from hub.imports.energy_systems_factory import EnergySystemsFactory from hub.imports.geometry_factory import GeometryFactory from hub.helpers.dictionaries import Dictionaries from hub.imports.construction_factory import ConstructionFactory from hub.imports.results_factory import ResultFactory from hub.exports.exports_factory import ExportsFactory from hub.imports.weather_factory import WeatherFactory from pv_assessment.electricity_demand_calculator import HourlyElectricityDemand from pv_assessment.pv_system_assessment import PvSystemAssessment from pv_assessment.solar_calculator import SolarCalculator import random_assignation import subprocess from pathlib import Path input_file = "data/selected_buildings.geojson" demand_file = "data/energy_demand_data.csv" # Define specific paths for outputs from SRA (Simplified Radiosity Algorith) and PV calculation processes output_path = (Path(__file__).parent.parent / 'hub/out_files').resolve() output_path.mkdir(parents=True, exist_ok=True) sra_output_path = output_path / 'sra_outputs' sra_output_path.mkdir(parents=True, exist_ok=True) pv_assessment_path = output_path / 'pv_outputs' pv_assessment_path.mkdir(parents=True, exist_ok=True) city = GeometryFactory( "geojson", input_file, height_field="height", year_of_construction_field="contr_year", function_field="function_c", adjacency_field="adjacency", function_to_hub=Dictionaries().montreal_function_to_hub_function).city ConstructionFactory('nrcan', city).enrich() WeatherFactory('epw', city).enrich() ResultFactory('archetypes', city, demand_file).enrich() # Export the city data in SRA-compatible format to facilitate solar radiation assessment ExportsFactory('sra', city, sra_output_path).export() # Run SRA simulation using an external command, passing the generated SRA XML file path as input sra_path = (sra_output_path / f'{city.name}_sra.xml').resolve() subprocess.run(['sra', str(sra_path)]) # Enrich city data with SRA simulation results for subsequent analysis ResultFactory('sra', city, sra_output_path).enrich() # Initialize solar calculation parameters (e.g., azimuth, altitude) and compute irradiance and solar angles tilt_angle = 37 solar_parameters = SolarCalculator(city=city, surface_azimuth_angle=180, tilt_angle=tilt_angle, standard_meridian=-75) solar_angles = solar_parameters.solar_angles # Obtain solar angles for further analysis solar_parameters.tilted_irradiance_calculator() # Calculate the solar radiation on a tilted surface # Assignation of Energy System Archetypes to Buildings random_assignation.call_random(city.buildings, random_assignation.residential_systems_percentage) EnergySystemsFactory('montreal_future', city).enrich() for building in city.buildings: PvSystemAssessment(building=building, pv_system=None, battery=None, electricity_demand=None, tilt_angle=tilt_angle, solar_angles=solar_angles, pv_installation_type='rooftop', simulation_model_type='explicit', module_model_name=None, inverter_efficiency=0.95, system_catalogue_handler=None, roof_percentage_coverage=0.75, facade_coverage_percentage=0, csv_output=False, output_path=pv_assessment_path).enrich() print("done") import geopandas as gpd import matplotlib.pyplot as plt from matplotlib.colors import Normalize # Load GeoJSON file gdf = gpd.read_file(input_file) # Extract self-sufficiency values self_sufficiency_values = [building.self_sufficiency['year'] / 1000 for building in city.buildings] # Add self-sufficiency values to GeoDataFrame gdf['self_sufficiency'] = self_sufficiency_values # Determine the color normalization range vmin = min(0, gdf['self_sufficiency'].min()) # Include 0 if min is positive vmax = max(0, gdf['self_sufficiency'].max()) # Include 0 if max is negative # Set up the figure and axis fig, ax = plt.subplots(1, 1, figsize=(14, 10)) # Define a colormap and normalize the values cmap = plt.cm.viridis norm = Normalize(vmin=vmin, vmax=vmax) # Plot the GeoDataFrame gdf.plot(column='self_sufficiency', cmap=cmap, linewidth=0.8, edgecolor='grey', # Add edges for better distinction legend=False, # Turn off the built-in legend ax=ax) # Add a custom colorbar sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm) sm._A = [] # Needed for ScalarMappable with no data cbar = fig.colorbar(sm, ax=ax, fraction=0.03, pad=0.04) cbar.set_label('Self-Sufficiency (kWh/year)', fontsize=12) # Add gridlines and axis labels ax.grid(color='lightgrey', linestyle='--', linewidth=0.5, alpha=0.7) ax.set_title('Building Self-Sufficiency Levels', fontsize=16, fontweight='bold', pad=20) ax.set_xlabel('Longitude', fontsize=12) ax.set_ylabel('Latitude', fontsize=12) # Improve layout plt.tight_layout() plt.show()