""" Values are the "values" that Python would return. However Values are at the same time also the "values" that a user is currently sitting in. A ValueSet is typically used to specify the return of a function or any other static analysis operation. In jedi there are always multiple returns and not just one. """ from functools import reduce from operator import add from parso.python.tree import Name from jedi import debug from jedi._compatibility import zip_longest, unicode from jedi.parser_utils import clean_scope_docstring from jedi.inference.helpers import SimpleGetItemNotFound from jedi.inference.utils import safe_property from jedi.inference.cache import inference_state_as_method_param_cache from jedi.cache import memoize_method sentinel = object() class HelperValueMixin(object): def get_root_context(self): value = self if value.parent_context is None: return value.as_context() while True: if value.parent_context is None: return value value = value.parent_context def execute(self, arguments): return self.inference_state.execute(self, arguments=arguments) def execute_with_values(self, *value_list): from jedi.inference.arguments import ValuesArguments arguments = ValuesArguments([ValueSet([value]) for value in value_list]) return self.inference_state.execute(self, arguments) def execute_annotation(self): return self.execute_with_values() def gather_annotation_classes(self): return ValueSet([self]) def merge_types_of_iterate(self, contextualized_node=None, is_async=False): return ValueSet.from_sets( lazy_value.infer() for lazy_value in self.iterate(contextualized_node, is_async) ) def _get_value_filters(self, name_or_str): origin_scope = name_or_str if isinstance(name_or_str, Name) else None for f in self.get_filters(origin_scope=origin_scope): yield f # This covers the case where a stub files are incomplete. if self.is_stub(): from jedi.inference.gradual.conversion import convert_values for c in convert_values(ValueSet({self})): for f in c.get_filters(): yield f def goto(self, name_or_str, name_context=None, analysis_errors=True): from jedi.inference import finder filters = self._get_value_filters(name_or_str) names = finder.filter_name(filters, name_or_str) debug.dbg('context.goto %s in (%s): %s', name_or_str, self, names) return names def py__getattribute__(self, name_or_str, name_context=None, position=None, analysis_errors=True): """ :param position: Position of the last statement -> tuple of line, column """ if name_context is None: name_context = self names = self.goto(name_or_str, name_context, analysis_errors) values = ValueSet.from_sets(name.infer() for name in names) if not values: n = name_or_str.value if isinstance(name_or_str, Name) else name_or_str values = self.py__getattribute__alternatives(n) if not names and not values and analysis_errors: if isinstance(name_or_str, Name): from jedi.inference import analysis analysis.add_attribute_error( name_context, self, name_or_str) debug.dbg('context.names_to_types: %s -> %s', names, values) return values def py__await__(self): await_value_set = self.py__getattribute__(u"__await__") if not await_value_set: debug.warning('Tried to run __await__ on value %s', self) return await_value_set.execute_with_values() def iterate(self, contextualized_node=None, is_async=False): debug.dbg('iterate %s', self) if is_async: from jedi.inference.lazy_value import LazyKnownValues # TODO if no __aiter__ values are there, error should be: # TypeError: 'async for' requires an object with __aiter__ method, got int return iter([ LazyKnownValues( self.py__getattribute__('__aiter__').execute_with_values() .py__getattribute__('__anext__').execute_with_values() .py__getattribute__('__await__').execute_with_values() .py__stop_iteration_returns() ) # noqa ]) return self.py__iter__(contextualized_node) def is_sub_class_of(self, class_value): with debug.increase_indent_cm('subclass matching of %s <=> %s' % (self, class_value), color='BLUE'): for cls in self.py__mro__(): if cls.is_same_class(class_value): debug.dbg('matched subclass True', color='BLUE') return True debug.dbg('matched subclass False', color='BLUE') return False def is_same_class(self, class2): # Class matching should prefer comparisons that are not this function. if type(class2).is_same_class != HelperValueMixin.is_same_class: return class2.is_same_class(self) return self == class2 @memoize_method def as_context(self, *args, **kwargs): return self._as_context(*args, **kwargs) class Value(HelperValueMixin): """ To be implemented by subclasses. """ tree_node = None # Possible values: None, tuple, list, dict and set. Here to deal with these # very important containers. array_type = None api_type = 'not_defined_please_report_bug' def __init__(self, inference_state, parent_context=None): self.inference_state = inference_state self.parent_context = parent_context def py__getitem__(self, index_value_set, contextualized_node): from jedi.inference import analysis # TODO this value is probably not right. analysis.add( contextualized_node.context, 'type-error-not-subscriptable', contextualized_node.node, message="TypeError: '%s' object is not subscriptable" % self ) return NO_VALUES def py__simple_getitem__(self, index): raise SimpleGetItemNotFound def py__iter__(self, contextualized_node=None): if contextualized_node is not None: from jedi.inference import analysis analysis.add( contextualized_node.context, 'type-error-not-iterable', contextualized_node.node, message="TypeError: '%s' object is not iterable" % self) return iter([]) def get_signatures(self): return [] def is_class(self): return False def is_class_mixin(self): return False def is_instance(self): return False def is_function(self): return False def is_module(self): return False def is_namespace(self): return False def is_compiled(self): return False def is_bound_method(self): return False def is_builtins_module(self): return False def py__bool__(self): """ Since Wrapper is a super class for classes, functions and modules, the return value will always be true. """ return True def py__doc__(self): try: self.tree_node.get_doc_node except AttributeError: return '' else: return clean_scope_docstring(self.tree_node) def get_safe_value(self, default=sentinel): if default is sentinel: raise ValueError("There exists no safe value for value %s" % self) return default def execute_operation(self, other, operator): debug.warning("%s not possible between %s and %s", operator, self, other) return NO_VALUES def py__call__(self, arguments): debug.warning("no execution possible %s", self) return NO_VALUES def py__stop_iteration_returns(self): debug.warning("Not possible to return the stop iterations of %s", self) return NO_VALUES def py__getattribute__alternatives(self, name_or_str): """ For now a way to add values in cases like __getattr__. """ return NO_VALUES def py__get__(self, instance, class_value): debug.warning("No __get__ defined on %s", self) return ValueSet([self]) def py__get__on_class(self, calling_instance, instance, class_value): return NotImplemented def get_qualified_names(self): # Returns Optional[Tuple[str, ...]] return None def is_stub(self): # The root value knows if it's a stub or not. return self.parent_context.is_stub() def _as_context(self): raise NotImplementedError('Not all values need to be converted to contexts: %s', self) @property def name(self): raise NotImplementedError def py__name__(self): return self.name.string_name def get_type_hint(self, add_class_info=True): return None def infer_type_vars(self, value_set): """ When the current instance represents a type annotation, this method tries to find information about undefined type vars and returns a dict from type var name to value set. This is for example important to understand what `iter([1])` returns. According to typeshed, `iter` returns an `Iterator[_T]`: def iter(iterable: Iterable[_T]) -> Iterator[_T]: ... This functions would generate `int` for `_T` in this case, because it unpacks the `Iterable`. Parameters ---------- `self`: represents the annotation of the current parameter to infer the value for. In the above example, this would initially be the `Iterable[_T]` of the `iterable` parameter and then, when recursing, just the `_T` generic parameter. `value_set`: represents the actual argument passed to the parameter we're inferrined for, or (for recursive calls) their types. In the above example this would first be the representation of the list `[1]` and then, when recursing, just of `1`. """ return {} def iterate_values(values, contextualized_node=None, is_async=False): """ Calls `iterate`, on all values but ignores the ordering and just returns all values that the iterate functions yield. """ return ValueSet.from_sets( lazy_value.infer() for lazy_value in values.iterate(contextualized_node, is_async=is_async) ) class _ValueWrapperBase(HelperValueMixin): @safe_property def name(self): from jedi.inference.names import ValueName wrapped_name = self._wrapped_value.name if wrapped_name.tree_name is not None: return ValueName(self, wrapped_name.tree_name) else: from jedi.inference.compiled import CompiledValueName return CompiledValueName(self, wrapped_name.string_name) @classmethod @inference_state_as_method_param_cache() def create_cached(cls, inference_state, *args, **kwargs): return cls(*args, **kwargs) def __getattr__(self, name): assert name != '_wrapped_value', 'Problem with _get_wrapped_value' return getattr(self._wrapped_value, name) class LazyValueWrapper(_ValueWrapperBase): @safe_property @memoize_method def _wrapped_value(self): with debug.increase_indent_cm('Resolve lazy value wrapper'): return self._get_wrapped_value() def __repr__(self): return '<%s>' % (self.__class__.__name__) def _get_wrapped_value(self): raise NotImplementedError class ValueWrapper(_ValueWrapperBase): def __init__(self, wrapped_value): self._wrapped_value = wrapped_value def __repr__(self): return '%s(%s)' % (self.__class__.__name__, self._wrapped_value) class TreeValue(Value): def __init__(self, inference_state, parent_context, tree_node): super(TreeValue, self).__init__(inference_state, parent_context) self.tree_node = tree_node def __repr__(self): return '<%s: %s>' % (self.__class__.__name__, self.tree_node) class ContextualizedNode(object): def __init__(self, context, node): self.context = context self.node = node def get_root_context(self): return self.context.get_root_context() def infer(self): return self.context.infer_node(self.node) def __repr__(self): return '<%s: %s in %s>' % (self.__class__.__name__, self.node, self.context) def _getitem(value, index_values, contextualized_node): # The actual getitem call. result = NO_VALUES unused_values = set() for index_value in index_values: index = index_value.get_safe_value(default=None) if type(index) in (float, int, str, unicode, slice, bytes): try: result |= value.py__simple_getitem__(index) continue except SimpleGetItemNotFound: pass unused_values.add(index_value) # The index was somehow not good enough or simply a wrong type. # Therefore we now iterate through all the values and just take # all results. if unused_values or not index_values: result |= value.py__getitem__( ValueSet(unused_values), contextualized_node ) debug.dbg('py__getitem__ result: %s', result) return result class ValueSet(object): def __init__(self, iterable): self._set = frozenset(iterable) for value in iterable: assert not isinstance(value, ValueSet) @classmethod def _from_frozen_set(cls, frozenset_): self = cls.__new__(cls) self._set = frozenset_ return self @classmethod def from_sets(cls, sets): """ Used to work with an iterable of set. """ aggregated = set() for set_ in sets: if isinstance(set_, ValueSet): aggregated |= set_._set else: aggregated |= frozenset(set_) return cls._from_frozen_set(frozenset(aggregated)) def __or__(self, other): return self._from_frozen_set(self._set | other._set) def __and__(self, other): return self._from_frozen_set(self._set & other._set) def __iter__(self): for element in self._set: yield element def __bool__(self): return bool(self._set) def __len__(self): return len(self._set) def __repr__(self): return 'S{%s}' % (', '.join(str(s) for s in self._set)) def filter(self, filter_func): return self.__class__(filter(filter_func, self._set)) def __getattr__(self, name): def mapper(*args, **kwargs): return self.from_sets( getattr(value, name)(*args, **kwargs) for value in self._set ) return mapper def __eq__(self, other): return self._set == other._set def __ne__(self, other): return not self.__eq__(other) def __hash__(self): return hash(self._set) def py__class__(self): return ValueSet(c.py__class__() for c in self._set) def iterate(self, contextualized_node=None, is_async=False): from jedi.inference.lazy_value import get_merged_lazy_value type_iters = [c.iterate(contextualized_node, is_async=is_async) for c in self._set] for lazy_values in zip_longest(*type_iters): yield get_merged_lazy_value( [l for l in lazy_values if l is not None] ) def execute(self, arguments): return ValueSet.from_sets(c.inference_state.execute(c, arguments) for c in self._set) def execute_with_values(self, *args, **kwargs): return ValueSet.from_sets(c.execute_with_values(*args, **kwargs) for c in self._set) def goto(self, *args, **kwargs): return reduce(add, [c.goto(*args, **kwargs) for c in self._set], []) def py__getattribute__(self, *args, **kwargs): return ValueSet.from_sets(c.py__getattribute__(*args, **kwargs) for c in self._set) def get_item(self, *args, **kwargs): return ValueSet.from_sets(_getitem(c, *args, **kwargs) for c in self._set) def try_merge(self, function_name): value_set = self.__class__([]) for c in self._set: try: method = getattr(c, function_name) except AttributeError: pass else: value_set |= method() return value_set def gather_annotation_classes(self): return ValueSet.from_sets([c.gather_annotation_classes() for c in self._set]) def get_signatures(self): return [sig for c in self._set for sig in c.get_signatures()] def get_type_hint(self, add_class_info=True): t = [v.get_type_hint(add_class_info=add_class_info) for v in self._set] type_hints = sorted(filter(None, t)) if len(type_hints) == 1: return type_hints[0] optional = 'None' in type_hints if optional: type_hints.remove('None') if len(type_hints) == 0: return None elif len(type_hints) == 1: s = type_hints[0] else: s = 'Union[%s]' % ', '.join(type_hints) if optional: s = 'Optional[%s]' % s return s def infer_type_vars(self, value_set): # Circular from jedi.inference.gradual.annotation import merge_type_var_dicts type_var_dict = {} for value in self._set: merge_type_var_dicts( type_var_dict, value.infer_type_vars(value_set), ) return type_var_dict NO_VALUES = ValueSet([]) def iterator_to_value_set(func): def wrapper(*args, **kwargs): return ValueSet(func(*args, **kwargs)) return wrapper