from matplotlib.cbook import MatplotlibDeprecationWarning import matplotlib.pyplot as plt from matplotlib.scale import (Log10Transform, InvertedLog10Transform, SymmetricalLogTransform) from matplotlib.testing.decorators import check_figures_equal, image_comparison import numpy as np from numpy.testing import assert_allclose import io import platform import pytest @check_figures_equal() def test_log_scales(fig_test, fig_ref): ax_test = fig_test.add_subplot(122, yscale='log', xscale='symlog') ax_test.axvline(24.1) ax_test.axhline(24.1) xlim = ax_test.get_xlim() ylim = ax_test.get_ylim() ax_ref = fig_ref.add_subplot(122, yscale='log', xscale='symlog') ax_ref.set(xlim=xlim, ylim=ylim) ax_ref.plot([24.1, 24.1], ylim, 'b') ax_ref.plot(xlim, [24.1, 24.1], 'b') def test_symlog_mask_nan(): # Use a transform round-trip to verify that the forward and inverse # transforms work, and that they respect nans and/or masking. slt = SymmetricalLogTransform(10, 2, 1) slti = slt.inverted() x = np.arange(-1.5, 5, 0.5) out = slti.transform_non_affine(slt.transform_non_affine(x)) assert_allclose(out, x) assert type(out) == type(x) x[4] = np.nan out = slti.transform_non_affine(slt.transform_non_affine(x)) assert_allclose(out, x) assert type(out) == type(x) x = np.ma.array(x) out = slti.transform_non_affine(slt.transform_non_affine(x)) assert_allclose(out, x) assert type(out) == type(x) x[3] = np.ma.masked out = slti.transform_non_affine(slt.transform_non_affine(x)) assert_allclose(out, x) assert type(out) == type(x) @image_comparison(['logit_scales.png'], remove_text=True) def test_logit_scales(): fig, ax = plt.subplots() # Typical extinction curve for logit x = np.array([0.001, 0.003, 0.01, 0.03, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.97, 0.99, 0.997, 0.999]) y = 1.0 / x ax.plot(x, y) ax.set_xscale('logit') ax.grid(True) bbox = ax.get_tightbbox(fig.canvas.get_renderer()) assert np.isfinite(bbox.x0) assert np.isfinite(bbox.y0) def test_log_scatter(): """Issue #1799""" fig, ax = plt.subplots(1) x = np.arange(10) y = np.arange(10) - 1 ax.scatter(x, y) buf = io.BytesIO() fig.savefig(buf, format='pdf') buf = io.BytesIO() fig.savefig(buf, format='eps') buf = io.BytesIO() fig.savefig(buf, format='svg') def test_logscale_subs(): fig, ax = plt.subplots() ax.set_yscale('log', subsy=np.array([2, 3, 4])) # force draw fig.canvas.draw() @image_comparison(['logscale_mask.png'], remove_text=True) def test_logscale_mask(): # Check that zero values are masked correctly on log scales. # See github issue 8045 xs = np.linspace(0, 50, 1001) fig, ax = plt.subplots() ax.plot(np.exp(-xs**2)) fig.canvas.draw() ax.set(yscale="log") def test_extra_kwargs_raise_or_warn(): fig, ax = plt.subplots() # with pytest.raises(TypeError): with pytest.warns(MatplotlibDeprecationWarning): ax.set_yscale('linear', nonpos='mask') with pytest.raises(TypeError): ax.set_yscale('log', nonpos='mask') # with pytest.raises(TypeError): with pytest.warns(MatplotlibDeprecationWarning): ax.set_yscale('symlog', nonpos='mask') def test_logscale_invert_transform(): fig, ax = plt.subplots() ax.set_yscale('log') # get transformation from data to axes tform = (ax.transAxes + ax.transData.inverted()).inverted() # direct test of log transform inversion with pytest.warns(MatplotlibDeprecationWarning): assert isinstance(Log10Transform().inverted(), InvertedLog10Transform) def test_logscale_transform_repr(): fig, ax = plt.subplots() ax.set_yscale('log') repr(ax.transData) # check that repr of log transform succeeds # check that repr of log transform succeeds with pytest.warns(MatplotlibDeprecationWarning): repr(Log10Transform(nonpos='clip')) @image_comparison(['logscale_nonpos_values.png'], remove_text=True, tol=0.02, style='mpl20') def test_logscale_nonpos_values(): np.random.seed(19680801) xs = np.random.normal(size=int(1e3)) fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2) ax1.hist(xs, range=(-5, 5), bins=10) ax1.set_yscale('log') ax2.hist(xs, range=(-5, 5), bins=10) ax2.set_yscale('log', nonposy='mask') xdata = np.arange(0, 10, 0.01) ydata = np.exp(-xdata) edata = 0.2*(10-xdata)*np.cos(5*xdata)*np.exp(-xdata) ax3.fill_between(xdata, ydata - edata, ydata + edata) ax3.set_yscale('log') x = np.logspace(-1, 1) y = x ** 3 yerr = x**2 ax4.errorbar(x, y, yerr=yerr) ax4.set_yscale('log') ax4.set_xscale('log') def test_invalid_log_lims(): # Check that invalid log scale limits are ignored fig, ax = plt.subplots() ax.scatter(range(0, 4), range(0, 4)) ax.set_xscale('log') original_xlim = ax.get_xlim() with pytest.warns(UserWarning): ax.set_xlim(left=0) assert ax.get_xlim() == original_xlim with pytest.warns(UserWarning): ax.set_xlim(right=-1) assert ax.get_xlim() == original_xlim ax.set_yscale('log') original_ylim = ax.get_ylim() with pytest.warns(UserWarning): ax.set_ylim(bottom=0) assert ax.get_ylim() == original_ylim with pytest.warns(UserWarning): ax.set_ylim(top=-1) assert ax.get_ylim() == original_ylim @image_comparison(['function_scales.png'], remove_text=True, style='mpl20') def test_function_scale(): def inverse(x): return x**2 def forward(x): return x**(1/2) fig, ax = plt.subplots() x = np.arange(1, 1000) ax.plot(x, x) ax.set_xscale('function', functions=(forward, inverse)) ax.set_xlim(1, 1000)