hub/city_model_structure/monthly_to_hourly_demand.py

72 lines
2.6 KiB
Python

"""
monthly_to_hourly_demand module
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2020 Project Author Pilar Monsalvete pilar_monsalvete@yahoo.es
"""
import pandas as pd
import helpers.constants as cte
from city_model_structure.attributes.occupancy import Occupancy
import calendar as cal
class MonthlyToHourlyDemand:
"""
MonthlyToHourlyDemand class
"""
def __init__(self, building, conditioning_seasons):
self._hourly_heating = pd.DataFrame()
self._hourly_cooling = pd.DataFrame()
self._building = building
self._conditioning_seasons = conditioning_seasons
@property
def hourly_heating(self):
"""
hourly distribution of the monthly heating of a building
:return: [hourly_heating]
"""
# todo: this method and the insel model have to be reviewed for more than one thermal zone
external_temp = self._building.external_temperature['hour']
# todo: review index depending on how the schedules are defined, either 8760 or 24 hours
for usage_zone in self._building.usage_zones:
temp_set = float(usage_zone.heating_setpoint)
temp_back = float(usage_zone.heating_setback)
occupancy = Occupancy().get_complete_year_schedule(usage_zone.schedules['Occupancy'])
heating_schedule = self._conditioning_seasons['heating']
hourly_heating = []
i = 0
temp_grad_day = []
for month in range(1, 13):
temp_grad_month = 0
month_range = cal.monthrange(2015, month)
for day in range(1, month_range[1]+1):
external_temp_med = 0
for hour in range(0, 24):
external_temp_med += external_temp['inseldb'][i]/24
for hour in range(0, 24):
if external_temp_med < temp_set and heating_schedule[month-1] == 1:
if occupancy[hour] > 0:
temp_grad_day.append(temp_set - external_temp['inseldb'][i])
else:
temp_grad_day.append(temp_back - external_temp['inseldb'][i])
else:
temp_grad_day.append(0)
temp_grad_month += temp_grad_day[i]
i += 1
for day in range(1, month_range[1] + 1):
for hour in range(0, 24):
j = (day - 1) * 24 + hour
monthly_demand = self._building.heating['month']['INSEL'][month-1]
hourly_demand = float(monthly_demand)*float(temp_grad_day[j])/float(temp_grad_month)
hourly_heating.append(hourly_demand)
self._hourly_heating = pd.DataFrame(data=hourly_heating, columns=['monthly to hourly'])
return self._hourly_heating
@property
def hourly_cooling(self) -> NotImplementedError:
raise NotImplementedError