hub/venv/lib/python3.7/site-packages/trimesh/path/arc.py

206 lines
6.3 KiB
Python

import numpy as np
from .. import util
from ..constants import log
from ..constants import tol_path as tol
from ..constants import res_path as res
from .intersections import line_line
def arc_center(points):
"""
Given three points on an arc find:
center, radius, normal, and angle.
This uses the fact that the intersection of the perp
bisectors of the segments between the control points
is the center of the arc.
Parameters
---------
points : (3, dimension) float
Points in space, where dimension is either 2 or 3
Returns
---------
result : dict
Contains the arc center and other information:
{'center' : (d,) float, cartesian center of the arc
'radius' : float, radius of the arc
'normal' : (3,) float, the plane normal.
'angle' : (2,) float, angle of start and end in radians
'span' : float, angle swept by the arc in radians}
"""
# it's a lot easier to treat 2D as 3D with a zero Z value
points, is_2D = util.stack_3D(points, return_2D=True)
# find the two edge vectors of the triangle
edge_direction = np.diff(points, axis=0)
edge_midpoints = (edge_direction * 0.5) + points[:2]
# three points define a plane, so find signed normal
plane_normal = np.cross(*edge_direction[::-1])
plane_normal /= np.linalg.norm(plane_normal)
# unit vector along edges
vector_edge = util.unitize(edge_direction)
# perpendicular cector to each segment
vector_perp = util.unitize(np.cross(vector_edge, plane_normal))
# run the line-line intersection to find the point
intersects, center = line_line(origins=edge_midpoints,
directions=vector_perp,
plane_normal=plane_normal)
if not intersects:
raise ValueError('segments do not intersect:\n{}'.format(
str(points)))
# radius is euclidean distance
radius = ((points[0] - center) ** 2).sum() ** .5
# vectors from points on arc to center point
vector = util.unitize(points - center)
# find the angle between the first and last vector
angle = np.arccos(np.clip(np.dot(*vector[[0, 2]]), -1.0, 1.0))
# if the angle is nonzero and vectors are opposite directions
# it means we have a long arc rather than the short path
large_arc = (abs(angle) > tol.zero and
np.dot(*edge_direction) < 0.0)
if large_arc:
angle = (np.pi * 2) - angle
angles = np.arctan2(*vector[:, :2].T[::-1]) + np.pi * 2
angles_sorted = np.sort(angles[[0, 2]])
reverse = angles_sorted[0] < angles[1] < angles_sorted[1]
angles_sorted = angles_sorted[::(1 - int(not reverse) * 2)]
result = {'center': center[:(3 - is_2D)],
'radius': radius,
'normal': plane_normal,
'span': angle,
'angles': angles_sorted}
return result
def discretize_arc(points,
close=False,
scale=1.0):
"""
Returns a version of a three point arc consisting of
line segments.
Parameters
---------
points : (3, d) float
Points on the arc where d in [2,3]
close : boolean
If True close the arc into a circle
scale : float
What is the approximate overall drawing scale
Used to establish order of magnitude for precision
Returns
---------
discrete : (m, d) float
Connected points in space
"""
# make sure points are (n, 3)
points, is_2D = util.stack_3D(points, return_2D=True)
# find the center of the points
center_info = arc_center(points)
center, R, N, angle = (center_info['center'],
center_info['radius'],
center_info['normal'],
center_info['span'])
# if requested, close arc into a circle
if close:
angle = np.pi * 2
# the number of facets, based on the angle criteria
count_a = angle / res.seg_angle
count_l = ((R * angle)) / (res.seg_frac * scale)
# figure out the number of line segments
count = np.max([count_a, count_l])
# force at LEAST 4 points for the arc
# otherwise the endpoints will diverge
count = np.clip(count, 4, np.inf)
count = int(np.ceil(count))
V1 = util.unitize(points[0] - center)
V2 = util.unitize(np.cross(-N, V1))
t = np.linspace(0, angle, count)
discrete = np.tile(center, (count, 1))
discrete += R * np.cos(t).reshape((-1, 1)) * V1
discrete += R * np.sin(t).reshape((-1, 1)) * V2
# do an in-process check to make sure result endpoints
# match the endpoints of the source arc
if not close:
arc_dist = util.row_norm(points[[0, -1]] - discrete[[0, -1]])
arc_ok = (arc_dist < tol.merge).all()
if not arc_ok:
log.warning(
'failed to discretize arc (endpoint distance %s)',
str(arc_dist))
log.warning('Failed arc points: %s', str(points))
raise ValueError('Arc endpoints diverging!')
discrete = discrete[:, :(3 - is_2D)]
return discrete
def to_threepoint(center, radius, angles=None):
"""
For 2D arcs, given a center and radius convert them to three
points on the arc.
Parameters
-----------
center : (2,) float
Center point on the plane
radius : float
Radius of arc
angles : (2,) float
Angles in radians for start and end angle
if not specified, will default to (0.0, pi)
Returns
----------
three : (3, 2) float
Arc control points
"""
# if no angles provided assume we want a half circle
if angles is None:
angles = [0.0, np.pi]
# force angles to float64
angles = np.asanyarray(angles, dtype=np.float64)
if angles.shape != (2,):
raise ValueError('angles must be (2,)!')
# provide the wrap around
if angles[1] < angles[0]:
angles[1] += np.pi * 2
center = np.asanyarray(center, dtype=np.float64)
if center.shape != (2,):
raise ValueError('only valid on 2D arcs!')
# turn the angles of [start, end]
# into [start, middle, end]
angles = np.array([angles[0],
angles.mean(),
angles[1]],
dtype=np.float64)
# turn angles into (3, 2) points
three = (np.column_stack(
(np.cos(angles),
np.sin(angles))) * radius) + center
return three