492 lines
22 KiB
Python
492 lines
22 KiB
Python
"""
|
|
Idf exports one building to idf format
|
|
SPDX - License - Identifier: LGPL - 3.0 - or -later
|
|
Copyright © 2022 Concordia CERC group
|
|
Project Coder Guille Guillermo.GutierrezMorote@concordia.ca
|
|
Code contributors: Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
|
|
Soroush Samareh Abolhassani soroush.samarehabolhassani@mail.concordia.ca
|
|
"""
|
|
import copy
|
|
import math
|
|
from pathlib import Path
|
|
from geomeppy import IDF
|
|
import helpers.constants as cte
|
|
from city_model_structure.attributes.schedule import Schedule
|
|
|
|
|
|
class Idf:
|
|
"""
|
|
Exports city to IDF
|
|
"""
|
|
_THERMOSTAT = 'HVACTEMPLATE:THERMOSTAT'
|
|
_IDEAL_LOAD_AIR_SYSTEM = 'HVACTEMPLATE:ZONE:IDEALLOADSAIRSYSTEM'
|
|
_SURFACE = 'BUILDINGSURFACE:DETAILED'
|
|
_CONSTRUCTION = 'CONSTRUCTION'
|
|
_MATERIAL = 'MATERIAL'
|
|
_MATERIAL_NOMASS = 'MATERIAL:NOMASS'
|
|
_ROUGHNESS = 'MediumRough'
|
|
_HOURLY_SCHEDULE = 'SCHEDULE:DAY:HOURLY'
|
|
_COMPACT_SCHEDULE = 'SCHEDULE:COMPACT'
|
|
_FILE_SCHEDULE = 'SCHEDULE:FILE'
|
|
_ZONE = 'ZONE'
|
|
_LIGHTS = 'LIGHTS'
|
|
_PEOPLE = 'PEOPLE'
|
|
_INFILTRATION = 'ZONEINFILTRATION:DESIGNFLOWRATE'
|
|
_BUILDING_SURFACE = 'BuildingSurfaceDetailed'
|
|
_SCHEDULE_LIMIT = 'SCHEDULETYPELIMITS'
|
|
_ON_OFF = 'On/Off'
|
|
_FRACTION = 'Fraction'
|
|
_ANY_NUMBER = 'Any Number'
|
|
_CONTINUOUS = 'Continuous'
|
|
_DISCRETE = 'Discrete'
|
|
_BUILDING = 'BUILDING'
|
|
_SIZING_PERIODS = 'SIZINGPERIOD:DESIGNDAY'
|
|
_LOCATION = 'SITE:LOCATION'
|
|
_WINDOW_MATERIAL_SIMPLE = 'WINDOWMATERIAL:SIMPLEGLAZINGSYSTEM'
|
|
_WINDOW = 'WINDOW'
|
|
_MATERIAL_ROOFVEGETATION = 'MATERIAL:ROOFVEGETATION'
|
|
_SIMPLE = 'Simple'
|
|
|
|
idf_surfaces = {
|
|
# todo: make an enum for all the surface types
|
|
cte.WALL: 'wall',
|
|
cte.GROUND: 'floor',
|
|
cte.ROOF: 'roof'
|
|
}
|
|
idf_usage = {
|
|
# todo: make an enum for all the usage types
|
|
cte.RESIDENTIAL: 'residential_building'
|
|
}
|
|
idf_type_limits = {
|
|
cte.ON_OFF: 'on/off',
|
|
cte.FRACTION: 'Fraction',
|
|
cte.ANY_NUMBER: 'Any Number',
|
|
cte.CONTINUOUS: 'Continuous',
|
|
cte.DISCRETE: 'Discrete'
|
|
}
|
|
idf_day_types = {
|
|
cte.MONDAY: 'Monday',
|
|
cte.TUESDAY: 'Tuesday',
|
|
cte.WEDNESDAY: 'Wednesday',
|
|
cte.THURSDAY: 'Thursday',
|
|
cte.FRIDAY: 'Friday',
|
|
cte.SATURDAY: 'Saturday',
|
|
cte.SUNDAY: 'Sunday',
|
|
cte.HOLIDAY: 'Holidays',
|
|
cte.WINTER_DESIGN_DAY: 'WinterDesignDay',
|
|
cte.SUMMER_DESIGN_DAY: 'SummerDesignDay'
|
|
}
|
|
idf_schedule_types = {
|
|
'compact': 'Compact',
|
|
cte.DAY: 'Day',
|
|
cte.WEEK: 'Week',
|
|
cte.YEAR: 'Year',
|
|
'file': 'File'
|
|
}
|
|
idf_schedule_data_type = {
|
|
'compact': 'Compact',
|
|
'hourly': 'Hourly',
|
|
'daily': 'Daily',
|
|
'interval': 'Interval',
|
|
'list': 'List',
|
|
}
|
|
|
|
def __init__(self, city, output_path, idf_file_path, idd_file_path, epw_file_path, export_type="Surfaces"):
|
|
self._city = city
|
|
self._output_path = str(output_path.resolve())
|
|
self._output_file = str((output_path / f'{city.name}.idf').resolve())
|
|
self._export_type = export_type
|
|
self._idd_file_path = str(idd_file_path)
|
|
self._idf_file_path = str(idf_file_path)
|
|
self._epw_file_path = str(epw_file_path)
|
|
IDF.setiddname(self._idd_file_path)
|
|
self._idf = IDF(self._idf_file_path, self._epw_file_path)
|
|
self._idf.newidfobject(self._SCHEDULE_LIMIT, Name=self._ANY_NUMBER)
|
|
self._idf.newidfobject(self._SCHEDULE_LIMIT, Name=self._FRACTION, Lower_Limit_Value=0.0, Upper_Limit_Value=1.0,
|
|
Numeric_Type=self._CONTINUOUS)
|
|
self._idf.newidfobject(self._SCHEDULE_LIMIT, Name=self._ON_OFF, Lower_Limit_Value=0, Upper_Limit_Value=1,
|
|
Numeric_Type=self._DISCRETE)
|
|
self._export()
|
|
|
|
@staticmethod
|
|
def _matrix_to_list(points, lower_corner):
|
|
lower_x = lower_corner[0]
|
|
lower_y = lower_corner[1]
|
|
lower_z = lower_corner[2]
|
|
points_list = []
|
|
for point in points:
|
|
point_tuple = (point[0]-lower_x, point[1]-lower_y, point[2]-lower_z)
|
|
points_list.append(point_tuple)
|
|
return points_list
|
|
|
|
@staticmethod
|
|
def _matrix_to_2d_list(points):
|
|
points_list = []
|
|
for point in points:
|
|
point_tuple = (point[0], point[1])
|
|
points_list.append(point_tuple)
|
|
return points_list
|
|
|
|
def _add_material(self, layer):
|
|
for material in self._idf.idfobjects[self._MATERIAL]:
|
|
if material.Name == layer.material.name:
|
|
return
|
|
for material in self._idf.idfobjects[self._MATERIAL_NOMASS]:
|
|
if material.Name == layer.material.name:
|
|
return
|
|
if layer.material.no_mass:
|
|
self._idf.newidfobject(self._MATERIAL_NOMASS,
|
|
Name=layer.material.name,
|
|
Roughness=self._ROUGHNESS,
|
|
Thermal_Resistance=layer.material.thermal_resistance,
|
|
Thermal_Absorptance=layer.material.thermal_absorptance,
|
|
Solar_Absorptance=layer.material.solar_absorptance,
|
|
Visible_Absorptance=layer.material.visible_absorptance
|
|
)
|
|
else:
|
|
self._idf.newidfobject(self._MATERIAL,
|
|
Name=layer.material.name,
|
|
Roughness=self._ROUGHNESS,
|
|
Thickness=layer.thickness,
|
|
Conductivity=layer.material.conductivity,
|
|
Density=layer.material.density,
|
|
Specific_Heat=layer.material.specific_heat,
|
|
Thermal_Absorptance=layer.material.thermal_absorptance,
|
|
Solar_Absorptance=layer.material.solar_absorptance,
|
|
Visible_Absorptance=layer.material.visible_absorptance
|
|
)
|
|
|
|
def _add_standard_compact_hourly_schedule(self, usage, schedules):
|
|
_kwargs = {'Name': f'{schedules[0].type} schedules {usage}',
|
|
'Schedule_Type_Limits_Name': self.idf_type_limits[schedules[0].data_type],
|
|
'Field_1': 'Through: 12/31'}
|
|
for j, schedule in enumerate(schedules):
|
|
_val = schedule.values
|
|
_new_field = ''
|
|
for day_type in schedule.day_types:
|
|
_new_field += f' {self.idf_day_types[day_type]}'
|
|
_kwargs[f'Field_{j * 25 + 2}'] = f'For:{_new_field}'
|
|
for i in range(0, len(_val)):
|
|
_kwargs[f'Field_{j * 25 + 3 + i}'] = f'Until: {i + 1:02d}:00,{_val[i]}'
|
|
self._idf.newidfobject(self._COMPACT_SCHEDULE, **_kwargs)
|
|
|
|
def _write_schedules_file(self, usage, schedule):
|
|
file_name = str((Path(self._output_path) / f'{schedule.type} schedules {usage}.dat').resolve())
|
|
with open(file_name, 'w') as file:
|
|
for value in schedule.values:
|
|
file.write(f'{str(value)},\n')
|
|
return file_name
|
|
|
|
def _add_file_schedule(self, usage, schedule, file_name):
|
|
_schedule = self._idf.newidfobject(self._FILE_SCHEDULE, Name=f'{schedule.type} schedules {usage}')
|
|
_schedule.Schedule_Type_Limits_Name = self.idf_type_limits[schedule.data_type]
|
|
_schedule.File_Name = file_name
|
|
_schedule.Column_Number = 1
|
|
_schedule.Rows_to_Skip_at_Top = 0
|
|
_schedule.Number_of_Hours_of_Data = 8760
|
|
_schedule.Column_Separator = 'Comma'
|
|
_schedule.Interpolate_to_Timestep = 'No'
|
|
_schedule.Minutes_per_Item = 60
|
|
|
|
def _add_infiltration_schedules(self, thermal_zone):
|
|
_infiltration_schedules = []
|
|
for hvac_availability_schedule in thermal_zone.thermal_control.hvac_availability_schedules:
|
|
_schedule = Schedule()
|
|
_schedule.type = cte.INFILTRATION
|
|
_schedule.data_type = cte.FRACTION
|
|
_schedule.time_step = cte.HOUR
|
|
_schedule.time_range = cte.DAY
|
|
_schedule.day_types = copy.deepcopy(hvac_availability_schedule.day_types)
|
|
_infiltration_values = []
|
|
for hvac_value in hvac_availability_schedule.values:
|
|
if hvac_value == 0:
|
|
_infiltration_values.append(thermal_zone.infiltration_rate_system_off)
|
|
else:
|
|
_infiltration_values.append(thermal_zone.infiltration_rate_system_on)
|
|
_schedule.values = _infiltration_values
|
|
_infiltration_schedules.append(_schedule)
|
|
for schedule in self._idf.idfobjects[self._HOURLY_SCHEDULE]:
|
|
if schedule.Name == f'{_infiltration_schedules[0].type} schedules {thermal_zone.usage}':
|
|
return
|
|
return self._add_standard_compact_hourly_schedule(thermal_zone.usage, _infiltration_schedules)
|
|
|
|
def _add_schedules(self, usage, new_schedules, schedule_from_file=False):
|
|
if schedule_from_file:
|
|
new_schedule = new_schedules[0]
|
|
for schedule in self._idf.idfobjects[self._FILE_SCHEDULE]:
|
|
if schedule.Name == f'{new_schedule.type} schedules {usage}':
|
|
return
|
|
file_name = self._write_schedules_file(usage, new_schedule)
|
|
return self._add_file_schedule(usage, new_schedule, file_name)
|
|
else:
|
|
for schedule in self._idf.idfobjects[self._HOURLY_SCHEDULE]:
|
|
if schedule.Name == f'{new_schedules[0].type} schedules {usage}':
|
|
return
|
|
return self._add_standard_compact_hourly_schedule(usage, new_schedules)
|
|
|
|
def _add_construction(self, thermal_boundary):
|
|
for construction in self._idf.idfobjects[self._CONSTRUCTION]:
|
|
if thermal_boundary.vegetation is not None:
|
|
if construction.Name == f'{thermal_boundary.construction_name}_{thermal_boundary.vegetation.name}':
|
|
return
|
|
else:
|
|
if construction.Name == thermal_boundary.construction_name:
|
|
return
|
|
if thermal_boundary.layers is None:
|
|
for material in self._idf.idfobjects[self._MATERIAL]:
|
|
if material.Name == "DefaultMaterial":
|
|
return
|
|
self._idf.set_default_constructions()
|
|
return
|
|
for layer in thermal_boundary.layers:
|
|
self._add_material(layer)
|
|
layers = thermal_boundary.layers
|
|
# The constructions should have at least one layer
|
|
if thermal_boundary.vegetation is not None:
|
|
_kwargs = {'Name': f'{thermal_boundary.construction_name}_{thermal_boundary.vegetation.name}',
|
|
'Outside_Layer': thermal_boundary.vegetation.name}
|
|
for i in range(0, len(layers) - 1):
|
|
_kwargs[f'Layer_{i + 2}'] = layers[i].material.name
|
|
else:
|
|
_kwargs = {'Name': thermal_boundary.construction_name, 'Outside_Layer': layers[0].material.name}
|
|
for i in range(1, len(layers) - 1):
|
|
_kwargs[f'Layer_{i + 1}'] = layers[i].material.name
|
|
self._idf.newidfobject(self._CONSTRUCTION, **_kwargs)
|
|
|
|
def _add_window_construction_and_material(self, thermal_opening):
|
|
for window_material in self._idf.idfobjects[self._WINDOW_MATERIAL_SIMPLE]:
|
|
if window_material['UFactor'] == thermal_opening.overall_u_value and \
|
|
window_material['Solar_Heat_Gain_Coefficient'] == thermal_opening.g_value:
|
|
return
|
|
|
|
order = str(len(self._idf.idfobjects[self._WINDOW_MATERIAL_SIMPLE]) + 1)
|
|
material_name = 'glazing_' + order
|
|
_kwargs = {'Name': material_name, 'UFactor': thermal_opening.overall_u_value,
|
|
'Solar_Heat_Gain_Coefficient': thermal_opening.g_value}
|
|
self._idf.newidfobject(self._WINDOW_MATERIAL_SIMPLE, **_kwargs)
|
|
|
|
window_construction_name = 'window_construction_' + order
|
|
_kwargs = {'Name': window_construction_name, 'Outside_Layer': material_name}
|
|
self._idf.newidfobject(self._CONSTRUCTION, **_kwargs)
|
|
|
|
def _add_zone(self, thermal_zone):
|
|
for zone in self._idf.idfobjects['ZONE']:
|
|
if zone.Name == thermal_zone.id:
|
|
return
|
|
# todo: what do we need to define a zone in energy plus?
|
|
self._idf.newidfobject(self._ZONE, Name=thermal_zone.id, Volume=thermal_zone.volume)
|
|
self._add_heating_system(thermal_zone)
|
|
|
|
def _add_thermostat(self, usage_zone):
|
|
thermostat_name = f'Thermostat {usage_zone.usage}'
|
|
for thermostat in self._idf.idfobjects[self._THERMOSTAT]:
|
|
if thermostat.Name == thermostat_name:
|
|
return thermostat
|
|
return self._idf.newidfobject(self._THERMOSTAT,
|
|
Name=thermostat_name,
|
|
Constant_Heating_Setpoint=usage_zone.thermal_control.mean_heating_set_point,
|
|
Constant_Cooling_Setpoint=usage_zone.thermal_control.mean_cooling_set_point)
|
|
|
|
def _add_heating_system(self, thermal_zone):
|
|
for air_system in self._idf.idfobjects[self._IDEAL_LOAD_AIR_SYSTEM]:
|
|
if air_system.Zone_Name == thermal_zone.id:
|
|
return
|
|
thermostat = self._add_thermostat(thermal_zone)
|
|
self._idf.newidfobject(self._IDEAL_LOAD_AIR_SYSTEM,
|
|
Zone_Name=thermal_zone.id,
|
|
System_Availability_Schedule_Name=f'HVAC AVAIL SCHEDULES {thermal_zone.usage}',
|
|
Heating_Availability_Schedule_Name=f'HVAC AVAIL SCHEDULES {thermal_zone.usage}',
|
|
Cooling_Availability_Schedule_Name=f'HVAC AVAIL SCHEDULES {thermal_zone.usage}',
|
|
Template_Thermostat_Name=thermostat.Name)
|
|
|
|
def _add_occupancy(self, thermal_zone):
|
|
number_of_people = thermal_zone.occupancy.occupancy_density * thermal_zone.total_floor_area
|
|
fraction_radiant = thermal_zone.occupancy.sensible_radiative_internal_gain / \
|
|
(thermal_zone.occupancy.sensible_radiative_internal_gain +
|
|
thermal_zone.occupancy.sensible_convective_internal_gain +
|
|
thermal_zone.occupancy.latent_internal_gain)
|
|
self._idf.newidfobject(self._PEOPLE,
|
|
Name=f'{thermal_zone.id}_occupancy',
|
|
Zone_or_ZoneList_Name=thermal_zone.id,
|
|
Number_of_People_Schedule_Name=f'Occupancy schedules {thermal_zone.usage}',
|
|
Number_of_People_Calculation_Method="People",
|
|
Number_of_People=number_of_people,
|
|
Fraction_Radiant=fraction_radiant,
|
|
Activity_Level_Schedule_Name=f'Occupancy schedules {thermal_zone.usage}'
|
|
)
|
|
|
|
def _add_infiltration(self, thermal_zone):
|
|
for zone in self._idf.idfobjects["ZONE"]:
|
|
if zone.Name == f'{thermal_zone.id}_infiltration':
|
|
return
|
|
self._idf.newidfobject(self._INFILTRATION,
|
|
Name=f'{thermal_zone.id}_infiltration',
|
|
Zone_or_ZoneList_Name=thermal_zone.id,
|
|
Schedule_Name=f'Infiltration schedules {thermal_zone.usage}',
|
|
Design_Flow_Rate_Calculation_Method='AirChanges/Hour',
|
|
Air_Changes_per_Hour=thermal_zone.mechanical_air_change
|
|
)
|
|
|
|
def _rename_building(self, b):
|
|
for building in self._idf.idfobjects[self._BUILDING]:
|
|
building.Name = b.name
|
|
building['Solar_Distribution'] = 'FullExterior'
|
|
|
|
def _remove_sizing_periods(self):
|
|
while len(self._idf.idfobjects[self._SIZING_PERIODS]) > 0:
|
|
self._idf.popidfobject(self._SIZING_PERIODS, 0)
|
|
|
|
def _remove_location(self):
|
|
self._idf.popidfobject(self._LOCATION, 0)
|
|
|
|
def _export(self):
|
|
"""
|
|
Export the idf file into the given path
|
|
export type = "Surfaces|Block"
|
|
"""
|
|
|
|
self._remove_location()
|
|
self._remove_sizing_periods()
|
|
for building in self._city.buildings:
|
|
self._rename_building(building)
|
|
for internal_zone in building.internal_zones:
|
|
for thermal_zone in internal_zone.thermal_zones:
|
|
for thermal_boundary in thermal_zone.thermal_boundaries:
|
|
self._add_construction(thermal_boundary)
|
|
if thermal_boundary.vegetation is not None:
|
|
self._add_vegetation_material(thermal_boundary.vegetation)
|
|
for thermal_opening in thermal_boundary.thermal_openings:
|
|
self._add_window_construction_and_material(thermal_opening)
|
|
usage = thermal_zone.usage
|
|
self._add_infiltration_schedules(thermal_zone)
|
|
# todo: why is this schedule unused?
|
|
self._add_schedules(usage, thermal_zone.lighting.schedules)
|
|
self._add_schedules(usage, thermal_zone.occupancy.occupancy_schedules, schedule_from_file=True)
|
|
self._add_schedules(usage, thermal_zone.thermal_control.hvac_availability_schedules)
|
|
|
|
self._add_zone(thermal_zone)
|
|
self._add_heating_system(thermal_zone)
|
|
self._add_infiltration(thermal_zone)
|
|
self._add_occupancy(thermal_zone)
|
|
if self._export_type == "Surfaces":
|
|
self._add_surfaces(building)
|
|
else:
|
|
self._add_block(building)
|
|
self._idf.newidfobject(
|
|
"OUTPUT:VARIABLE",
|
|
Variable_Name="Zone Ideal Loads Supply Air Total Heating Energy",
|
|
Reporting_Frequency="Hourly",
|
|
)
|
|
self._idf.newidfobject(
|
|
"OUTPUT:VARIABLE",
|
|
Variable_Name="Zone Ideal Loads Supply Air Total Cooling Energy",
|
|
Reporting_Frequency="Hourly",
|
|
)
|
|
self._idf.match()
|
|
self._idf.intersect_match()
|
|
self._idf.saveas(str(self._output_file))
|
|
return self._idf
|
|
|
|
def run(self):
|
|
"""
|
|
Start the energy plus simulation
|
|
"""
|
|
self._idf.run(expandobjects=True, readvars=True, output_directory=self._output_path,
|
|
output_prefix=f'{self._city.name}_')
|
|
|
|
def _add_block(self, building):
|
|
_points = self._matrix_to_2d_list(building.foot_print.coordinates)
|
|
self._idf.add_block(name=building.name, coordinates=_points, height=building.max_height,
|
|
num_stories=int(building.storeys_above_ground))
|
|
|
|
for surface in self._idf.idfobjects[self._SURFACE]:
|
|
for thermal_zone in building.thermal_zones:
|
|
for boundary in thermal_zone.thermal_boundaries:
|
|
if surface.Type == self.idf_surfaces[boundary.surface.type]:
|
|
surface.Construction_Name = boundary.construction_name
|
|
break
|
|
for usage_zone in thermal_zone.usage_zones:
|
|
surface.Zone_Name = usage_zone.id
|
|
break
|
|
break
|
|
self._idf.intersect_match()
|
|
|
|
def _add_surfaces(self, building):
|
|
for internal_zone in building.internal_zones:
|
|
for thermal_zone in internal_zone.thermal_zones:
|
|
for boundary in thermal_zone.thermal_boundaries:
|
|
idf_surface_type = self.idf_surfaces[boundary.parent_surface.type]
|
|
if boundary.vegetation is not None:
|
|
construction_name = f'{boundary.construction_name}_{boundary.vegetation.name}'
|
|
else:
|
|
construction_name = boundary.construction_name
|
|
surface = self._idf.newidfobject(self._SURFACE, Name=f'{boundary.parent_surface.name}',
|
|
Surface_Type=idf_surface_type, Zone_Name=thermal_zone.id,
|
|
Construction_Name=construction_name)
|
|
coordinates = self._matrix_to_list(boundary.parent_surface.solid_polygon.coordinates,
|
|
self._city.lower_corner)
|
|
surface.setcoords(coordinates)
|
|
self._add_windows(boundary)
|
|
|
|
def _add_windows(self, boundary):
|
|
for opening in boundary.thermal_openings:
|
|
for construction in self._idf.idfobjects[self._CONSTRUCTION]:
|
|
if construction['Outside_Layer'].split('_')[0] == 'glazing':
|
|
window_construction = construction
|
|
if self._compare_window_constructions(window_construction, opening):
|
|
opening_name = 'window_' + str(len(self._idf.idfobjects[self._WINDOW]) + 1)
|
|
opening_length = math.sqrt(opening.area)
|
|
self._idf.newidfobject(self._WINDOW, Name=f'{opening_name}', Construction_Name=window_construction['Name'],
|
|
Building_Surface_Name=boundary.parent_surface.name, Multiplier='1',
|
|
Length=opening_length, Height=opening_length)
|
|
|
|
def _compare_window_constructions(self, window_construction, opening):
|
|
glazing = window_construction['Outside_Layer']
|
|
for material in self._idf.idfobjects[self._WINDOW_MATERIAL_SIMPLE]:
|
|
if material['Name'] == glazing:
|
|
if material['UFactor'] == opening.overall_u_value and \
|
|
material['Solar_Heat_Gain_Coefficient'] == opening.g_value:
|
|
return True
|
|
return False
|
|
|
|
def _add_vegetation_material(self, vegetation):
|
|
for vegetation_material in self._idf.idfobjects[self._MATERIAL_ROOFVEGETATION]:
|
|
if vegetation_material.Name == vegetation.name:
|
|
return
|
|
soil = vegetation.soil
|
|
height = 0
|
|
leaf_area_index = 0
|
|
leaf_reflectivity = 0
|
|
leaf_emissivity = 0
|
|
minimal_stomatal_resistance = 0
|
|
for plant in vegetation.plants:
|
|
height += plant.percentage * plant.height
|
|
leaf_area_index += plant.percentage * plant.leaf_area_index
|
|
leaf_reflectivity += plant.percentage * plant.leaf_reflectivity
|
|
leaf_emissivity += plant.percentage * plant.leaf_emissivity
|
|
minimal_stomatal_resistance += plant.percentage * plant.minimal_stomatal_resistance
|
|
self._idf.newidfobject(self._MATERIAL_ROOFVEGETATION,
|
|
Name=vegetation.name,
|
|
Height_of_Plants=height,
|
|
Leaf_Area_Index=leaf_area_index,
|
|
Leaf_Reflectivity=leaf_reflectivity,
|
|
Leaf_Emissivity=leaf_emissivity,
|
|
Minimum_Stomatal_Resistance=minimal_stomatal_resistance,
|
|
Soil_Layer_Name=soil.name,
|
|
Roughness=soil.roughness,
|
|
Thickness=vegetation.soil_thickness,
|
|
Conductivity_of_Dry_Soil=soil.dry_conductivity,
|
|
Density_of_Dry_Soil=soil.dry_density,
|
|
Specific_Heat_of_Dry_Soil=soil.dry_specific_heat,
|
|
Thermal_Absorptance=soil.thermal_absorptance,
|
|
Solar_Absorptance=soil.solar_absorptance,
|
|
Visible_Absorptance=soil.visible_absorptance,
|
|
Saturation_Volumetric_Moisture_Content_of_the_Soil_Layer=
|
|
soil.saturation_volumetric_moisture_content,
|
|
Residual_Volumetric_Moisture_Content_of_the_Soil_Layer=
|
|
soil.residual_volumetric_moisture_content,
|
|
Initial_Volumetric_Moisture_Content_of_the_Soil_Layer=
|
|
soil.initial_volumetric_moisture_content,
|
|
Moisture_Diffusion_Calculation_Method=self._SIMPLE
|
|
)
|