import math import pandas as pd import helpers.constants as cte from helpers import monthly_values as mv class Weather(object): def __init__(self, weather_values): self._weather_values = pd.concat([mv.MonthlyValues().month_hour, weather_values], axis=1) self._temperatures_hourly = None @property def external_and_sky_temperatures(self): if self._temperatures_hourly is None: self._temperatures_hourly = self._weather_values[['month', 'temperature']] sky_temperature = self.sky_temperature(self._temperatures_hourly) self._temperatures_hourly = pd.concat([self._temperatures_hourly, sky_temperature], axis=1) return self._temperatures_hourly @staticmethod def sky_temperature(ambient_temperature): # Swinbank - Fuentes sky model approximation(1963) based on cloudiness statistics(32 %) in United States # ambient temperatures( in °C) # sky temperatures( in °C) _ambient_temperature = ambient_temperature[['temperature']].to_numpy() values = [] for temperature in _ambient_temperature: value = 0.037536 * math.pow((temperature + cte.celsius_to_kelvin), 1.5) \ + 0.32 * (temperature + cte.celsius_to_kelvin) - cte.celsius_to_kelvin values.append(value) return pd.DataFrame(values, columns=['sky temperature'])