usages.domestic_hot_water import DomesticHotWater
from hub.catalog_factories.data_models.usages.schedule import Schedule
from hub.catalog_factories.data_models.usages.thermal_control import ThermalControl
@ -26,15 +24,13 @@ from hub.catalog_factories.usage.usage_helper import UsageHelper
class NrcanCatalog(Catalog):
"""
Nrcan catalog class
"""
def __init__(self, path):
self._schedules_path = Path(path / 'nrcan_schedules.json').resolve()
self._space_types_path = Path(path / 'nrcan_space_types.json').resolve()
self._space_compliance_path = Path(path / 'nrcan_space_compliance_2015.json').resolve()
path = str(path / 'nrcan.xml')
self._content = None
self._schedules = {}
with open(path) as xml:
self._metadata = xmltodict.parse(xml.read())
self._base_url = self._metadata['nrcan']['@base_url']
self._load_schedules()
self._content = Content(self._load_archetypes())
@ -56,9 +52,11 @@ class NrcanCatalog(Catalog):
return Schedule(hub_type, raw['values'], data_type, time_step, time_range, day_types)
def _load_schedules(self):
usage = self._metadata['nrcan']
url = f'{self._base_url}{usage["schedules"]}'
_schedule_types = []
with open(self._schedules_path, 'r') as f:
schedules_type = json.load(f)
with urllib.request.urlopen(url) as json_file:
schedules_type = json.load(json_file)
for schedule_type in schedules_type['tables']['schedules']['table']:
schedule = NrcanCatalog._extract_schedule(schedule_type)
if schedule_type['name'] not in _schedule_types:
@ -72,18 +70,19 @@ class NrcanCatalog(Catalog):
self._schedules[schedule_type['name']] = _schedules
def _get_schedules(self, name):
schedule = None
if name in self._schedules:
schedule = self._schedules[name]
return schedule
return self._schedules[name]
def _load_archetypes(self):
usages = []
with open(self._space_types_path, 'r') as f:
space_types = json.load(f)['tables']['space_types']['table']
name = self._metadata['nrcan']
url_1 = f'{self._base_url}{name["space_types"]}'
url_2 = f'{self._base_url}{name["space_types_compliance"]}'
with urllib.request.urlopen(url_1) as json_file:
space_types = json.load(json_file)['tables']['space_types']['table']
space_types = [st for st in space_types if st['space_type'] == 'WholeBuilding']
with open(self._space_compliance_path, 'r') as f:
space_types_compliance = json.load(f)['tables']['space_compliance']['table']
with urllib.request.urlopen(url_2) as json_file:
space_types_compliance = json.load(json_file)['tables']['space_compliance']['table']
space_types_compliance = [st for st in space_types_compliance if st['space_type'] == 'WholeBuilding']
space_types_dictionary = {}
for space_type in space_types_compliance:
@ -95,10 +94,7 @@ class NrcanCatalog(Catalog):
# W/m2
appliances_density = space_type['electric_equipment_per_area_w_per_m2']
# peak flow in gallons/h/m2
domestic_hot_water_peak_flow = (
space_type['service_water_heating_peak_flow_per_area'] *
cte.GALLONS_TO_QUBIC_METERS / cte.HOUR_TO_SECONDS
)
domestic_hot_water_peak_flow = space_type['service_water_heating_peak_flow_per_area'] * cte.GALLONS_TO_QUBIC_METERS / cte.HOUR_TO_SECONDS
space_types_dictionary[usage_type] = {'occupancy_per_area': occupancy_density,
'lighting_per_area': lighting_density,
'electric_equipment_per_area': appliances_density,
@ -130,8 +126,8 @@ class NrcanCatalog(Catalog):
hvac_availability = self._get_schedules(hvac_schedule_name)
domestic_hot_water_load_schedule = self._get_schedules(domestic_hot_water_schedule_name)
# ACH -> 1/s
mechanical_air_change = space_type['ventilation_air_changes'] / cte.HOUR_TO_SECONDS
# ACH
mechanical_air_change = space_type['ventilation_air_changes']
# cfm/ft2 to m3/m2.s
ventilation_rate = space_type['ventilation_per_area'] / (cte.METERS_TO_FEET * cte.MINUTES_TO_SECONDS)
# cfm/person to m3/m2.s

View File

@ -1,227 +0,0 @@
"""
Palma usage catalog
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Cecilia Pérez cperez@irec.cat
"""
import json
import urllib.request
from pathlib import Path
import xmltodict
import hub.helpers.constants as cte
from hub.catalog_factories.catalog import Catalog
from hub.catalog_factories.data_models.usages.appliances import Appliances
from hub.catalog_factories.data_models.usages.content import Content
from hub.catalog_factories.data_models.usages.lighting import Lighting
from hub.catalog_factories.data_models.usages.occupancy import Occupancy
from hub.catalog_factories.data_models.usages.domestic_hot_water import DomesticHotWater
from hub.catalog_factories.data_models.usages.schedule import Schedule
from hub.catalog_factories.data_models.usages.thermal_control import ThermalControl
from hub.catalog_factories.data_models.usages.usage import Usage
from hub.catalog_factories.usage.usage_helper import UsageHelper
class PalmaCatalog(Catalog):
"""
Palma catalog class
"""
def __init__(self, path):
self._schedules_path = Path(path / 'palma_schedules.json').resolve()
self._space_types_path = Path(path / 'palma_space_types.json').resolve()
self._space_compliance_path = Path(path / 'palma_space_compliance.json').resolve()
self._content = None
self._schedules = {}
self._load_schedules()
self._content = Content(self._load_archetypes())
@staticmethod
def _extract_schedule(raw):
nrcan_schedule_type = raw['category']
if 'Heating' in raw['name'] and 'Water' not in raw['name']:
nrcan_schedule_type = f'{nrcan_schedule_type} Heating'
elif 'Cooling' in raw['name']:
nrcan_schedule_type = f'{nrcan_schedule_type} Cooling'
if nrcan_schedule_type not in UsageHelper().nrcan_schedule_type_to_hub_schedule_type:
return None
hub_type = UsageHelper().nrcan_schedule_type_to_hub_schedule_type[nrcan_schedule_type]
data_type = UsageHelper().nrcan_data_type_to_hub_data_type[raw['units']]
time_step = UsageHelper().nrcan_time_to_hub_time[raw['type']]
# nrcan only uses daily range for the schedules
time_range = cte.DAY
day_types = UsageHelper().nrcan_day_type_to_hub_days[raw['day_types']]
return Schedule(hub_type, raw['values'], data_type, time_step, time_range, day_types)
def _load_schedules(self):
_schedule_types = []
with open(self._schedules_path, 'r') as f:
schedules_type = json.load(f)
for schedule_type in schedules_type['tables']['schedules']['table']:
schedule = PalmaCatalog._extract_schedule(schedule_type)
if schedule_type['name'] not in _schedule_types:
_schedule_types.append(schedule_type['name'])
if schedule is not None:
self._schedules[schedule_type['name']] = [schedule]
else:
if schedule is not None:
_schedules = self._schedules[schedule_type['name']]
_schedules.append(schedule)
self._schedules[schedule_type['name']] = _schedules
def _get_schedules(self, name):
schedule = None
if name in self._schedules:
schedule = self._schedules[name]
return schedule
def _load_archetypes(self):
usages = []
with open(self._space_types_path, 'r') as f:
space_types = json.load(f)['tables']['space_types']['table']
space_types = [st for st in space_types if st['space_type'] == 'WholeBuilding']
with open(self._space_compliance_path, 'r') as f:
space_types_compliance = json.load(f)['tables']['space_compliance']['table']
space_types_compliance = [st for st in space_types_compliance if st['space_type'] == 'WholeBuilding']
space_types_dictionary = {}
for space_type in space_types_compliance:
usage_type = space_type['building_type']
# people/m2
occupancy_density = space_type['occupancy_per_area_people_per_m2']
# W/m2
lighting_density = space_type['lighting_per_area_w_per_m2']
# W/m2
appliances_density = space_type['electric_equipment_per_area_w_per_m2']
# peak flow in gallons/h/m2
domestic_hot_water_peak_flow = (
space_type['service_water_heating_peak_flow_per_area'] *
cte.GALLONS_TO_QUBIC_METERS / cte.HOUR_TO_SECONDS
)
space_types_dictionary[usage_type] = {'occupancy_per_area': occupancy_density,
'lighting_per_area': lighting_density,
'electric_equipment_per_area': appliances_density,
'service_water_heating_peak_flow_per_area': domestic_hot_water_peak_flow
}
for space_type in space_types:
usage_type = space_type['building_type']
space_type_compliance = space_types_dictionary[usage_type]
occupancy_density = space_type_compliance['occupancy_per_area']
sensible_convective_internal_gain = space_type['sensible_convective_internal_gain']
sensible_radiative_internal_gain = space_type['sensible_radiative_internal_gain']
latent_internal_gain = space_type['latent_internal_gain']
lighting_density = space_type_compliance['lighting_per_area']
appliances_density = space_type_compliance['electric_equipment_per_area']
domestic_hot_water_peak_flow = space_type_compliance['service_water_heating_peak_flow_per_area']
occupancy_schedule_name = space_type['occupancy_schedule']
lighting_schedule_name = space_type['lighting_schedule']
appliance_schedule_name = space_type['electric_equipment_schedule']
hvac_schedule_name = space_type['exhaust_schedule']
if hvac_schedule_name and 'FAN' in hvac_schedule_name:
hvac_schedule_name = hvac_schedule_name.replace('FAN', 'Fan')
if not hvac_schedule_name:
hvac_schedule_name = 'default_HVAC_schedule'
heating_setpoint_schedule_name = space_type['heating_setpoint_schedule']
cooling_setpoint_schedule_name = space_type['cooling_setpoint_schedule']
domestic_hot_water_schedule_name = space_type['service_water_heating_schedule']
occupancy_schedule = self._get_schedules(occupancy_schedule_name)
lighting_schedule = self._get_schedules(lighting_schedule_name)
appliance_schedule = self._get_schedules(appliance_schedule_name)
heating_schedule = self._get_schedules(heating_setpoint_schedule_name)
cooling_schedule = self._get_schedules(cooling_setpoint_schedule_name)
hvac_availability = self._get_schedules(hvac_schedule_name)
domestic_hot_water_load_schedule = self._get_schedules(domestic_hot_water_schedule_name)
# ACH -> 1/s
mechanical_air_change = space_type['ventilation_air_changes'] / cte.HOUR_TO_SECONDS
# cfm/ft2 to m3/m2.s
ventilation_rate = space_type['ventilation_per_area'] / (cte.METERS_TO_FEET * cte.MINUTES_TO_SECONDS)
# cfm/person to m3/m2.s
ventilation_rate += space_type['ventilation_per_person'] / (
pow(cte.METERS_TO_FEET, 3) * cte.MINUTES_TO_SECONDS
) * occupancy_density
lighting_radiative_fraction = space_type['lighting_fraction_radiant']
lighting_convective_fraction = 0
if lighting_radiative_fraction is not None:
lighting_convective_fraction = 1 - lighting_radiative_fraction
lighting_latent_fraction = 0
appliances_radiative_fraction = space_type['electric_equipment_fraction_radiant']
appliances_latent_fraction = space_type['electric_equipment_fraction_latent']
appliances_convective_fraction = 0
if appliances_radiative_fraction is not None and appliances_latent_fraction is not None:
appliances_convective_fraction = 1 - appliances_radiative_fraction - appliances_latent_fraction
domestic_hot_water_service_temperature = space_type['service_water_heating_target_temperature']
occupancy = Occupancy(occupancy_density,
sensible_convective_internal_gain,
sensible_radiative_internal_gain,
latent_internal_gain,
occupancy_schedule)
lighting = Lighting(lighting_density,
lighting_convective_fraction,
lighting_radiative_fraction,
lighting_latent_fraction,
lighting_schedule)
appliances = Appliances(appliances_density,
appliances_convective_fraction,
appliances_radiative_fraction,
appliances_latent_fraction,
appliance_schedule)
thermal_control = ThermalControl(None,
None,
None,
hvac_availability,
heating_schedule,
cooling_schedule)
domestic_hot_water = DomesticHotWater(None,
domestic_hot_water_peak_flow,
domestic_hot_water_service_temperature,
domestic_hot_water_load_schedule)
hours_day = None
days_year = None
usages.append(Usage(usage_type,
hours_day,
days_year,
mechanical_air_change,
ventilation_rate,
occupancy,
lighting,
appliances,
thermal_control,
domestic_hot_water))
return usages
def names(self, category=None):
"""
Get the catalog elements names
:parm: for usage catalog category filter does nothing as there is only one category (usages)
"""
_names = {'usages': []}
for usage in self._content.usages:
_names['usages'].append(usage.name)
return _names
def entries(self, category=None):
"""
Get the catalog elements
:parm: for usage catalog category filter does nothing as there is only one category (usages)
"""
return self._content
def get_entry(self, name):
"""
Get one catalog element by names
:parm: entry name
"""
for usage in self._content.usages:
if usage.name.lower() == name.lower():
return usage
raise IndexError(f"{name} doesn't exists in the catalog")

View File

@ -4,9 +4,9 @@ SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
"""
from typing import Dict
import sys
import hub.helpers.constants as cte
from typing import Dict
class UsageHelper:
@ -90,64 +90,43 @@ class UsageHelper:
'C-14 Gymnasium': 'C-14 Gymnasium'
}
_eilat_schedules_key_to_eilat_schedules = {
'C-12 Residential': 'C-12 Residential',
'C-15 Dormitory': 'C-15 Dormitory',
'C-16 Hotel employees': 'C-16 Hotel employees'
}
@property
def nrcan_day_type_to_hub_days(self):
"""
Get a dictionary to convert nrcan day types to hub day types
"""
return self._nrcan_day_type_to_hub_days
@property
def nrcan_schedule_type_to_hub_schedule_type(self):
"""
Get a dictionary to convert nrcan schedule types to hub schedule types
"""
return self._nrcan_schedule_type_to_hub_schedule_type
@property
def nrcan_data_type_to_hub_data_type(self):
"""
Get a dictionary to convert nrcan data types to hub data types
"""
return self._nrcan_data_type_to_hub_data_type
@property
def nrcan_time_to_hub_time(self):
"""
Get a dictionary to convert nrcan time to hub time
"""
return self._nrcan_time_to_hub_time
@property
def comnet_data_type_to_hub_data_type(self) -> Dict:
"""
Get a dictionary to convert comnet data types to hub data types
"""
def comnet_data_type_to_hub_data_type(self):
return self._comnet_data_type_to_hub_data_type
@property
def comnet_schedules_key_to_comnet_schedules(self) -> Dict:
"""
Get a dictionary to convert hub schedules to comnet schedules
"""
return self._comnet_schedules_key_to_comnet_schedules
@property
def comnet_days(self) -> [str]:
"""
Get the list of days used in comnet
"""
def comnet_days(self):
return self._comnet_days
@property
def eilat_schedules_key_to_eilat_schedules(self) -> [str]:
@staticmethod
def schedules_key(usage):
"""
Get a dictionary to convert hub schedules to eilat schedules
Get Comnet schedules key from the list found in the Comnet usage file
:param usage: str
:return: str
"""
return self._eilat_schedules_key_to_eilat_schedules
try:
return UsageHelper._comnet_schedules_key_to_comnet_schedules[usage]
except KeyError:
sys.stderr.write('Error: Comnet keyword not found. An update of the Comnet files might have been '
'done changing the keywords.\n')

View File

@ -4,23 +4,17 @@ SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
"""
import logging
from pathlib import Path
from typing import TypeVar
from hub.catalog_factories.usage.comnet_catalog import ComnetCatalog
from hub.catalog_factories.usage.nrcan_catalog import NrcanCatalog
from hub.catalog_factories.usage.eilat_catalog import EilatCatalog
from hub.catalog_factories.usage.palma_catalog import PalmaCatalog
from hub.helpers.utils import validate_import_export_type
Catalog = TypeVar('Catalog')
class UsageCatalogFactory:
"""
Usage catalog factory class
"""
def __init__(self, handler, base_path=None):
if base_path is None:
base_path = Path(Path(__file__).parent.parent / 'data/usage')
@ -43,20 +37,6 @@ class UsageCatalogFactory:
# nrcan retrieves the data directly from github
return NrcanCatalog(self._path)
@property
def _palma(self):
"""
Retrieve Palma catalog
"""
return PalmaCatalog(self._path)
@property
def _eilat(self):
"""
Retrieve Eilat catalog
"""
return EilatCatalog(self._path)
@property
def catalog(self) -> Catalog:
"""

View File

@ -45,13 +45,14 @@ class Plane:
:return: (A, B, C, D)
"""
if self._equation is None:
a = self.normal[0]
b = self.normal[1]
c = self.normal[2]
d = -1 * self.origin.coordinates[0] * self.normal[0]
d += -1 * self.origin.coordinates[1] * self.normal[1]
d += -1 * self.origin.coordinates[2] * self.normal[2]
self._equation = a, b, c, d
d = ((-1 * self.origin.coordinates[0]) * self.normal[0])
d += ((-1 * self.origin.coordinates[1]) * self.normal[1])
d += ((-1 * self.origin.coordinates[2]) * self.normal[2])
self._equation = (a, b, c, d)
return self._equation
def distance_to_point(self, point):

View File

@ -31,7 +31,7 @@ class Point:
:return: float
"""
power = 0
for dimension in enumerate(self.coordinates):
for dimension in range(0, len(self.coordinates)):
power += math.pow(other_point.coordinates[dimension]-self.coordinates[dimension], 2)
distance = math.sqrt(power)
return distance

View File

@ -6,21 +6,20 @@ Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
"""
from __future__ import annotations
import logging
import math
import sys
from typing import List
import numpy as np
from trimesh import Trimesh
import trimesh.intersections
import trimesh.creation
import trimesh.geometry
import trimesh.intersections
from shapely.geometry.polygon import Polygon as shapley_polygon
from trimesh import Trimesh
from hub.city_model_structure.attributes.plane import Plane
from hub.city_model_structure.attributes.point import Point
import hub.helpers.constants as cte
class Polygon:
@ -70,6 +69,44 @@ class Polygon:
"""
return self._coordinates
def contains_point(self, point):
"""
Determines if the given point is contained by the current polygon
:return: boolean
"""
# fixme: This method doesn't seems to work.
n = len(self.vertices)
angle_sum = 0
for i in range(0, n):
vector_0 = self.vertices[i]
vector_1 = self.vertices[(i+1) % n]
# set to origin
vector_0[0] = vector_0[0] - point.coordinates[0]
vector_0[1] = vector_0[1] - point.coordinates[1]
vector_0[2] = vector_0[2] - point.coordinates[2]
vector_1[0] = vector_1[0] - point.coordinates[0]
vector_1[1] = vector_1[1] - point.coordinates[1]
vector_1[2] = vector_1[2] - point.coordinates[2]
module = np.linalg.norm(vector_0) * np.linalg.norm(vector_1)
scalar_product = np.dot(vector_0, vector_1)
angle = np.pi/2
if module != 0:
angle = abs(np.arcsin(scalar_product / module))
angle_sum += angle
return abs(angle_sum - math.pi*2) < cte.EPSILON
def contains_polygon(self, polygon):
"""
Determines if the given polygon is contained by the current polygon
:return: boolean
"""
for point in polygon.points:
if not self.contains_point(point):
return False
return True
@property
def points_list(self) -> np.ndarray:
"""
@ -105,12 +142,12 @@ class Polygon:
if self._area is None:
self._area = 0
for triangle in self.triangles:
a_b = np.zeros(3)
a_c = np.zeros(3)
ab = np.zeros(3)
ac = np.zeros(3)
for i in range(0, 3):
a_b[i] = triangle.coordinates[1][i] - triangle.coordinates[0][i]
a_c[i] = triangle.coordinates[2][i] - triangle.coordinates[0][i]
self._area += np.linalg.norm(np.cross(a_b, a_c)) / 2
ab[i] = triangle.coordinates[1][i] - triangle.coordinates[0][i]
ac[i] = triangle.coordinates[2][i] - triangle.coordinates[0][i]
self._area += np.linalg.norm(np.cross(ab, ac)) / 2
return self._area
@area.setter
@ -180,11 +217,7 @@ class Polygon:
return -alpha
@staticmethod
def triangle_mesh(vertices, normal) -> Trimesh:
"""
Get the triangulated mesh for the polygon
:return: Trimesh
"""
def triangle_mesh(vertices, normal):
min_x = 1e16
min_y = 1e16
min_z = 1e16
@ -213,7 +246,8 @@ class Polygon:
polygon = shapley_polygon(coordinates)
try:
_, faces = trimesh.creation.triangulate_polygon(polygon, engine='triangle')
vertices_2d, faces = trimesh.creation.triangulate_polygon(polygon, engine='triangle')
mesh = Trimesh(vertices=vertices, faces=faces)
@ -233,17 +267,13 @@ class Polygon:
return mesh
except ValueError:
logging.error('Not able to triangulate polygon\n')
logging.error(f'Not able to triangulate polygon\n')
_vertices = [[0, 0, 0], [0, 0, 1], [0, 1, 0]]
_faces = [[0, 1, 2]]
return Trimesh(vertices=_vertices, faces=_faces)
@property
def triangles(self) -> List[Polygon]:
"""
Triangulate the polygon and return a list of triangular polygons
:return: [Polygon]
"""
if self._triangles is None:
self._triangles = []
_mesh = self.triangle_mesh(self.coordinates, self.normal)
@ -306,7 +336,7 @@ class Polygon:
def _reshape(self, triangles) -> Polygon:
edges_list = []
for i in enumerate(triangles):
for i in range(0, len(triangles)):
for edge in triangles[i].edges:
if not self._edge_in_edges_list(edge, edges_list):
edges_list.append(edge)
@ -391,14 +421,13 @@ class Polygon:
if len(points) != 3:
sub_polygons = polygon.triangles
# todo: I modified this! To be checked @Guille
if len(sub_polygons) < 1:
continue
for sub_polygon in sub_polygons:
face = []
points = sub_polygon.coordinates
for point in points:
face.append(self._position_of(point, face))
self._faces.append(face)
if len(sub_polygons) >= 1:
for sub_polygon in sub_polygons:
face = []
points = sub_polygon.coordinates
for point in points:
face.append(self._position_of(point, face))
self._faces.append(face)
else:
for point in points:
face.append(self._position_of(point, face))
@ -411,7 +440,7 @@ class Polygon:
:return: int
"""
vertices = self.vertices
for i in enumerate(vertices):
for i in range(len(vertices)):
# ensure not duplicated vertex
power = 0
vertex2 = vertices[i]

View File

@ -41,10 +41,10 @@ class Polyhedron:
:return: int
"""
vertices = self.vertices
for i, vertex in enumerate(vertices):
for i in range(len(vertices)):
# ensure not duplicated vertex
power = 0
vertex2 = vertex
vertex2 = vertices[i]
for dimension in range(0, 3):
power += math.pow(vertex2[dimension] - point[dimension], 2)
distance = math.sqrt(power)
@ -92,14 +92,13 @@ class Polyhedron:
points = polygon.coordinates
if len(points) != 3:
sub_polygons = polygon.triangles
if len(sub_polygons) < 1:
continue
for sub_polygon in sub_polygons:
face = []
points = sub_polygon.coordinates
for point in points:
face.append(self._position_of(point, face))
self._faces.append(face)
if len(sub_polygons) >= 1:
for sub_polygon in sub_polygons:
face = []
points = sub_polygon.coordinates
for point in points:
face.append(self._position_of(point, face))
self._faces.append(face)
else:
for point in points:
face.append(self._position_of(point, face))

View File

@ -10,11 +10,12 @@ import logging
from typing import List, Union, TypeVar
import numpy as np
import pandas as pd
import hub.helpers.constants as cte
from hub.city_model_structure.attributes.polyhedron import Polyhedron
from hub.city_model_structure.building_demand.household import Household
from hub.city_model_structure.building_demand.internal_zone import InternalZone
from hub.city_model_structure.building_demand.thermal_zone import ThermalZone
from hub.city_model_structure.building_demand.surface import Surface
from hub.city_model_structure.city_object import CityObject
from hub.city_model_structure.energy_systems.energy_system import EnergySystem
@ -41,21 +42,20 @@ class Building(CityObject):
self._floor_area = None
self._roof_type = None
self._internal_zones = None
self._thermal_zones_from_internal_zones = None
self._shell = None
self._aliases = []
self._aliases = None
self._type = 'building'
self._cold_water_temperature = {}
self._heating_demand = {}
self._cooling_demand = {}
self._lighting_electrical_demand = {}
self._appliances_electrical_demand = {}
self._domestic_hot_water_heat_demand = {}
self._heating_consumption = {}
self._cooling_consumption = {}
self._domestic_hot_water_consumption = {}
self._distribution_systems_electrical_consumption = {}
self._onsite_electrical_production = {}
self._cold_water_temperature = dict()
self._heating = dict()
self._cooling = dict()
self._lighting_electrical_demand = dict()
self._appliances_electrical_demand = dict()
self._domestic_hot_water_heat_demand = dict()
self._heating_consumption = dict()
self._cooling_consumption = dict()
self._domestic_hot_water_consumption = dict()
self._distribution_systems_electrical_consumption = dict()
self._onsite_electrical_production = dict()
self._eave_height = None
self._energy_systems = None
self._systems_archetype_name = None
@ -70,9 +70,6 @@ class Building(CityObject):
self._min_x = min(self._min_x, surface.lower_corner[0])
self._min_y = min(self._min_y, surface.lower_corner[1])
self._min_z = min(self._min_z, surface.lower_corner[2])
self._max_x = max(self._max_x, surface.upper_corner[0])
self._max_y = max(self._max_y, surface.upper_corner[1])
self._max_z = max(self._max_z, surface.upper_corner[2])
surface.id = surface_id
if surface.type == cte.GROUND:
self._grounds.append(surface)
@ -89,10 +86,7 @@ class Building(CityObject):
elif surface.type == cte.INTERIOR_SLAB:
self._interior_slabs.append(surface)
else:
logging.error('Building %s [%s] has an unexpected surface type %s.', self.name, self.aliases, surface.type)
self._domestic_hot_water_peak_load = None
self._fuel_consumption_breakdown = {}
self._pv_generation = {}
logging.error(f'Building {self.name} [{self.aliases}] has an unexpected surface type {surface.type}.\n')
@property
def shell(self) -> Polyhedron:
@ -120,24 +114,9 @@ class Building(CityObject):
:return: [InternalZone]
"""
if self._internal_zones is None:
self._internal_zones = [InternalZone(self.surfaces, self.floor_area, self.volume)]
self._internal_zones = [InternalZone(self.surfaces, self.floor_area)]
return self._internal_zones
@property
def thermal_zones_from_internal_zones(self) -> Union[None, List[ThermalZone]]:
"""
Get building thermal zones
:return: [ThermalZone]
"""
if self._thermal_zones_from_internal_zones is None:
self._thermal_zones_from_internal_zones = []
for internal_zone in self.internal_zones:
if internal_zone.thermal_zones_from_internal_zones is None:
self._thermal_zones_from_internal_zones = None
return self._thermal_zones_from_internal_zones
self._thermal_zones_from_internal_zones.append(internal_zone.thermal_zones_from_internal_zones[0])
return self._thermal_zones_from_internal_zones
@property
def grounds(self) -> List[Surface]:
"""
@ -264,15 +243,6 @@ class Building(CityObject):
Get building average storey height in meters
:return: None or float
"""
if len(self.internal_zones) > 1:
self._average_storey_height = 0
for internal_zone in self.internal_zones:
self._average_storey_height += internal_zone.mean_height / len(self.internal_zones)
else:
if self.internal_zones[0].thermal_archetype is None:
self._average_storey_height = None
else:
self._average_storey_height = self.internal_zones[0].thermal_archetype.average_storey_height
return self._average_storey_height
@average_storey_height.setter
@ -292,10 +262,7 @@ class Building(CityObject):
"""
if self._storeys_above_ground is None:
if self.eave_height is not None and self.average_storey_height is not None:
storeys_above_ground = int(self.eave_height / self.average_storey_height)
if storeys_above_ground == 0:
storeys_above_ground += 1
self._storeys_above_ground = storeys_above_ground
self._storeys_above_ground = int(self.eave_height / self.average_storey_height)
return self._storeys_above_ground
@storeys_above_ground.setter
@ -311,7 +278,7 @@ class Building(CityObject):
def cold_water_temperature(self) -> {float}:
"""
Get cold water temperature in degrees Celsius
:return: dict{[float]}
:return: dict{DataFrame(float)}
"""
return self._cold_water_temperature
@ -319,176 +286,123 @@ class Building(CityObject):
def cold_water_temperature(self, value):
"""
Set cold water temperature in degrees Celsius
:param value: dict{[float]}
:param value: dict{DataFrame(float)}
"""
self._cold_water_temperature = value
@property
def heating_demand(self) -> dict:
def heating(self) -> dict:
"""
Get heating demand in J
:return: dict{[float]}
Get heating demand in Wh
:return: dict{DataFrame(float)}
"""
return self._heating_demand
return self._heating
@heating_demand.setter
def heating_demand(self, value):
@heating.setter
def heating(self, value):
"""
Set heating demand in J
:param value: dict{[float]}
Set heating demand in Wh
:param value: dict{DataFrame(float)}
"""
self._heating_demand = value
self._heating = value
@property
def cooling_demand(self) -> dict:
def cooling(self) -> dict:
"""
Get cooling demand in J
:return: dict{[float]}
Get cooling demand in Wh
:return: dict{DataFrame(float)}
"""
return self._cooling_demand
return self._cooling
@cooling_demand.setter
def cooling_demand(self, value):
@cooling.setter
def cooling(self, value):
"""
Set cooling demand in J
:param value: dict{[float]}
Set cooling demand in Wh
:param value: dict{DataFrame(float)}
"""
self._cooling_demand = value
self._cooling = value
@property
def lighting_electrical_demand(self) -> dict:
"""
Get lighting electrical demand in J
:return: dict{[float]}
Get lighting electrical demand in Wh
:return: dict{DataFrame(float)}
"""
return self._lighting_electrical_demand
@lighting_electrical_demand.setter
def lighting_electrical_demand(self, value):
"""
Set lighting electrical demand in J
:param value: dict{[float]}
Set lighting electrical demand in Wh
:param value: dict{DataFrame(float)}
"""
self._lighting_electrical_demand = value
@property
def appliances_electrical_demand(self) -> dict:
"""
Get appliances electrical demand in J
:return: dict{[float]}
Get appliances electrical demand in Wh
:return: dict{DataFrame(float)}
"""
return self._appliances_electrical_demand
@appliances_electrical_demand.setter
def appliances_electrical_demand(self, value):
"""
Set appliances electrical demand in J
:param value: dict{[float]}
Set appliances electrical demand in Wh
:param value: dict{DataFrame(float)}
"""
self._appliances_electrical_demand = value
@property
def domestic_hot_water_heat_demand(self) -> dict:
"""
Get domestic hot water heat demand in J
:return: dict{[float]}
Get domestic hot water heat demand in Wh
:return: dict{DataFrame(float)}
"""
return self._domestic_hot_water_heat_demand
@domestic_hot_water_heat_demand.setter
def domestic_hot_water_heat_demand(self, value):
"""
Set domestic hot water heat demand in J
:param value: dict{[float]}
Set domestic hot water heat demand in Wh
:param value: dict{DataFrame(float)}
"""
self._domestic_hot_water_heat_demand = value
@property
def lighting_peak_load(self) -> Union[None, dict]:
"""
Get lighting peak load in W
:return: dict{[float]}
"""
results = {}
peak_lighting = 0
peak = 0
for thermal_zone in self.thermal_zones_from_internal_zones:
lighting = thermal_zone.lighting
for schedule in lighting.schedules:
peak = max(schedule.values) * lighting.density * thermal_zone.total_floor_area
if peak > peak_lighting:
peak_lighting = peak
results[cte.MONTH] = [peak for _ in range(0, 12)]
results[cte.YEAR] = [peak]
return results
@property
def appliances_peak_load(self) -> Union[None, dict]:
"""
Get appliances peak load in W
:return: dict{[float]}
"""
results = {}
peak_appliances = 0
peak = 0
for thermal_zone in self.thermal_zones_from_internal_zones:
appliances = thermal_zone.appliances
for schedule in appliances.schedules:
peak = max(schedule.values) * appliances.density * thermal_zone.total_floor_area
if peak > peak_appliances:
peak_appliances = peak
results[cte.MONTH] = [peak for _ in range(0, 12)]
results[cte.YEAR] = [peak]
return results
@property
def heating_peak_load(self) -> Union[None, dict]:
"""
Get heating peak load in W
:return: dict{[float]}
:return: dict{DataFrame(float)}
"""
results = {}
if cte.HOUR in self.heating_demand:
monthly_values = PeakLoads().peak_loads_from_hourly(self.heating_demand[cte.HOUR])
if cte.HOUR in self.heating:
monthly_values = PeakLoads().\
peak_loads_from_hourly(self.heating[cte.HOUR][next(iter(self.heating[cte.HOUR]))])
else:
monthly_values = PeakLoads(self).heating_peak_loads_from_methodology
if monthly_values is None:
return None
results[cte.MONTH] = [x / cte.WATTS_HOUR_TO_JULES for x in monthly_values]
results[cte.YEAR] = [max(monthly_values) / cte.WATTS_HOUR_TO_JULES]
results[cte.MONTH] = pd.DataFrame(monthly_values, columns=[cte.HEATING_PEAK_LOAD])
results[cte.YEAR] = pd.DataFrame([max(monthly_values)], columns=[cte.HEATING_PEAK_LOAD])
return results
@property
def cooling_peak_load(self) -> Union[None, dict]:
"""
Get cooling peak load in W
:return: dict{[float]}
:return: dict{DataFrame(float)}
"""
results = {}
if cte.HOUR in self.cooling_demand:
monthly_values = PeakLoads().peak_loads_from_hourly(self.cooling_demand[cte.HOUR])
if cte.HOUR in self.cooling:
monthly_values = PeakLoads().peak_loads_from_hourly(self.cooling[cte.HOUR][next(iter(self.cooling[cte.HOUR]))])
else:
monthly_values = PeakLoads(self).cooling_peak_loads_from_methodology
if monthly_values is None:
return None
results[cte.MONTH] = [x / cte.WATTS_HOUR_TO_JULES for x in monthly_values]
results[cte.YEAR] = [max(monthly_values) / cte.WATTS_HOUR_TO_JULES]
return results
@property
def domestic_hot_water_peak_load(self) -> Union[None, dict]:
"""
Get cooling peak load in W
:return: dict{[float]}
"""
results = {}
monthly_values = None
if cte.HOUR in self.domestic_hot_water_heat_demand:
monthly_values = PeakLoads().peak_loads_from_hourly(self.domestic_hot_water_heat_demand[cte.HOUR])
if monthly_values is None:
return None
results[cte.MONTH] = [x / cte.WATTS_HOUR_TO_JULES for x in monthly_values]
results[cte.YEAR] = [max(monthly_values) / cte.WATTS_HOUR_TO_JULES]
results[cte.MONTH] = pd.DataFrame(monthly_values, columns=[cte.COOLING_PEAK_LOAD])
results[cte.YEAR] = pd.DataFrame([max(monthly_values)], columns=[cte.COOLING_PEAK_LOAD])
return results
@property
@ -500,7 +414,7 @@ class Building(CityObject):
if self._eave_height is None:
self._eave_height = 0
for wall in self.walls:
self._eave_height = max(self._eave_height, wall.upper_corner[2]) - self.simplified_polyhedron.min_z
self._eave_height = max(self._eave_height, wall.upper_corner[2])
return self._eave_height
@property
@ -574,7 +488,10 @@ class Building(CityObject):
"""
Add a new alias for the building
"""
self._aliases.append(value)
if self._aliases is None:
self._aliases = [value]
else:
self._aliases.append(value)
if self.city is not None:
self.city.add_building_alias(self, value)
@ -641,12 +558,12 @@ class Building(CityObject):
@property
def heating_consumption(self):
"""
Get energy consumption for heating according to the heating system installed in J
Get energy consumption for heating according to the heating system installed in Wh
return: dict
"""
if len(self._heating_consumption) == 0:
for heating_demand_key in self.heating_demand:
demand = self.heating_demand[heating_demand_key]
for heating_demand_key in self.heating:
demand = self.heating[heating_demand_key][cte.INSEL_MEB]
consumption_type = cte.HEATING
final_energy_consumed = self._calculate_consumption(consumption_type, demand)
if final_energy_consumed is None:
@ -657,12 +574,12 @@ class Building(CityObject):
@property
def cooling_consumption(self):
"""
Get energy consumption for cooling according to the cooling system installed in J
Get energy consumption for cooling according to the cooling system installed in Wh
return: dict
"""
if len(self._cooling_consumption) == 0:
for cooling_demand_key in self.cooling_demand:
demand = self.cooling_demand[cooling_demand_key]
for cooling_demand_key in self.cooling:
demand = self.cooling[cooling_demand_key][cte.INSEL_MEB]
consumption_type = cte.COOLING
final_energy_consumed = self._calculate_consumption(consumption_type, demand)
if final_energy_consumed is None:
@ -673,12 +590,12 @@ class Building(CityObject):
@property
def domestic_hot_water_consumption(self):
"""
Get energy consumption for domestic according to the domestic hot water system installed in J
Get energy consumption for domestic according to the domestic hot water system installed in Wh
return: dict
"""
if len(self._domestic_hot_water_consumption) == 0:
for domestic_hot_water_demand_key in self.domestic_hot_water_heat_demand:
demand = self.domestic_hot_water_heat_demand[domestic_hot_water_demand_key]
demand = self.domestic_hot_water_heat_demand[domestic_hot_water_demand_key][cte.INSEL_MEB]
consumption_type = cte.DOMESTIC_HOT_WATER
final_energy_consumed = self._calculate_consumption(consumption_type, demand)
if final_energy_consumed is None:
@ -689,93 +606,75 @@ class Building(CityObject):
def _calculate_working_hours(self):
_working_hours = {}
for internal_zone in self.internal_zones:
for thermal_zone in internal_zone.thermal_zones_from_internal_zones:
for thermal_zone in internal_zone.thermal_zones:
_working_hours_per_thermal_zone = {}
for schedule in thermal_zone.thermal_control.hvac_availability_schedules:
_working_hours_per_schedule = [0] * len(schedule.values)
for i, value in enumerate(schedule.values):
if value > 0:
_working_hours_per_schedule[i] = 1
for day_type in schedule.day_types:
_working_hours_per_thermal_zone[day_type] = _working_hours_per_schedule
for day_type in schedule.day_types:
_working_hours_per_thermal_zone[day_type] = _working_hours_per_schedule
if len(_working_hours) == 0:
_working_hours = _working_hours_per_thermal_zone
else:
for key, item in _working_hours.items():
for key in _working_hours.keys():
saved_values = _working_hours_per_thermal_zone[key]
for i, value in enumerate(item):
_working_hours[key][i] = max(_working_hours[key][i], saved_values[i])
working_hours = {}
values_months = []
for month in cte.WEEK_DAYS_A_MONTH.keys():
_total_hours_month = 0
for key in _working_hours:
hours = sum(_working_hours[key])
_total_hours_month += hours * cte.WEEK_DAYS_A_MONTH[month][key]
values_months.append(_total_hours_month)
working_hours[cte.MONTH] = values_months
working_hours[cte.YEAR] = sum(working_hours[cte.MONTH])
return working_hours
for i, value in enumerate(_working_hours[key]):
if saved_values[i] == 1:
_working_hours[key][i] = 1
_total_hours = 0
for key in _working_hours:
_total_hours += _working_hours[key] * cte.DAYS_A_YEAR[key]
return _total_hours
@property
def distribution_systems_electrical_consumption(self):
"""
Get total electricity consumption for distribution and emission systems in J
Get total electricity consumption for distribution and emission systems in Wh
return: dict
"""
_distribution_systems_electrical_consumption = {}
if len(self._distribution_systems_electrical_consumption) != 0:
return self._distribution_systems_electrical_consumption
_peak_load = self.heating_peak_load[cte.YEAR][0]
_peak_load_type = cte.HEATING
if _peak_load < self.cooling_peak_load[cte.YEAR][0]:
_peak_load = self.cooling_peak_load[cte.YEAR][0]
_peak_load_type = cte.COOLING
if len(self._distribution_systems_electrical_consumption) == 0:
_peak_load = self.heating_peak_load[cte.YEAR][cte.HEATING_PEAK_LOAD][0]
_peak_load_type = cte.HEATING
if _peak_load < self.cooling_peak_load[cte.YEAR][cte.COOLING_PEAK_LOAD][0]:
_peak_load = self.cooling_peak_load[cte.YEAR][cte.COOLING_PEAK_LOAD][0]
_peak_load_type = cte.COOLING
_working_hours = self._calculate_working_hours()
_consumption_fix_flow = 0
if self.energy_systems is None:
return self._distribution_systems_electrical_consumption
for energy_system in self.energy_systems:
distribution_systems = energy_system.distribution_systems
if distribution_systems is not None:
for distribution_system in distribution_systems:
emission_systems = distribution_system.emission_systems
parasitic_energy_consumption = 0
if emission_systems is not None:
for emission_system in emission_systems:
parasitic_energy_consumption += emission_system.parasitic_energy_consumption
consumption_variable_flow = distribution_system.distribution_consumption_variable_flow
for demand_type in energy_system.demand_types:
if demand_type.lower() == cte.HEATING.lower():
if _peak_load_type == cte.HEATING.lower():
_consumption_fix_flow = distribution_system.distribution_consumption_fix_flow
for heating_demand_key in self.heating_demand:
_consumption = [0]*len(self.heating_demand[heating_demand_key])
_demand = self.heating_demand[heating_demand_key]
for i, _ in enumerate(_consumption):
_consumption[i] += (parasitic_energy_consumption + consumption_variable_flow) * _demand[i]
self._distribution_systems_electrical_consumption[heating_demand_key] = _consumption
if demand_type.lower() == cte.COOLING.lower():
if _peak_load_type == cte.COOLING.lower():
_consumption_fix_flow = distribution_system.distribution_consumption_fix_flow
for demand_key in self.cooling_demand:
_consumption = self._distribution_systems_electrical_consumption[demand_key]
_demand = self.cooling_demand[demand_key]
for i, _ in enumerate(_consumption):
_consumption[i] += (parasitic_energy_consumption + consumption_variable_flow) * _demand[i]
self._distribution_systems_electrical_consumption[demand_key] = _consumption
for key, item in self._distribution_systems_electrical_consumption.items():
for i in range(0, len(item)):
_working_hours_value = _working_hours[key]
if len(item) == 12:
_working_hours_value = _working_hours[key][i]
self._distribution_systems_electrical_consumption[key][i] += (
_peak_load * _consumption_fix_flow * _working_hours_value * cte.WATTS_HOUR_TO_JULES
)
_consumption_fix_flow = 0
if self.energy_systems is None:
return self._distribution_systems_electrical_consumption
for energy_system in self.energy_systems:
emission_system = energy_system.emission_system.generic_emission_system
parasitic_energy_consumption = 0
if emission_system is not None:
parasitic_energy_consumption = emission_system.parasitic_energy_consumption
distribution_system = energy_system.distribution_system.generic_distribution_system
consumption_variable_flow = distribution_system.distribution_consumption_variable_flow
for demand_type in energy_system.demand_types:
if demand_type.lower() == cte.HEATING:
if _peak_load_type == cte.HEATING:
_consumption_fix_flow = distribution_system.distribution_consumption_fix_flow
for heating_demand_key in self.heating:
_consumption = [0]*len(self.heating)
_demand = self.heating[heating_demand_key][cte.INSEL_MEB]
for i in range(0, len(_consumption)):
_consumption[i] += (parasitic_energy_consumption + consumption_variable_flow) * _demand[i]
self._distribution_systems_electrical_consumption[heating_demand_key] = _consumption
if demand_type.lower() == cte.COOLING:
if _peak_load_type == cte.COOLING:
_consumption_fix_flow = distribution_system.distribution_consumption_fix_flow
for demand_key in self.cooling:
_consumption = self._distribution_systems_electrical_consumption[demand_key]
_demand = self.cooling[demand_key][cte.INSEL_MEB]
for i in range(0, len(_consumption)):
_consumption[i] += (parasitic_energy_consumption + consumption_variable_flow) * _demand[i]
self._distribution_systems_electrical_consumption[demand_key] = _consumption
for key in self._distribution_systems_electrical_consumption:
for i in range(0, len(self._distribution_systems_electrical_consumption[key])):
self._distribution_systems_electrical_consumption[key][i] += _peak_load * _consumption_fix_flow \
* self._calculate_working_hours()
return self._distribution_systems_electrical_consumption
def _calculate_consumption(self, consumption_type, demand):
@ -784,21 +683,15 @@ class Building(CityObject):
if self.energy_systems is None:
return None
for energy_system in self.energy_systems:
generation_systems = energy_system.generation_systems
for demand_type in energy_system.demand_types:
if demand_type.lower() == consumption_type.lower():
if consumption_type in (cte.HEATING, cte.DOMESTIC_HOT_WATER):
for generation_system in generation_systems:
if generation_system.heat_efficiency is not None:
coefficient_of_performance = float(generation_system.heat_efficiency)
if consumption_type == cte.HEATING or consumption_type == cte.DOMESTIC_HOT_WATER:
coefficient_of_performance = energy_system.generation_system.generic_generation_system.heat_efficiency
elif consumption_type == cte.COOLING:
for generation_system in generation_systems:
if generation_system.cooling_efficiency is not None:
coefficient_of_performance = float(generation_system.cooling_efficiency)
coefficient_of_performance = energy_system.generation_system.generic_generation_system.cooling_efficiency
elif consumption_type == cte.ELECTRICITY:
for generation_system in generation_systems:
if generation_system.electricity_efficiency is not None:
coefficient_of_performance = float(generation_system.electricity_efficiency)
coefficient_of_performance = \
energy_system.generation_system.generic_generation_system.electricity_efficiency
if coefficient_of_performance == 0:
values = [0]*len(demand)
final_energy_consumed = values
@ -811,9 +704,11 @@ class Building(CityObject):
@property
def onsite_electrical_production(self):
"""
Get total electricity produced onsite in J
Get total electricity produced onsite in Wh
return: dict
"""
# Add other systems whenever new ones appear
orientation_losses_factor = {cte.MONTH: {'north': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
'east': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
'south': [2.137931, 1.645503, 1.320946, 1.107817, 0.993213, 0.945175,
@ -824,96 +719,18 @@ class Building(CityObject):
'south': [1.212544],
'west': [0]}
}
# Add other systems whenever new ones appear
if self.energy_systems is None:
return self._onsite_electrical_production
for energy_system in self.energy_systems:
for generation_system in energy_system.generation_systems:
if generation_system.system_type == cte.PHOTOVOLTAIC:
if generation_system.electricity_efficiency is not None:
_efficiency = float(generation_system.electricity_efficiency)
else:
_efficiency = 0
self._onsite_electrical_production = {}
for _key in self.roofs[0].global_irradiance.keys():
_results = [0 for _ in range(0, len(self.roofs[0].global_irradiance[_key]))]
for surface in self.roofs:
if _key in orientation_losses_factor:
_results = [x + y * _efficiency * surface.perimeter_area
* surface.solar_collectors_area_reduction_factor * z
for x, y, z in zip(_results, surface.global_irradiance[_key],
orientation_losses_factor[_key]['south'])]
self._onsite_electrical_production[_key] = _results
if energy_system.generation_system.generic_generation_system.type == cte.PHOTOVOLTAIC:
_efficiency = energy_system.generation_system.generic_generation_system.electricity_efficiency
self._onsite_electrical_production = {}
for _key in self.roofs[0].global_irradiance.keys():
_results = [0 for _ in range(0, len(self.roofs[0].global_irradiance[_key][cte.SRA]))]
for surface in self.roofs:
_results = [x + y * _efficiency * surface.perimeter_area
* surface.solar_collectors_area_reduction_factor * z
for x, y, z in zip(_results, surface.global_irradiance[_key][cte.SRA],
orientation_losses_factor[cte.MONTH]['south'])]
self._onsite_electrical_production[_key] = _results
return self._onsite_electrical_production
@property
def lower_corner(self):
"""
Get building lower corner.
"""
return [self._min_x, self._min_y, self._min_z]
@property
def upper_corner(self):
"""
Get building upper corner.
"""
return [self._max_x, self._max_y, self._max_z]
@property
def energy_consumption_breakdown(self) -> dict:
"""
Get energy consumption of different sectors
return: dict
"""
fuel_breakdown = {cte.ELECTRICITY: {cte.LIGHTING: self.lighting_electrical_demand[cte.YEAR][0],
cte.APPLIANCES: self.appliances_electrical_demand[cte.YEAR][0]}}
energy_systems = self.energy_systems
for energy_system in energy_systems:
demand_types = energy_system.demand_types
generation_systems = energy_system.generation_systems
for demand_type in demand_types:
for generation_system in generation_systems:
if generation_system.system_type != cte.PHOTOVOLTAIC:
if generation_system.fuel_type not in fuel_breakdown:
fuel_breakdown[generation_system.fuel_type] = {}
if demand_type in generation_system.energy_consumption:
fuel_breakdown[f'{generation_system.fuel_type}'][f'{demand_type}'] = (
generation_system.energy_consumption)[f'{demand_type}'][cte.YEAR][0]
storage_systems = generation_system.energy_storage_systems
if storage_systems:
for storage_system in storage_systems:
if storage_system.type_energy_stored == 'thermal' and storage_system.heating_coil_energy_consumption:
fuel_breakdown[cte.ELECTRICITY][f'{demand_type}'] += storage_system.heating_coil_energy_consumption[cte.YEAR][0]
#TODO: When simulation models of all energy system archetypes are created, this part can be removed
heating_fuels = []
dhw_fuels = []
for energy_system in self.energy_systems:
if cte.HEATING in energy_system.demand_types:
for generation_system in energy_system.generation_systems:
heating_fuels.append(generation_system.fuel_type)
if cte.DOMESTIC_HOT_WATER in energy_system.demand_types:
for generation_system in energy_system.generation_systems:
dhw_fuels.append(generation_system.fuel_type)
for key in fuel_breakdown:
if key == cte.ELECTRICITY and cte.COOLING not in fuel_breakdown[key]:
for energy_system in energy_systems:
if cte.COOLING in energy_system.demand_types and cte.COOLING not in fuel_breakdown[key]:
for generation_system in energy_system.generation_systems:
fuel_breakdown[generation_system.fuel_type][cte.COOLING] = self.cooling_consumption[cte.YEAR][0]
for fuel in heating_fuels:
if cte.HEATING not in fuel_breakdown[fuel]:
for energy_system in energy_systems:
if cte.HEATING in energy_system.demand_types:
for generation_system in energy_system.generation_systems:
fuel_breakdown[generation_system.fuel_type][cte.HEATING] = self.heating_consumption[cte.YEAR][0]
for fuel in dhw_fuels:
if cte.DOMESTIC_HOT_WATER not in fuel_breakdown[fuel]:
for energy_system in energy_systems:
if cte.DOMESTIC_HOT_WATER in energy_system.demand_types:
for generation_system in energy_system.generation_systems:
fuel_breakdown[generation_system.fuel_type][cte.DOMESTIC_HOT_WATER] = self.domestic_hot_water_consumption[cte.YEAR][0]
self._fuel_consumption_breakdown = fuel_breakdown
return self._fuel_consumption_breakdown

View File

@ -1,151 +0,0 @@
"""
Construction thermal parameters
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
"""
from hub.city_model_structure.building_demand.layer import Layer
class Construction:
"""
Construction class
"""
def __init__(self):
self._type = None
self._name = None
self._layers = None
self._window_ratio = None
self._window_frame_ratio = None
self._window_g_value = None
self._window_overall_u_value = None
self._window_type = None
@property
def type(self):
"""
Get construction type
:return: str
"""
return self._type
@type.setter
def type(self, value):
"""
Set construction type
:param value: str
"""
self._type = value
@property
def name(self):
"""
Get construction name
:return: str
"""
return self._name
@name.setter
def name(self, value):
"""
Set construction name
:param value: str
"""
self._name = value
@property
def layers(self) -> [Layer]:
"""
Get layers
:return: [layer]
"""
return self._layers
@layers.setter
def layers(self, value):
"""
Set layers
:param value: [layer]
"""
self._layers = value
@property
def window_ratio(self):
"""
Get window ratio
:return: dict
"""
return self._window_ratio
@window_ratio.setter
def window_ratio(self, value):
"""
Set window ratio
:param value: dict
"""
self._window_ratio = value
@property
def window_frame_ratio(self):
"""
Get window frame ratio
:return: float
"""
return self._window_frame_ratio
@window_frame_ratio.setter
def window_frame_ratio(self, value):
"""
Set window frame ratio
:param value: float
"""
self._window_frame_ratio = value
@property
def window_g_value(self):
"""
Get transparent surface g-value
:return: float
"""
return self._window_g_value
@window_g_value.setter
def window_g_value(self, value):
"""
Set transparent surface g-value
:param value: float
"""
self._window_g_value = value
@property
def window_overall_u_value(self):
"""
Get transparent surface overall U-value in W/m2K
:return: float
"""
return self._window_overall_u_value
@window_overall_u_value.setter
def window_overall_u_value(self, value):
"""
Set transparent surface overall U-value in W/m2K
:param value: float
"""
self._window_overall_u_value = value
@property
def window_type(self):
"""
Get transparent surface type, 'window' or 'skylight'
:return: str
"""
return self._window_type
@window_type.setter
def window_type(self, value):
"""
Set transparent surface type, 'window' or 'skylight'
:return: str
"""
self._window_type = value

View File

@ -8,25 +8,24 @@ Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
import uuid
from typing import Union, List
from hub.city_model_structure.building_demand.usage import Usage
from hub.city_model_structure.building_demand.thermal_archetype import ThermalArchetype
from hub.city_model_structure.building_demand.thermal_zone import ThermalZone
from hub.city_model_structure.building_demand.thermal_boundary import ThermalBoundary
from hub.city_model_structure.attributes.polyhedron import Polyhedron
from hub.city_model_structure.energy_systems.hvac_system import HvacSystem
class InternalZone:
"""
InternalZone class
"""
def __init__(self, surfaces, area, volume):
def __init__(self, surfaces, area):
self._surfaces = surfaces
self._id = None
self._geometry = None
self._volume = volume
self._volume = None
self._area = area
self._thermal_zones_from_internal_zones = None
self._thermal_zones = None
self._usages = None
self._thermal_archetype = None
self._hvac_system = None
@property
def id(self):
@ -65,7 +64,7 @@ class InternalZone:
Get internal zone volume in cubic meters
:return: float
"""
return self._volume
return self.geometry.volume
@property
def area(self):
@ -75,18 +74,10 @@ class InternalZone:
"""
return self._area
@property
def mean_height(self):
"""
Get internal zone mean height in meters
:return: float
"""
return self.volume / self.area
@property
def usages(self) -> [Usage]:
"""
Get usage archetypes
Get internal zone usage zones
:return: [Usage]
"""
return self._usages
@ -94,59 +85,39 @@ class InternalZone:
@usages.setter
def usages(self, value):
"""
Set usage archetypes
Set internal zone usage zones
:param value: [Usage]
"""
self._usages = value
@property
def thermal_archetype(self) -> ThermalArchetype:
def hvac_system(self) -> Union[None, HvacSystem]:
"""
Get thermal archetype parameters
:return: ThermalArchetype
Get HVAC system installed for this thermal zone
:return: None or HvacSystem
"""
return self._thermal_archetype
return self._hvac_system
@thermal_archetype.setter
def thermal_archetype(self, value):
@hvac_system.setter
def hvac_system(self, value):
"""
Set thermal archetype parameters
:param value: ThermalArchetype
Set HVAC system installed for this thermal zone
:param value: HvacSystem
"""
self._thermal_archetype = value
self._hvac_system = value
@property
def thermal_zones_from_internal_zones(self) -> Union[None, List[ThermalZone]]:
def thermal_zones(self) -> Union[None, List[ThermalZone]]:
"""
Get building thermal zones as one per internal zone
Get building thermal zones
:return: [ThermalZone]
"""
_thermal_boundaries = []
for surface in self.surfaces:
if surface.holes_polygons is None:
windows_areas = None
else:
windows_areas = []
for hole in surface.holes_polygons:
windows_areas.append(hole.area)
_thermal_boundary = ThermalBoundary(surface, surface.solid_polygon.area, windows_areas)
surface.associated_thermal_boundaries = [_thermal_boundary]
_thermal_boundaries.append(_thermal_boundary)
if self.thermal_archetype is None:
return None # there are no archetype
_number_of_storeys = int(self.volume / self.area / self.thermal_archetype.average_storey_height)
if _number_of_storeys == 0:
_number_of_storeys = 1
_thermal_zone = ThermalZone(_thermal_boundaries, self, self.volume, self.area, _number_of_storeys)
for thermal_boundary in _thermal_zone.thermal_boundaries:
thermal_boundary.thermal_zones = [_thermal_zone]
self._thermal_zones_from_internal_zones = [_thermal_zone]
return self._thermal_zones_from_internal_zones
return self._thermal_zones
@thermal_zones_from_internal_zones.setter
def thermal_zones_from_internal_zones(self, value):
@thermal_zones.setter
def thermal_zones(self, value):
"""
Set city object thermal zones as one per internal zone
Set city object thermal zones
:param value: [ThermalZone]
"""
self._thermal_zones_from_internal_zones = value
self._thermal_zones = value

View File

@ -4,9 +4,9 @@ SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
"""
import uuid
from typing import Union
from hub.city_model_structure.building_demand.material import Material
class Layer:
@ -14,17 +14,9 @@ class Layer:
Layer class
"""
def __init__(self):
self._material = None
self._thickness = None
self._id = None
self._material_name = None
self._conductivity = None
self._specific_heat = None
self._density = None
self._solar_absorptance = None
self._thermal_absorptance = None
self._visible_absorptance = None
self._no_mass = False
self._thermal_resistance = None
@property
def id(self):
@ -36,6 +28,22 @@ class Layer:
self._id = uuid.uuid4()
return self._id
@property
def material(self) -> Material:
"""
Get layer material
:return: Material
"""
return self._material
@material.setter
def material(self, value):
"""
Set layer material
:param value: Material
"""
self._material = value
@property
def thickness(self) -> Union[None, float]:
"""
@ -52,155 +60,3 @@ class Layer:
"""
if value is not None:
self._thickness = float(value)
@property
def material_name(self):
"""
Get material name
:return: str
"""
return self._material_name
@material_name.setter
def material_name(self, value):
"""
Set material name
:param value: string
"""
self._material_name = str(value)
@property
def conductivity(self) -> Union[None, float]:
"""
Get material conductivity in W/mK
:return: None or float
"""
return self._conductivity
@conductivity.setter
def conductivity(self, value):
"""
Set material conductivity in W/mK
:param value: float
"""
if value is not None:
self._conductivity = float(value)
@property
def specific_heat(self) -> Union[None, float]:
"""
Get material conductivity in J/kgK
:return: None or float
"""
return self._specific_heat
@specific_heat.setter
def specific_heat(self, value):
"""
Get material conductivity in J/kgK
:param value: float
"""
if value is not None:
self._specific_heat = float(value)
@property
def density(self) -> Union[None, float]:
"""
Get material density in kg/m3
:return: None or float
"""
return self._density
@density.setter
def density(self, value):
"""
Set material density
:param value: float
"""
if value is not None:
self._density = float(value)
@property
def solar_absorptance(self) -> Union[None, float]:
"""
Get material solar absorptance
:return: None or float
"""
return self._solar_absorptance
@solar_absorptance.setter
def solar_absorptance(self, value):
"""
Set material solar absorptance
:param value: float
"""
if value is not None:
self._solar_absorptance = float(value)
@property
def thermal_absorptance(self) -> Union[None, float]:
"""
Get material thermal absorptance
:return: None or float
"""
return self._thermal_absorptance
@thermal_absorptance.setter
def thermal_absorptance(self, value):
"""
Set material thermal absorptance
:param value: float
"""
if value is not None:
self._thermal_absorptance = float(value)
@property
def visible_absorptance(self) -> Union[None, float]:
"""
Get material visible absorptance
:return: None or float
"""
return self._visible_absorptance
@visible_absorptance.setter
def visible_absorptance(self, value):
"""
Set material visible absorptance
:param value: float
"""
if value is not None:
self._visible_absorptance = float(value)
@property
def no_mass(self) -> Union[None, bool]:
"""
Get material no mass flag
:return: None or Boolean
"""
return self._no_mass
@no_mass.setter
def no_mass(self, value):
"""
Set material no mass flag
:param value: Boolean
"""
if value is not None:
self._no_mass = value
@property
def thermal_resistance(self) -> Union[None, float]:
"""
Get material thermal resistance in m2K/W
:return: None or float
"""
return self._thermal_resistance
@thermal_resistance.setter
def thermal_resistance(self, value):
"""
Set material thermal resistance in m2K/W
:param value: float
"""
if value is not None:
self._thermal_resistance = float(value)

View File

@ -0,0 +1,193 @@
"""
Material module
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
"""
from typing import Union
class Material:
"""
Material class
"""
def __init__(self):
self._id = None
self._name = None
self._conductivity = None
self._specific_heat = None
self._density = None
self._solar_absorptance = None
self._thermal_absorptance = None
self._visible_absorptance = None
self._no_mass = False
self._thermal_resistance = None
@property
def id(self):
"""
Get material id
:return: str
"""
return self._id
@id.setter
def id(self, value):
"""
Set material id
:param value: str
"""
self._id = value
@property
def name(self):
"""
Get material name
:return: str
"""
return self._name
@name.setter
def name(self, value):
"""
Set material name
:param value: string
"""
self._name = str(value)
@property
def conductivity(self) -> Union[None, float]:
"""
Get material conductivity in W/mK
:return: None or float
"""
return self._conductivity
@conductivity.setter
def conductivity(self, value):
"""
Set material conductivity in W/mK
:param value: float
"""
if value is not None:
self._conductivity = float(value)
@property
def specific_heat(self) -> Union[None, float]:
"""
Get material conductivity in J/kgK
:return: None or float
"""
return self._specific_heat
@specific_heat.setter
def specific_heat(self, value):
"""
Get material conductivity in J/kgK
:param value: float
"""
if value is not None:
self._specific_heat = float(value)
@property
def density(self) -> Union[None, float]:
"""
Get material density in kg/m3
:return: None or float
"""
return self._density
@density.setter
def density(self, value):
"""
Set material density
:param value: float
"""
if value is not None:
self._density = float(value)
@property
def solar_absorptance(self) -> Union[None, float]:
"""
Get material solar absorptance
:return: None or float
"""
return self._solar_absorptance
@solar_absorptance.setter
def solar_absorptance(self, value):
"""
Set material solar absorptance
:param value: float
"""
if value is not None:
self._solar_absorptance = float(value)
@property
def thermal_absorptance(self) -> Union[None, float]:
"""
Get material thermal absorptance
:return: None or float
"""
return self._thermal_absorptance
@thermal_absorptance.setter
def thermal_absorptance(self, value):
"""
Set material thermal absorptance
:param value: float
"""
if value is not None:
self._thermal_absorptance = float(value)
@property
def visible_absorptance(self) -> Union[None, float]:
"""
Get material visible absorptance
:return: None or float
"""
return self._visible_absorptance
@visible_absorptance.setter
def visible_absorptance(self, value):
"""
Set material visible absorptance
:param value: float
"""
if value is not None:
self._visible_absorptance = float(value)
@property
def no_mass(self) -> Union[None, bool]:
"""
Get material no mass flag
:return: None or Boolean
"""
return self._no_mass
@no_mass.setter
def no_mass(self, value):
"""
Set material no mass flag
:param value: Boolean
"""
if value is not None:
self._no_mass = value
@property
def thermal_resistance(self) -> Union[None, float]:
"""
Get material thermal resistance in m2K/W
:return: None or float
"""
return self._thermal_resistance
@thermal_resistance.setter
def thermal_resistance(self, value):
"""
Set material thermal resistance in m2K/W
:param value: float
"""
if value is not None:
self._thermal_resistance = float(value)

View File

@ -90,9 +90,7 @@ class Storey:
:return: ThermalZone
"""
if self._thermal_zone is None:
_number_of_storeys = 1
self._thermal_zone = ThermalZone(self.thermal_boundaries, self._internal_zone,
self.volume, self.floor_area, _number_of_storeys)
self._thermal_zone = ThermalZone(self.thermal_boundaries, self._internal_zone, self.volume, self.floor_area)
return self._thermal_zone
@property

View File

@ -10,15 +10,14 @@ from __future__ import annotations
import math
import uuid
from typing import List, Union
import numpy as np
from typing import List, Union
from hub.city_model_structure.attributes.polygon import Polygon
from hub.city_model_structure.attributes.plane import Plane
from hub.city_model_structure.attributes.point import Point
from hub.city_model_structure.greenery.vegetation import Vegetation
from hub.city_model_structure.building_demand.thermal_boundary import ThermalBoundary
import hub.helpers.constants as cte
from hub.helpers.configuration_helper import ConfigurationHelper
class Surface:
@ -35,19 +34,17 @@ class Surface:
self._area = None
self._lower_corner = None
self._upper_corner = None
self._global_irradiance = {}
self._global_irradiance = dict()
self._perimeter_polygon = perimeter_polygon
self._holes_polygons = holes_polygons
self._solid_polygon = solid_polygon
self._short_wave_reflectance = None
self._long_wave_emittance = None
self._inverse = None
self._associated_thermal_boundaries = None
self._associated_thermal_boundaries = []
self._vegetation = None
self._percentage_shared = None
self._solar_collectors_area_reduction_factor = None
self._global_irradiance_tilted = {}
self._installed_solar_collector_area = None
@property
def name(self):
@ -157,6 +154,7 @@ class Surface:
if self._inclination is None:
self._inclination = np.arccos(self.perimeter_polygon.normal[2])
return self._inclination
@property
def type(self):
"""
@ -180,16 +178,16 @@ class Surface:
@property
def global_irradiance(self) -> dict:
"""
Get global irradiance on surface in W/m2
:return: dict
Get global irradiance on surface in Wh/m2
:return: dict{DataFrame(float)}
"""
return self._global_irradiance
@global_irradiance.setter
def global_irradiance(self, value):
"""
Set global irradiance on surface in W/m2
:param value: dict
Set global irradiance on surface in Wh/m2
:param value: dict{DataFrame(float)}
"""
self._global_irradiance = value
@ -386,35 +384,3 @@ class Surface:
:param value: float
"""
self._solar_collectors_area_reduction_factor = value
@property
def global_irradiance_tilted(self) -> dict:
"""
Get global irradiance on a tilted surface in W/m2
:return: dict
"""
return self._global_irradiance_tilted
@global_irradiance_tilted.setter
def global_irradiance_tilted(self, value):
"""
Set global irradiance on a tilted surface in W/m2
:param value: dict
"""
self._global_irradiance_tilted = value
@property
def installed_solar_collector_area(self):
"""
Get installed solar collector area in m2
:return: dict
"""
return self._installed_solar_collector_area
@installed_solar_collector_area.setter
def installed_solar_collector_area(self, value):
"""
Set installed solar collector area in m2
:return: dict
"""
self._installed_solar_collector_area = value

View File

@ -1,168 +0,0 @@
"""
Thermal archetype module
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
"""
from hub.city_model_structure.building_demand.construction import Construction
class ThermalArchetype:
"""
ThermalArchetype class
"""
def __init__(self):
self._constructions = None
self._average_storey_height = None
self._thermal_capacity = None
self._extra_loses_due_to_thermal_bridges = None
self._indirect_heated_ratio = None
self._infiltration_rate_for_ventilation_system_off = None
self._infiltration_rate_for_ventilation_system_on = None
self._infiltration_rate_area_for_ventilation_system_off=None
self._infiltration_rate_area_for_ventilation_system_on=None
@property
def constructions(self) -> [Construction]:
"""
Get archetype constructions
:return: [Construction]
"""
return self._constructions
@constructions.setter
def constructions(self, value):
"""
Set archetype constructions
:param value: [Construction]
"""
self._constructions = value
@property
def average_storey_height(self):
"""
Get average storey height in m
:return: float
"""
return self._average_storey_height
@average_storey_height.setter
def average_storey_height(self, value):
"""
Set average storey height in m
:param value: float
"""
self._average_storey_height = value
@property
def thermal_capacity(self):
"""
Get thermal capacity in J/m3K
:return: float
"""
return self._thermal_capacity
@thermal_capacity.setter
def thermal_capacity(self, value):
"""
Set thermal capacity in J/m3K
:param value: float
"""
self._thermal_capacity = value
@property
def extra_loses_due_to_thermal_bridges(self):
"""
Get extra loses due to thermal bridges in W/m2K
:return: float
"""
return self._extra_loses_due_to_thermal_bridges
@extra_loses_due_to_thermal_bridges.setter
def extra_loses_due_to_thermal_bridges(self, value):
"""
Set extra loses due to thermal bridges in W/m2K
:param value: float
"""
self._extra_loses_due_to_thermal_bridges = value
@property
def indirect_heated_ratio(self):
"""
Get indirect heated area ratio
:return: float
"""
return self._indirect_heated_ratio
@indirect_heated_ratio.setter
def indirect_heated_ratio(self, value):
"""
Set indirect heated area ratio
:param value: float
"""
self._indirect_heated_ratio = value
@property
def infiltration_rate_for_ventilation_system_off(self):
"""
Get infiltration rate for ventilation system off in ACH
:return: float
"""
return self._infiltration_rate_for_ventilation_system_off
@infiltration_rate_for_ventilation_system_off.setter
def infiltration_rate_for_ventilation_system_off(self, value):
"""
Set infiltration rate for ventilation system off in ACH
:param value: float
"""
self._infiltration_rate_for_ventilation_system_off = value
@property
def infiltration_rate_for_ventilation_system_on(self):
"""
Get infiltration rate for ventilation system on in ACH
:return: float
"""
return self._infiltration_rate_for_ventilation_system_on
@infiltration_rate_for_ventilation_system_on.setter
def infiltration_rate_for_ventilation_system_on(self, value):
"""
Set infiltration rate for ventilation system on in ACH
:param value: float
"""
self._infiltration_rate_for_ventilation_system_on = value
@property
def infiltration_rate_area_for_ventilation_system_off(self):
"""
Get infiltration rate for ventilation system off in l/s/m2
:return: float
"""
return self._infiltration_rate_for_ventilation_system_off
@infiltration_rate_area_for_ventilation_system_off.setter
def infiltration_rate_area_for_ventilation_system_off(self, value):
"""
Set infiltration rate for ventilation system off in l/s/m2
:param value: float
"""
self._infiltration_rate_for_ventilation_system_off = value
@property
def infiltration_rate_area_for_ventilation_system_on(self):
"""
Get infiltration rate for ventilation system on in l/s/m2
:return: float
"""
return self._infiltration_rate_for_ventilation_system_on
@infiltration_rate_area_for_ventilation_system_on.setter
def infiltration_rate_area_for_ventilation_system_on(self, value):
"""
Set infiltration rate for ventilation system on in l/s/m2
:param value: float
"""
self._infiltration_rate_for_ventilation_system_on = value

View File

@ -7,9 +7,7 @@ Code contributors: Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concord
"""
import uuid
import math
from typing import List, Union, TypeVar
import logging
from hub.helpers.configuration_helper import ConfigurationHelper as ch
import hub.helpers.constants as cte
from hub.city_model_structure.building_demand.layer import Layer
@ -37,11 +35,8 @@ class ThermalBoundary:
self._construction_name = None
self._thickness = None
self._internal_surface = None
self._external_surface = None
self._window_ratio = 0
self._window_ratio_to_be_calculated = False
if self._windows_areas is not None:
self._window_ratio_to_be_calculated = True
self._window_ratio = None
self._window_ratio_is_calculated = False
@property
def id(self):
@ -56,7 +51,7 @@ class ThermalBoundary:
@property
def parent_surface(self) -> Surface:
"""
Get the surface that belongs to the thermal boundary, considered the external surface of that boundary
Get the surface that belongs to the thermal boundary
:return: Surface
"""
return self._parent_surface
@ -95,7 +90,7 @@ class ThermalBoundary:
self._thickness = 0.0
if self.layers is not None:
for layer in self.layers:
if not layer.no_mass:
if not layer.material.no_mass:
self._thickness += layer.thickness
return self._thickness
@ -106,7 +101,18 @@ class ThermalBoundary:
:return: None or [ThermalOpening]
"""
if self._thermal_openings is None:
if self.windows_areas is not None:
if self.window_ratio is not None:
if self.window_ratio == 0:
self._thermal_openings = []
else:
thermal_opening = ThermalOpening()
if self.window_ratio == 1:
_area = self.opaque_area
else:
_area = self.opaque_area * self.window_ratio / (1-self.window_ratio)
thermal_opening.area = _area
self._thermal_openings = [thermal_opening]
else:
if len(self.windows_areas) > 0:
self._thermal_openings = []
for window_area in self.windows_areas:
@ -115,57 +121,24 @@ class ThermalBoundary:
self._thermal_openings.append(thermal_opening)
else:
self._thermal_openings = []
else:
if self.window_ratio is not None:
if self.window_ratio == 0:
self._thermal_openings = []
else:
thermal_opening = ThermalOpening()
if self.window_ratio == 1:
_area = self.opaque_area
else:
_area = self.opaque_area * self.window_ratio / (1-self.window_ratio)
thermal_opening.area = _area
self._thermal_openings = [thermal_opening]
else:
self._thermal_openings = []
else:
if self.windows_areas is not None:
return self._thermal_openings
if self.window_ratio is not None:
if self.window_ratio == 0:
self._thermal_openings = []
else:
if len(self._thermal_openings) == 0:
thermal_opening = ThermalOpening()
if self.window_ratio == 1:
_area = self.opaque_area
else:
_area = self.opaque_area * self.window_ratio / (1-self.window_ratio)
thermal_opening.area = _area
self._thermal_openings = [thermal_opening]
else:
for _thermal_opening in self._thermal_openings:
if self.window_ratio == 1:
_area = self.opaque_area
else:
_area = self.opaque_area * self.window_ratio / (1-self.window_ratio)
_thermal_opening.area = _area
self._thermal_openings = [_thermal_opening]
for thermal_opening in self._thermal_openings:
thermal_opening.g_value = self._construction_archetype.window_g_value
thermal_opening.overall_u_value = self._construction_archetype.window_overall_u_value
thermal_opening.frame_ratio = self._construction_archetype.window_frame_ratio
thermal_opening.construction_name = self._construction_archetype.window_type
return self._thermal_openings
@property
def _construction_archetype(self):
construction_archetypes = self.thermal_zones[0].parent_internal_zone.thermal_archetype.constructions
for construction_archetype in construction_archetypes:
if str(self.type) == str(construction_archetype.type):
return construction_archetype
return None
def construction_name(self) -> Union[None, str]:
"""
Get construction name
:return: None or str
"""
return self._construction_name
@construction_name.setter
def construction_name(self, value):
"""
Set construction name
:param value: str
"""
if value is not None:
self._construction_name = str(value)
@property
def layers(self) -> List[Layer]:
@ -173,13 +146,16 @@ class ThermalBoundary:
Get thermal boundary layers
:return: [Layers]
"""
if self._construction_archetype is not None:
self._layers = self._construction_archetype.layers
else:
logging.error('Layers not defined\n')
raise ValueError('Layers not defined')
return self._layers
@layers.setter
def layers(self, value):
"""
Set thermal boundary layers
:param value: [Layer]
"""
self._layers = value
@property
def type(self):
"""
@ -198,31 +174,28 @@ class ThermalBoundary:
If none of those sources are available, it returns None.
:return: float
"""
if self._window_ratio_to_be_calculated:
if len(self.windows_areas) == 0:
self._window_ratio = 0
else:
total_window_area = 0
for window_area in self.windows_areas:
total_window_area += window_area
self._window_ratio = total_window_area / (self.opaque_area + total_window_area)
else:
if self.type in (cte.WALL, cte.ROOF):
if -math.sqrt(2) / 2 < math.sin(self.parent_surface.azimuth) < math.sqrt(2) / 2:
if 0 < math.cos(self.parent_surface.azimuth):
self._window_ratio = \
float(self._construction_archetype.window_ratio['north']) / 100
else:
self._window_ratio = \
float(self._construction_archetype.window_ratio['south']) / 100
elif math.sqrt(2) / 2 <= math.sin(self._parent_surface.azimuth):
self._window_ratio = \
float(self._construction_archetype.window_ratio['east']) / 100
if self.windows_areas is not None:
if not self._window_ratio_is_calculated:
_calculated = True
if len(self.windows_areas) == 0:
self._window_ratio = 0
else:
self._window_ratio = \
float(self._construction_archetype.window_ratio['west']) / 100
total_window_area = 0
for window_area in self.windows_areas:
total_window_area += window_area
self._window_ratio = total_window_area / (self.opaque_area + total_window_area)
return self._window_ratio
@window_ratio.setter
def window_ratio(self, value):
"""
Set thermal boundary window ratio
:param value: str
"""
if self._window_ratio_is_calculated:
raise ValueError('Window ratio cannot be assigned when the windows are defined in the geometry.')
self._window_ratio = float(value)
@property
def windows_areas(self) -> [float]:
"""
@ -247,28 +220,15 @@ class ThermalBoundary:
r_value = 1.0/h_i + 1.0/h_e
try:
for layer in self.layers:
if layer.no_mass:
r_value += float(layer.thermal_resistance)
if layer.material.no_mass:
r_value += float(layer.material.thermal_resistance)
else:
r_value += float(layer.thickness) / float(layer.conductivity)
r_value += float(layer.thickness) / float(layer.material.conductivity)
self._u_value = 1.0/r_value
except TypeError:
raise TypeError('Constructions layers are not initialized') from TypeError
raise Exception('Constructions layers are not initialized') from TypeError
return self._u_value
@property
def construction_name(self):
"""
Get construction name
:return: str
"""
if self._construction_archetype is not None:
self._construction_name = self._construction_archetype.name
else:
logging.error('Construction name not defined\n')
raise ValueError('Construction name not defined')
return self._construction_name
@u_value.setter
def u_value(self, value):
"""
@ -320,18 +280,4 @@ class ThermalBoundary:
"""
if self._internal_surface is None:
self._internal_surface = self.parent_surface.inverse
# The agreement is that the layers are defined from outside to inside
internal_layer = self.layers[len(self.layers) - 1]
self._internal_surface.short_wave_reflectance = 1 - internal_layer.solar_absorptance
self._internal_surface.long_wave_emittance = 1 - internal_layer.solar_absorptance
return self._internal_surface
@property
def external_surface(self) -> Surface:
if self._external_surface is None:
# The agreement is that the layers are defined from outside to inside
self._external_surface = self.parent_surface
self._external_surface.short_wave_reflectance = 1 - self.layers[0].solar_absorptance
self._external_surface.long_wave_emittance = 1 - self.layers[0].solar_absorptance
return self._external_surface

View File

@ -4,7 +4,6 @@ SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
"""
from math import inf
from typing import Union, List
from hub.city_model_structure.attributes.schedule import Schedule
@ -23,16 +22,20 @@ class ThermalControl:
@staticmethod
def _maximum_value(schedules):
maximum = -inf
maximum = -1000
for schedule in schedules:
maximum = max(maximum, max(schedule.values))
for value in schedule.values:
if value > maximum:
maximum = value
return maximum
@staticmethod
def _minimum_value(schedules):
minimum = inf
minimum = 1000
for schedule in schedules:
minimum = min(minimum, min(schedule.values))
for value in schedule.values:
if value < minimum:
minimum = value
return minimum
@property

View File

@ -8,9 +8,8 @@ Code contributors: Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concord
import uuid
import copy
from typing import List, Union, TypeVar
import numpy
from typing import List, Union, TypeVar
from hub.city_model_structure.building_demand.occupancy import Occupancy
from hub.city_model_structure.building_demand.appliances import Appliances
from hub.city_model_structure.building_demand.lighting import Lighting
@ -29,12 +28,7 @@ class ThermalZone:
ThermalZone class
"""
def __init__(self, thermal_boundaries,
parent_internal_zone,
volume,
footprint_area,
number_of_storeys,
usage_name=None):
def __init__(self, thermal_boundaries, parent_internal_zone, volume, footprint_area, usage_name=None):
self._id = None
self._parent_internal_zone = parent_internal_zone
self._footprint_area = footprint_area
@ -44,13 +38,10 @@ class ThermalZone:
self._indirectly_heated_area_ratio = None
self._infiltration_rate_system_on = None
self._infiltration_rate_system_off = None
self._infiltration_rate_area_system_on = None
self._infiltration_rate_area_system_off = None
self._volume = volume
self._ordinate_number = None
self._view_factors_matrix = None
self._total_floor_area = None
self._number_of_storeys = number_of_storeys
self._usage_name = usage_name
self._usage_from_parent = False
if usage_name is None:
@ -66,21 +57,9 @@ class ThermalZone:
self._domestic_hot_water = None
self._usages = None
@property
def parent_internal_zone(self) -> InternalZone:
"""
Get the internal zone to which this thermal zone belongs
:return: InternalZone
"""
return self._parent_internal_zone
@property
def usages(self):
"""
Get the thermal zone usages including percentage with the format [percentage]-usage_[percentage]-usage...
Eg: 70-office_30-residential
:return: str
"""
# example 70-office_30-residential
if self._usage_from_parent:
self._usages = copy.deepcopy(self._parent_internal_zone.usages)
else:
@ -129,62 +108,82 @@ class ThermalZone:
Get thermal zone additional thermal bridge u value per footprint area W/m2K
:return: None or float
"""
self._additional_thermal_bridge_u_value = self.parent_internal_zone.thermal_archetype.extra_loses_due_to_thermal_bridges
return self._additional_thermal_bridge_u_value
@additional_thermal_bridge_u_value.setter
def additional_thermal_bridge_u_value(self, value):
"""
Set thermal zone additional thermal bridge u value per footprint area W/m2K
:param value: float
"""
if value is not None:
self._additional_thermal_bridge_u_value = float(value)
@property
def effective_thermal_capacity(self) -> Union[None, float]:
"""
Get thermal zone effective thermal capacity in J/m3K
:return: None or float
"""
self._effective_thermal_capacity = self._parent_internal_zone.thermal_archetype.thermal_capacity
return self._effective_thermal_capacity
@effective_thermal_capacity.setter
def effective_thermal_capacity(self, value):
"""
Set thermal zone effective thermal capacity in J/m3K
:param value: float
"""
if value is not None:
self._effective_thermal_capacity = float(value)
@property
def indirectly_heated_area_ratio(self) -> Union[None, float]:
"""
Get thermal zone indirectly heated area ratio
:return: None or float
"""
self._indirectly_heated_area_ratio = self._parent_internal_zone.thermal_archetype.indirect_heated_ratio
return self._indirectly_heated_area_ratio
@indirectly_heated_area_ratio.setter
def indirectly_heated_area_ratio(self, value):
"""
Set thermal zone indirectly heated area ratio
:param value: float
"""
if value is not None:
self._indirectly_heated_area_ratio = float(value)
@property
def infiltration_rate_system_on(self):
"""
Get thermal zone infiltration rate system on in air changes per second (1/s)
Get thermal zone infiltration rate system on in air changes per hour (ACH)
:return: None or float
"""
self._infiltration_rate_system_on = self._parent_internal_zone.thermal_archetype.infiltration_rate_for_ventilation_system_on
return self._infiltration_rate_system_on
@infiltration_rate_system_on.setter
def infiltration_rate_system_on(self, value):
"""
Set thermal zone infiltration rate system on in air changes per hour (ACH)
:param value: float
"""
self._infiltration_rate_system_on = value
@property
def infiltration_rate_system_off(self):
"""
Get thermal zone infiltration rate system off in air changes per second (1/s)
Get thermal zone infiltration rate system off in air changes per hour (ACH)
:return: None or float
"""
self._infiltration_rate_system_off = self._parent_internal_zone.thermal_archetype.infiltration_rate_for_ventilation_system_off
return self._infiltration_rate_system_off
@property
def infiltration_rate_area_system_on(self):
@infiltration_rate_system_off.setter
def infiltration_rate_system_off(self, value):
"""
Get thermal zone infiltration rate system on in air changes per second (1/s)
:return: None or float
Set thermal zone infiltration rate system on in air changes per hour (ACH)
:param value: float
"""
self._infiltration_rate_area_system_on = self._parent_internal_zone.thermal_archetype.infiltration_rate_area_for_ventilation_system_on
return self._infiltration_rate_area_system_on
@property
def infiltration_rate_area_system_off(self):
"""
Get thermal zone infiltration rate system off in air changes per second (1/s)
:return: None or float
"""
self._infiltration_rate_area_system_off = self._parent_internal_zone.thermal_archetype.infiltration_rate_area_for_ventilation_system_off
return self._infiltration_rate_area_system_off
self._infiltration_rate_system_off = value
@property
def volume(self):
@ -217,44 +216,16 @@ class ThermalZone:
Get thermal zone view factors matrix
:return: [[float]]
"""
# todo: review method if windows not in window_ratio but in geometry
if self._view_factors_matrix is None:
total_area = 0
for thermal_boundary in self.thermal_boundaries:
total_area += thermal_boundary.opaque_area
for thermal_opening in thermal_boundary.thermal_openings:
total_area += thermal_opening.area
view_factors_matrix = []
for thermal_boundary_1 in self.thermal_boundaries:
values = []
for thermal_boundary_2 in self.thermal_boundaries:
value = 0
if thermal_boundary_1.id != thermal_boundary_2.id:
value = thermal_boundary_2.opaque_area / (total_area - thermal_boundary_1.opaque_area)
values.append(value)
for thermal_boundary in self.thermal_boundaries:
for thermal_opening in thermal_boundary.thermal_openings:
value = thermal_opening.area / (total_area - thermal_boundary_1.opaque_area)
values.append(value)
view_factors_matrix.append(values)
for thermal_boundary_1 in self.thermal_boundaries:
values = []
for thermal_opening_1 in thermal_boundary_1.thermal_openings:
for thermal_boundary_2 in self.thermal_boundaries:
value = thermal_boundary_2.opaque_area / (total_area - thermal_opening_1.area)
values.append(value)
for thermal_boundary in self.thermal_boundaries:
for thermal_opening_2 in thermal_boundary.thermal_openings:
value = 0
if thermal_opening_1.id != thermal_opening_2.id:
value = thermal_opening_2.area / (total_area - thermal_opening_1.area)
values.append(value)
view_factors_matrix.append(values)
self._view_factors_matrix = view_factors_matrix
return self._view_factors_matrix
@view_factors_matrix.setter
def view_factors_matrix(self, value):
"""
Set thermal zone view factors matrix
:param value: [[float]]
"""
self._view_factors_matrix = value
@property
def usage_name(self) -> Union[None, str]:
"""
@ -309,7 +280,7 @@ class ThermalZone:
@property
def mechanical_air_change(self) -> Union[None, float]:
"""
Get thermal zone mechanical air change in air change per second (1/s)
Get thermal zone mechanical air change in air change per hour (ACH)
:return: None or float
"""
if self.usages is None:
@ -353,19 +324,19 @@ class ThermalZone:
_occupancy_reference = self.usages[0].occupancy
if _occupancy_reference.occupancy_schedules is not None:
_schedules = []
for schedule_index, schedule_value in enumerate(_occupancy_reference.occupancy_schedules):
for i_schedule in range(0, len(_occupancy_reference.occupancy_schedules)):
schedule = Schedule()
schedule.type = schedule_value.type
schedule.day_types = schedule_value.day_types
schedule.data_type = schedule_value.data_type
schedule.time_step = schedule_value.time_step
schedule.time_range = schedule_value.time_range
schedule.type = _occupancy_reference.occupancy_schedules[i_schedule].type
schedule.day_types = _occupancy_reference.occupancy_schedules[i_schedule].day_types
schedule.data_type = _occupancy_reference.occupancy_schedules[i_schedule].data_type
schedule.time_step = _occupancy_reference.occupancy_schedules[i_schedule].time_step
schedule.time_range = _occupancy_reference.occupancy_schedules[i_schedule].time_range
new_values = []
for i_value, _ in enumerate(schedule_value.values):
for i_value in range(0, len(_occupancy_reference.occupancy_schedules[i_schedule].values)):
_new_value = 0
for usage in self.usages:
_new_value += usage.percentage * usage.occupancy.occupancy_schedules[schedule_index].values[i_value]
_new_value += usage.percentage * usage.occupancy.occupancy_schedules[i_schedule].values[i_value]
new_values.append(_new_value)
schedule.values = new_values
_schedules.append(schedule)
@ -414,19 +385,19 @@ class ThermalZone:
_lighting_reference = self.usages[0].lighting
if _lighting_reference.schedules is not None:
_schedules = []
for schedule_index, schedule_value in enumerate(_lighting_reference.schedules):
for i_schedule in range(0, len(_lighting_reference.schedules)):
schedule = Schedule()
schedule.type = schedule_value.type
schedule.day_types = schedule_value.day_types
schedule.data_type = schedule_value.data_type
schedule.time_step = schedule_value.time_step
schedule.time_range = schedule_value.time_range
schedule.type = _lighting_reference.schedules[i_schedule].type
schedule.day_types = _lighting_reference.schedules[i_schedule].day_types
schedule.data_type = _lighting_reference.schedules[i_schedule].data_type
schedule.time_step = _lighting_reference.schedules[i_schedule].time_step
schedule.time_range = _lighting_reference.schedules[i_schedule].time_range
new_values = []
for i_value, _ in enumerate(schedule_value.values):
for i_value in range(0, len(_lighting_reference.schedules[i_schedule].values)):
_new_value = 0
for usage in self.usages:
_new_value += usage.percentage * usage.lighting.schedules[schedule_index].values[i_value]
_new_value += usage.percentage * usage.lighting.schedules[i_schedule].values[i_value]
new_values.append(_new_value)
schedule.values = new_values
_schedules.append(schedule)
@ -475,19 +446,19 @@ class ThermalZone:
_appliances_reference = self.usages[0].appliances
if _appliances_reference.schedules is not None:
_schedules = []
for schedule_index, schedule_value in enumerate(_appliances_reference.schedules):
for i_schedule in range(0, len(_appliances_reference.schedules)):
schedule = Schedule()
schedule.type = schedule_value.type
schedule.day_types = schedule_value.day_types
schedule.data_type = schedule_value.data_type
schedule.time_step = schedule_value.time_step
schedule.time_range = schedule_value.time_range
schedule.type = _appliances_reference.schedules[i_schedule].type
schedule.day_types = _appliances_reference.schedules[i_schedule].day_types
schedule.data_type = _appliances_reference.schedules[i_schedule].data_type
schedule.time_step = _appliances_reference.schedules[i_schedule].time_step
schedule.time_range = _appliances_reference.schedules[i_schedule].time_range
new_values = []
for i_value, _ in enumerate(schedule_value.values):
for i_value in range(0, len(_appliances_reference.schedules[i_schedule].values)):
_new_value = 0
for usage in self.usages:
_new_value += usage.percentage * usage.appliances.schedules[schedule_index].values[i_value]
_new_value += usage.percentage * usage.appliances.schedules[i_schedule].values[i_value]
new_values.append(_new_value)
schedule.values = new_values
_schedules.append(schedule)
@ -539,15 +510,15 @@ class ThermalZone:
_schedules_defined = False
break
for day, _schedule in enumerate(internal_gain.schedules):
for v_index, value in enumerate(_schedule.values):
values[v_index, day] += value * usage.percentage
for v, value in enumerate(_schedule.values):
values[v, day] += value * usage.percentage
if _schedules_defined:
_schedules = []
for day_index, day in enumerate(_days):
for day in range(0, len(_days)):
_schedule = copy.deepcopy(_base_schedule)
_schedule.day_types = [day]
_schedule.values = values[:day_index]
_schedule.day_types = [_days[day]]
_schedule.values = values[:day]
_schedules.append(_schedule)
_internal_gain.average_internal_gain = _average_internal_gain
@ -572,62 +543,62 @@ class ThermalZone:
if self.usages is None:
return None
if self._thermal_control is not None:
return self._thermal_control
self._thermal_control = ThermalControl()
_mean_heating_set_point = 0
_heating_set_back = 0
_mean_cooling_set_point = 0
for usage in self.usages:
_mean_heating_set_point += usage.percentage * usage.thermal_control.mean_heating_set_point
_heating_set_back += usage.percentage * usage.thermal_control.heating_set_back
_mean_cooling_set_point += usage.percentage * usage.thermal_control.mean_cooling_set_point
self._thermal_control.mean_heating_set_point = _mean_heating_set_point
self._thermal_control.heating_set_back = _heating_set_back
self._thermal_control.mean_cooling_set_point = _mean_cooling_set_point
if self._thermal_control is None:
self._thermal_control = ThermalControl()
_mean_heating_set_point = 0
_heating_set_back = 0
_mean_cooling_set_point = 0
for usage in self.usages:
_mean_heating_set_point += usage.percentage * usage.thermal_control.mean_heating_set_point
_heating_set_back += usage.percentage * usage.thermal_control.heating_set_back
_mean_cooling_set_point += usage.percentage * usage.thermal_control.mean_cooling_set_point
self._thermal_control.mean_heating_set_point = _mean_heating_set_point
self._thermal_control.heating_set_back = _heating_set_back
self._thermal_control.mean_cooling_set_point = _mean_cooling_set_point
_thermal_control_reference = self.usages[0].thermal_control
_types_reference = []
if _thermal_control_reference.hvac_availability_schedules is not None:
_types_reference.append([cte.HVAC_AVAILABILITY, _thermal_control_reference.hvac_availability_schedules])
if _thermal_control_reference.heating_set_point_schedules is not None:
_types_reference.append([cte.HEATING_SET_POINT, _thermal_control_reference.heating_set_point_schedules])
if _thermal_control_reference.cooling_set_point_schedules is not None:
_types_reference.append([cte.COOLING_SET_POINT, _thermal_control_reference.cooling_set_point_schedules])
_thermal_control_reference = self.usages[0].thermal_control
_types_reference = []
if _thermal_control_reference.hvac_availability_schedules is not None:
_types_reference.append([cte.HVAC_AVAILABILITY, _thermal_control_reference.hvac_availability_schedules])
if _thermal_control_reference.heating_set_point_schedules is not None:
_types_reference.append([cte.HEATING_SET_POINT, _thermal_control_reference.heating_set_point_schedules])
if _thermal_control_reference.cooling_set_point_schedules is not None:
_types_reference.append([cte.COOLING_SET_POINT, _thermal_control_reference.cooling_set_point_schedules])
for i_type, _ in enumerate(_types_reference):
_schedules = []
_schedule_type = _types_reference[i_type][1]
for i_schedule, schedule_value in enumerate(_schedule_type):
schedule = Schedule()
schedule.type = schedule_value.type
schedule.day_types = schedule_value.day_types
schedule.data_type = schedule_value.data_type
schedule.time_step = schedule_value.time_step
schedule.time_range = schedule_value.time_range
for i_type in range(0, len(_types_reference)):
_schedules = []
_schedule_type = _types_reference[i_type][1]
for i_schedule in range(0, len(_schedule_type)):
schedule = Schedule()
schedule.type = _schedule_type[i_schedule].type
schedule.day_types = _schedule_type[i_schedule].day_types
schedule.data_type = _schedule_type[i_schedule].data_type
schedule.time_step = _schedule_type[i_schedule].time_step
schedule.time_range = _schedule_type[i_schedule].time_range
new_values = []
for i_value in range(0, len(_schedule_type[i_schedule].values)):
_new_value = 0
for usage in self.usages:
if _types_reference[i_type][0] == cte.HVAC_AVAILABILITY:
_new_value += usage.percentage * \
usage.thermal_control.hvac_availability_schedules[i_schedule].values[i_value]
elif _types_reference[i_type][0] == cte.HEATING_SET_POINT:
_new_value += usage.percentage * \
usage.thermal_control.heating_set_point_schedules[i_schedule].values[i_value]
elif _types_reference[i_type][0] == cte.COOLING_SET_POINT:
_new_value += usage.percentage * \
usage.thermal_control.cooling_set_point_schedules[i_schedule].values[i_value]
new_values.append(_new_value)
schedule.values = new_values
_schedules.append(schedule)
if i_type == 0:
self._thermal_control.hvac_availability_schedules = _schedules
elif i_type == 1:
self._thermal_control.heating_set_point_schedules = _schedules
elif i_type == 2:
self._thermal_control.cooling_set_point_schedules = _schedules
new_values = []
for i_value, _ in enumerate(schedule_value.values):
_new_value = 0
for usage in self.usages:
if _types_reference[i_type][0] == cte.HVAC_AVAILABILITY:
_new_value += usage.percentage * \
usage.thermal_control.hvac_availability_schedules[i_schedule].values[i_value]
elif _types_reference[i_type][0] == cte.HEATING_SET_POINT:
_new_value += usage.percentage * \
usage.thermal_control.heating_set_point_schedules[i_schedule].values[i_value]
elif _types_reference[i_type][0] == cte.COOLING_SET_POINT:
_new_value += usage.percentage * \
usage.thermal_control.cooling_set_point_schedules[i_schedule].values[i_value]
new_values.append(_new_value)
schedule.values = new_values
_schedules.append(schedule)
if i_type == 0:
self._thermal_control.hvac_availability_schedules = _schedules
elif i_type == 1:
self._thermal_control.heating_set_point_schedules = _schedules
elif i_type == 2:
self._thermal_control.cooling_set_point_schedules = _schedules
return self._thermal_control
@property
@ -641,12 +612,9 @@ class ThermalZone:
_mean_peak_flow = 0
_mean_service_temperature = 0
for usage in self.usages:
if usage.domestic_hot_water.density is not None:
_mean_peak_density_load += usage.percentage * usage.domestic_hot_water.density
if usage.domestic_hot_water.peak_flow is not None:
_mean_peak_flow += usage.percentage * usage.domestic_hot_water.peak_flow
if usage.domestic_hot_water.service_temperature is not None:
_mean_service_temperature += usage.percentage * usage.domestic_hot_water.service_temperature
_mean_peak_density_load += usage.percentage * usage.domestic_hot_water.density
_mean_peak_flow += usage.percentage * usage.domestic_hot_water.peak_flow
_mean_service_temperature += usage.percentage * usage.domestic_hot_water.service_temperature
self._domestic_hot_water.density = _mean_peak_density_load
self._domestic_hot_water.peak_flow = _mean_peak_flow
self._domestic_hot_water.service_temperature = _mean_service_temperature
@ -654,19 +622,19 @@ class ThermalZone:
_domestic_hot_water_reference = self.usages[0].domestic_hot_water
if _domestic_hot_water_reference.schedules is not None:
_schedules = []
for schedule_index, schedule_value in enumerate(_domestic_hot_water_reference.schedules):
for i_schedule in range(0, len(_domestic_hot_water_reference.schedules)):
schedule = Schedule()
schedule.type = schedule_value.type
schedule.day_types = schedule_value.day_types
schedule.data_type = schedule_value.data_type
schedule.time_step = schedule_value.time_step
schedule.time_range = schedule_value.time_range
schedule.type = _domestic_hot_water_reference.schedules[i_schedule].type
schedule.day_types = _domestic_hot_water_reference.schedules[i_schedule].day_types
schedule.data_type = _domestic_hot_water_reference.schedules[i_schedule].data_type
schedule.time_step = _domestic_hot_water_reference.schedules[i_schedule].time_step
schedule.time_range = _domestic_hot_water_reference.schedules[i_schedule].time_range
new_values = []
for i_value, _ in enumerate(schedule_value.values):
for i_value in range(0, len(_domestic_hot_water_reference.schedules[i_schedule].values)):
_new_value = 0
for usage in self.usages:
_new_value += usage.percentage * usage.domestic_hot_water.schedules[schedule_index].values[i_value]
_new_value += usage.percentage * usage.domestic_hot_water.schedules[i_schedule].values[i_value]
new_values.append(_new_value)
schedule.values = new_values
_schedules.append(schedule)
@ -677,8 +645,15 @@ class ThermalZone:
@property
def total_floor_area(self):
"""
Get the total floor area of this thermal zone in m2
Get the total floor area of this thermal zone
:return: float
"""
self._total_floor_area = self.footprint_area * self._number_of_storeys
return self._total_floor_area
@total_floor_area.setter
def total_floor_area(self, value):
"""
Set the total floor area of this thermal zone
:param value: float
"""
self._total_floor_area = value

View File

@ -173,7 +173,7 @@ class Usage:
@property
def mechanical_air_change(self) -> Union[None, float]:
"""
Get usage zone mechanical air change in air change per second (1/s)
Get usage zone mechanical air change in air change per hour (ACH)
:return: None or float
"""
return self._mechanical_air_change
@ -181,7 +181,7 @@ class Usage:
@mechanical_air_change.setter
def mechanical_air_change(self, value):
"""
Set usage zone mechanical air change in air change per second (1/s)
Set usage zone mechanical air change in air change per hour (ACH)
:param value: float
"""
if value is not None:

View File

@ -0,0 +1,57 @@
"""
Bus system module
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
"""
from typing import List
from hub.city_model_structure.city_object import CityObject
from hub.city_model_structure.attributes.polygon import Polygon
from hub.city_model_structure.transport.bus_network import BusNetwork
from hub.city_model_structure.transport.bus_node import BusNode
from hub.city_model_structure.transport.bus import Bus
class BusSystem(CityObject):
"""
BusSystem(CityObject) class
"""
def __init__(self, name, surfaces):
super().__init__(name, surfaces)
self._bus_routes = None
self._bus_network = None
self._buses = None
self._restricted_polygons = None
@property
def bus_routes(self) -> List[BusNode]:
"""
Add explanation here
:return: [BusNode]
"""
return self._bus_routes
@property
def bus_network(self) -> BusNetwork:
"""
Add explanation here
:return: BusNetwork
"""
return self._bus_network
@property
def buses(self) -> List[Bus]:
"""
Add explanation here
:return: [Bus]
"""
return self._buses
@property
def restricted_polygons(self) -> List[Polygon]:
"""
Add explanation here
:return: [Polygon]
"""
return self._restricted_polygons

View File

@ -8,30 +8,29 @@ Code contributors: Peter Yefi peteryefi@gmail.com
from __future__ import annotations
import bz2
import copy
import logging
import math
import pickle
import sys
import pathlib
import os
from pathlib import Path
from typing import List, Union
import pickle
import math
import copy
import pyproj
from pandas import DataFrame
from typing import List, Union
from pyproj import Transformer
from pathlib import Path
from pandas import DataFrame
from hub.city_model_structure.building import Building
from hub.city_model_structure.buildings_cluster import BuildingsCluster
from hub.city_model_structure.city_object import CityObject
from hub.city_model_structure.city_objects_cluster import CityObjectsCluster
from hub.city_model_structure.buildings_cluster import BuildingsCluster
from hub.city_model_structure.iot.station import Station
from hub.city_model_structure.level_of_detail import LevelOfDetail
from hub.city_model_structure.parts_consisting_building import PartsConsistingBuilding
from hub.helpers.geometry_helper import GeometryHelper
from hub.helpers.location import Location
import hub.helpers.constants as cte
from hub.city_model_structure.energy_system import EnergySystem
import pandas as pd
class City:
@ -58,21 +57,24 @@ class City:
self._city_objects = None
self._energy_systems = None
self._fuels = None
self._machines = None
self._stations = []
self._lca_materials = None
self._level_of_detail = LevelOfDetail()
self._city_objects_dictionary = {}
self._city_objects_alias_dictionary = {}
self._energy_systems_connection_table = None
self._generic_energy_systems = None
def _get_location(self) -> Location:
if self._location is None:
gps = pyproj.CRS('EPSG:4326') # LatLon with WGS84 datum used by GPS units and Google Earth
try:
if self._srs_name in GeometryHelper.srs_transformations:
if self._srs_name in GeometryHelper.srs_transformations.keys():
self._srs_name = GeometryHelper.srs_transformations[self._srs_name]
input_reference = pyproj.CRS(self.srs_name) # Projected coordinate system from input data
except pyproj.exceptions.CRSError as err:
logging.error('Invalid projection reference system, please check the input data.')
logging.error('Invalid projection reference system, please check the input data. (e.g. in CityGML files: srs_name)')
raise pyproj.exceptions.CRSError from err
transformer = Transformer.from_crs(input_reference, gps)
coordinates = transformer.transform(self.lower_corner[0], self.lower_corner[1])
@ -82,26 +84,14 @@ class City:
@property
def country_code(self):
"""
Get city country code
Get models country code
:return: str
"""
return self._get_location().country
@property
def region_code(self):
"""
Get city region name
:return: str
"""
return self._get_location().region_code
@property
def location(self) -> Location:
"""
Get city location
:return: Location
"""
return self._get_location()
def location(self):
return self._get_location().city
@property
def name(self):
@ -113,15 +103,6 @@ class City:
return self._get_location().city
return self._name
@name.setter
def name(self, value):
"""
Set city name
:param value:str
"""
if value is not None:
self._name = str(value)
@property
def climate_reference_city(self) -> Union[None, str]:
"""
@ -171,6 +152,9 @@ class City:
if self.buildings is not None:
for building in self.buildings:
self._city_objects.append(building)
if self.energy_systems is not None:
for energy_system in self.energy_systems:
self._city_objects.append(energy_system)
return self._city_objects
@property
@ -219,11 +203,8 @@ class City:
return None
def add_building_alias(self, building, alias):
"""
Add an alias to the building
"""
building_index = self._city_objects_dictionary[building.name]
if alias in self._city_objects_alias_dictionary:
if alias in self._city_objects_alias_dictionary.keys():
self._city_objects_alias_dictionary[alias].append(building_index)
else:
self._city_objects_alias_dictionary[alias] = [building_index]
@ -237,6 +218,7 @@ class City:
if new_city_object.type == 'building':
if self._buildings is None:
self._buildings = []
new_city_object._alias_dictionary = self._city_objects_alias_dictionary
self._buildings.append(new_city_object)
self._city_objects_dictionary[new_city_object.name] = len(self._buildings) - 1
if new_city_object.aliases is not None:
@ -260,17 +242,17 @@ class City:
"""
if city_object.type != 'building':
raise NotImplementedError(city_object.type)
if not self._buildings:
logging.warning('impossible to remove city_object, the city is empty\n')
if self._buildings is None or self._buildings == []:
sys.stderr.write('Warning: impossible to remove city_object, the city is empty\n')
else:
if city_object in self._buildings:
self._buildings.remove(city_object)
# regenerate hash map
self._city_objects_dictionary = {}
self._city_objects_alias_dictionary = {}
for i, _building in enumerate(self._buildings):
self._city_objects_dictionary[_building.name] = i
for alias in _building.aliases:
self._city_objects_dictionary.clear()
self._city_objects_alias_dictionary.clear()
for i, city_object in enumerate(self._buildings):
self._city_objects_dictionary[city_object.name] = i
for alias in city_object.aliases:
if alias in self._city_objects_alias_dictionary:
self._city_objects_alias_dictionary[alias].append(i)
else:
@ -284,6 +266,15 @@ class City:
"""
return self._srs_name
@name.setter
def name(self, value):
"""
Set city name
:param value:str
"""
if value is not None:
self._name = str(value)
@staticmethod
def load(city_filename) -> City:
"""
@ -291,28 +282,9 @@ class City:
:param city_filename: city filename
:return: City
"""
if sys.platform == 'win32':
pathlib.PosixPath = pathlib.WindowsPath
elif sys.platform == 'linux':
pathlib.WindowsPath = pathlib.PosixPath
with open(city_filename, 'rb') as file:
return pickle.load(file)
@staticmethod
def load_compressed(compressed_city_filename, destination_filename) -> City:
"""
Load a city from compressed_city_filename
:param compressed_city_filename: Compressed pickle as source
:param destination_filename: Pickle file as destination
:return: City
"""
with open(str(compressed_city_filename), 'rb') as source, open(str(destination_filename), 'wb') as destination:
destination.write(bz2.decompress(source.read()))
loaded_city = City.load(destination_filename)
os.unlink(destination_filename)
return loaded_city
def save(self, city_filename):
"""
Save a city into the given filename
@ -328,8 +300,8 @@ class City:
:param city_filename: destination city filename
:return: None
"""
with bz2.BZ2File(city_filename, 'wb') as file:
pickle.dump(self, file)
with bz2.BZ2File(city_filename, 'wb') as f:
pickle.dump(self, f)
def region(self, center, radius) -> City:
"""
@ -419,6 +391,14 @@ class City:
"""
return self._parts_consisting_buildings
@property
def energy_systems(self) -> Union[List[EnergySystem], None]:
"""
Get energy systems belonging to the city
:return: None or [EnergySystem]
"""
return self._energy_systems
@property
def stations(self) -> [Station]:
"""
@ -466,35 +446,7 @@ class City:
return copy.deepcopy(self)
def merge(self, city) -> City:
"""
Return a merged city combining the current city and the given one
:return: City
"""
merged_city = self.copy
for building in city.buildings:
if merged_city.city_object(building.name) is None:
# building is new so added to the city
merged_city.add_city_object(copy.deepcopy(building))
else:
# keep the one with less radiation
parameter_city_building_total_radiation = 0
for surface in building.surfaces:
if surface.global_irradiance:
parameter_city_building_total_radiation += surface.global_irradiance[cte.YEAR][0]
merged_city_building_total_radiation = 0
for surface in merged_city.city_object(building.name).surfaces:
if surface.global_irradiance:
merged_city_building_total_radiation += surface.global_irradiance[cte.YEAR][0]
if merged_city_building_total_radiation == 0:
merged_city.remove_city_object(merged_city.city_object(building.name))
merged_city.add_city_object(building)
elif merged_city_building_total_radiation > parameter_city_building_total_radiation > 0:
merged_city.remove_city_object(merged_city.city_object(building.name))
merged_city.add_city_object(building)
return merged_city
raise NotImplementedError('This method needs to be reimplemented')
@property
def level_of_detail(self) -> LevelOfDetail:
@ -504,6 +456,24 @@ class City:
"""
return self._level_of_detail
@property
def energy_systems_connection_table(self) -> Union[None, DataFrame]:
"""
Get energy systems connection table which includes at least two columns: energy_system_type and associated_building
and may also include dimensioned_energy_system and connection_building_to_dimensioned_energy_system
:return: DataFrame
"""
return self._energy_systems_connection_table
@energy_systems_connection_table.setter
def energy_systems_connection_table(self, value):
"""
Set energy systems connection table which includes at least two columns: energy_system_type and associated_building
and may also include dimensioned_energy_system and connection_building_to_dimensioned_energy_system
:param value: DataFrame
"""
self._energy_systems_connection_table = value
@property
def generic_energy_systems(self) -> dict:
"""

View File

@ -37,14 +37,13 @@ class CityObject:
self._max_z = ConfigurationHelper().min_coordinate
self._centroid = None
self._volume = None
self._external_temperature = {}
self._ground_temperature = {}
self._global_horizontal = {}
self._diffuse = {}
self._direct_normal = {}
self._external_temperature = dict()
self._ground_temperature = dict()
self._global_horizontal = dict()
self._diffuse = dict()
self._beam = dict()
self._sensors = []
self._neighbours = None
self._beam = {}
@property
def level_of_detail(self) -> LevelOfDetail:
@ -82,10 +81,6 @@ class CityObject:
@volume.setter
def volume(self, value):
"""
Set city object volume in cubic meters
:param value: float
"""
self._volume = value
@property
@ -177,7 +172,7 @@ class CityObject:
def external_temperature(self) -> {float}:
"""
Get external temperature surrounding the city object in Celsius
:return: dict{dict{[float]}}
:return: dict{DataFrame(float)}
"""
return self._external_temperature
@ -185,10 +180,11 @@ class CityObject:
def external_temperature(self, value):
"""
Set external temperature surrounding the city object in Celsius
:param value: dict{dict{[float]}}
:param value: dict{DataFrame(float)}
"""
self._external_temperature = value
# todo: this is the new format we will use to get rid of the data frames
@property
def ground_temperature(self) -> dict:
"""
@ -209,50 +205,50 @@ class CityObject:
@property
def global_horizontal(self) -> dict:
"""
Get global horizontal radiation surrounding the city object in J/m2
:return: dict{dict{[float]}}
Get global horizontal radiation surrounding the city object in W/m2
:return: dict{DataFrame(float)}
"""
return self._global_horizontal
@global_horizontal.setter
def global_horizontal(self, value):
"""
Set global horizontal radiation surrounding the city object in J/m2
:param value: dict{dict{[float]}}
Set global horizontal radiation surrounding the city object in W/m2
:param value: dict{DataFrame(float)}
"""
self._global_horizontal = value
@property
def diffuse(self) -> dict:
"""
Get diffuse radiation surrounding the city object in J/m2
:return: dict{dict{[float]}}
Get diffuse radiation surrounding the city object in W/m2
:return: dict{DataFrame(float)}
"""
return self._diffuse
@diffuse.setter
def diffuse(self, value):
"""
Set diffuse radiation surrounding the city object in J/m2
:param value: dict{dict{[float]}}
Set diffuse radiation surrounding the city object in W/m2
:param value: dict{DataFrame(float)}
"""
self._diffuse = value
@property
def direct_normal(self) -> dict:
def beam(self) -> dict:
"""
Get beam radiation surrounding the city object in J/m2
:return: dict{dict{[float]}}
Get beam radiation surrounding the city object in W/m2
:return: dict{DataFrame(float)}
"""
return self._direct_normal
return self._beam
@direct_normal.setter
def direct_normal(self, value):
@beam.setter
def beam(self, value):
"""
Set beam radiation surrounding the city object in J/m2
:param value: dict{dict{[float]}}
Set beam radiation surrounding the city object in W/m2
:param value: dict{DataFrame(float)}
"""
self._direct_normal = value
self._beam = value
@property
def lower_corner(self):
@ -303,19 +299,3 @@ class CityObject:
Set the list of neighbour_objects and their properties associated to the current city_object
"""
self._neighbours = value
@property
def beam(self) -> dict:
"""
Get beam radiation surrounding the city object in J/m2
:return: dict{dict{[float]}}
"""
return self._beam
@beam.setter
def beam(self, value):
"""
Set beam radiation surrounding the city object in J/m2
:param value: dict{dict{[float]}}
"""
self._beam = value

Some files were not shown because too many files have changed in this diff Show More