""" XlsxHeatPumpParameters import the heat pump information SPDX - License - Identifier: LGPL - 3.0 - or -later Copyright © 2020 Project Author Peter Yefi peteryefi@gmail.com Contributor Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca """ import pandas as pd from typing import Dict from typing import List from city_model_structure.energy_systems.heat_pump import HeatPump from city_model_structure.energy_system import EnergySystem class XlsxHeatPumpParameters: """ XlsxHeatPumpParameters class """ def __init__(self, city, base_path): self._city = city self._base_path = (base_path / 'heat_pumps/Air source.xlsx') def _read_file(self) -> Dict: """ reads xlsx file containing the heat pump information into a dictionary :return : Dict """ xl_file = pd.ExcelFile(self._base_path) heat_pump_dfs = {sheet_name: xl_file.parse(sheet_name) for sheet_name in xl_file.sheet_names} cooling_data = {} heating_data = {} for sheet, dataframe in heat_pump_dfs.items(): if sheet == "Summary": continue # Remove nan rows and columns and extract cooling and heating data # for each sheet df = heat_pump_dfs[sheet].dropna(axis=1, how='all') cooling_df = df.iloc[4:34, 0:8] heating_df = df.iloc[4:29, 8:20] # extract the data into dictionaries each sheet is a key entry in the # dictionary cooling_data[sheet] = {} heating_data[sheet] = {} i = 0 # for each sheet extract data for twout/Ta.RU temperatures. Thus, the twout # temp is the key for the values of pf,pa,qw data while i < 25: cooling_data[sheet][cooling_df.iloc[i][0]] = cooling_df.iloc[i + 1:i + 4, 2:8].values.tolist() heating_data[sheet][heating_df.iloc[i][0]] = heating_df.iloc[i + 1:i + 4, 2:8].values.tolist() i = i + 5 # extract the last cooling data cooling_data[sheet][cooling_df.iloc[i][0]] = cooling_df.iloc[i + 1:i + 4, 2:8] return {"cooling": cooling_data, "heating": heating_data} def enrich_city(self): """ Enriches the city with information from file """ heap_pump_data = self._read_file() for (k_cool, v_cool), (k_heat, v_heat) in \ zip(heap_pump_data["cooling"].items(), heap_pump_data["heating"].items()): heat_pump = HeatPump() heat_pump.model = k_cool h_data = self._extract_heat_pump_data(v_heat) c_data = self._extract_heat_pump_data(v_cool) heat_pump.cooling_pf = c_data[0] heat_pump.cooling_pa = c_data[1] heat_pump.cooling_qw = c_data[2] heat_pump.heating_pf = h_data[0] heat_pump.heating_pa = h_data[1] heat_pump.heating_qw = h_data[2] energy_system = EnergySystem('{} capacity heat pump'.format(heat_pump.model), 0, [], None) energy_system.heat_pump = heat_pump self._city.add_city_object(energy_system) return self._city def _extract_heat_pump_data(self, heat_pump_capacity_data) -> [List, List, List]: """ Fetches a list of metric based data for heat pump for various temperature, eg. cooling capacity data for 12 capacity heat pump for 6,7,8,9,10 and 11 degree celsius :param heat_pump_capacity_data: the heat pump capacity data from the which the metric specific data is fetched: {List} :return: List """ pf_data = [] pa_data = [] qw_data = [] for _, metric_data in heat_pump_capacity_data.items(): pf_data.append(metric_data[0]) pa_data.append(metric_data[1]) qw_data.append(metric_data[2]) return [pf_data, pa_data, qw_data]