hub/imports/construction/helpers/storeys_generation.py
guille 0592f2ce04 Merge remote-tracking branch 'origin/master'
# Conflicts:
#	exports/formats/idf.py
2022-04-08 09:36:53 -04:00

179 lines
7.2 KiB
Python

"""
Storeys generation helper
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
"""
import sys
import math
import numpy as np
from typing import List
from helpers import constants as cte
from city_model_structure.attributes.polygon import Polygon
from city_model_structure.attributes.point import Point
from city_model_structure.building_demand.storey import Storey
from city_model_structure.building_demand.surface import Surface
from city_model_structure.building_demand.thermal_zone import ThermalZone
class StoreysGeneration:
"""
StoreysGeneration
"""
def __init__(self, building, internal_zone, divide_in_storeys=False):
self._building = building
self._internal_zone = internal_zone
self._thermal_zones = []
self._divide_in_storeys = divide_in_storeys
self._floor_area = 0
for ground in building.grounds:
self._floor_area += ground.perimeter_polygon.area
@property
def thermal_zones(self) -> List[ThermalZone]:
"""
Get subsections of building trimesh by storey in case of no interiors defined
:return: [Storey]
"""
number_of_storeys, height = self._calculate_number_storeys_and_height(self._building.average_storey_height,
self._building.eave_height,
self._building.storeys_above_ground)
number_of_storeys = 1
if not self._divide_in_storeys or number_of_storeys == 1:
storey = Storey('storey_0', self._building.surfaces, [None, None], self._internal_zone.volume,
self._internal_zone, self._floor_area)
for thermal_boundary in storey.thermal_boundaries:
if thermal_boundary.type != cte.INTERIOR_WALL or thermal_boundary.type != cte.INTERIOR_SLAB:
# external thermal boundary -> only one thermal zone
thermal_zones = [storey.thermal_zone]
else:
# internal thermal boundary -> two thermal zones
grad = np.rad2deg(thermal_boundary.inclination)
if grad >= 170:
thermal_zones = [storey.thermal_zone, storey.neighbours[0]]
else:
thermal_zones = [storey.neighbours[1], storey.thermal_zone]
thermal_boundary.thermal_zones = thermal_zones
return [storey.thermal_zone]
if number_of_storeys == 0:
raise Exception('Number of storeys cannot be 0')
storeys = []
surfaces_child_last_storey = []
rest_surfaces = []
total_volume = 0
for i in range(0, number_of_storeys - 1):
name = 'storey_' + str(i)
surfaces_child = []
if i == 0:
neighbours = [None, 'storey_1']
for surface in self._building.surfaces:
if surface.type == cte.GROUND:
surfaces_child.append(surface)
else:
rest_surfaces.append(surface)
else:
neighbours = ['storey_' + str(i - 1), 'storey_' + str(i + 1)]
height_division = self._building.lower_corner[2] + height * (i + 1)
intersections = []
for surface in rest_surfaces:
if surface.type == cte.ROOF:
if height_division >= surface.upper_corner[2] > height_division - height:
surfaces_child.append(surface)
else:
surfaces_child_last_storey.append(surface)
else:
surface_child, rest_surface, intersection = surface.divide(height_division)
surfaces_child.append(surface_child)
intersections.extend(intersection)
if i == number_of_storeys - 2:
surfaces_child_last_storey.append(rest_surface)
points = []
for intersection in intersections:
points.append(intersection[1])
coordinates = self._intersections_to_coordinates(intersections)
polygon = Polygon(coordinates)
ceiling = Surface(polygon, polygon, surface_type=cte.INTERIOR_SLAB)
surfaces_child.append(ceiling)
volume = ceiling.area_above_ground * height
total_volume += volume
storeys.append(Storey(name, surfaces_child, neighbours, volume, self._internal_zone, self._floor_area))
name = 'storey_' + str(number_of_storeys - 1)
neighbours = ['storey_' + str(number_of_storeys - 2), None]
volume = self._building.volume - total_volume
if volume < 0:
raise Exception('Error in storeys creation, volume of last storey cannot be lower that 0')
storeys.append(Storey(name, surfaces_child_last_storey, neighbours, volume, self._internal_zone, self._floor_area))
for storey in storeys:
for thermal_boundary in storey.thermal_boundaries:
if thermal_boundary.type != cte.INTERIOR_WALL or thermal_boundary.type != cte.INTERIOR_SLAB:
# external thermal boundary -> only one thermal zone
thermal_zones = [storey.thermal_zone]
else:
# internal thermal boundary -> two thermal zones
grad = np.rad2deg(thermal_boundary.inclination)
if grad >= 170:
thermal_zones = [storey.thermal_zone, storey.neighbours[0]]
else:
thermal_zones = [storey.neighbours[1], storey.thermal_zone]
thermal_boundary.thermal_zones = thermal_zones
for storey in storeys:
self._thermal_zones.append(storey.thermal_zone)
return self._thermal_zones
@staticmethod
def _calculate_number_storeys_and_height(average_storey_height, eave_height, storeys_above_ground):
if average_storey_height is None:
if storeys_above_ground is None or storeys_above_ground <= 0:
sys.stderr.write('Warning: not enough information to divide building into storeys, '
'either number of storeys or average storey height must be provided.\n')
return 0, 0
number_of_storeys = int(storeys_above_ground)
height = eave_height / number_of_storeys
else:
height = float(average_storey_height)
if storeys_above_ground is not None:
number_of_storeys = int(storeys_above_ground)
else:
number_of_storeys = math.floor(float(eave_height) / height) + 1
last_storey_height = float(eave_height) - height*(number_of_storeys-1)
if last_storey_height < 0.3*height:
number_of_storeys -= 1
return number_of_storeys, height
@staticmethod
def _intersections_to_coordinates(edges_list):
# todo: this method is not robust, the while loop needs to be improved
points = [Point(edges_list[0][0]), Point(edges_list[0][1])]
found_edges = []
j = 0
while j < len(points)-1:
for i in range(1, len(edges_list)):
if i not in found_edges:
point_2 = points[len(points) - 1]
point_1 = Point(edges_list[i][0])
found = False
if point_1.distance_to_point(point_2) <= 1e-10:
points.append(Point(edges_list[i][1]))
found_edges.append(i)
found = True
if not found:
point_1 = Point(edges_list[i][1])
if point_1.distance_to_point(point_2) <= 1e-10:
points.append(Point(edges_list[i][0]))
found_edges.append(i)
j += 1
points.remove(points[len(points)-1])
array_points = []
for point in points:
array_points.append(point.coordinates)
return np.array(array_points)