import gzip import xmltodict import networkx as nx import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation from collections import defaultdict import matplotlib.cm as cm import matplotlib.colors as colors class MatsimVisualizer(): def __init__(self, network_file_path, events_file_path): self.network_file_path = network_file_path self.events_file_path = events_file_path self.G = nx.Graph() self.pos = None self.traffic_per_tick = defaultdict(lambda: defaultdict(int)) self.cumulative_traffic = defaultdict(lambda: defaultdict(int)) self.cmap = cm.viridis self.norm = None def load_data(self): # Load network data with gzip.open(self.network_file_path, 'rb') as file: network_doc = xmltodict.parse(file.read().decode('utf-8')) # Parse nodes self.nodes = {node['@id']: (float(node['@x']), float(node['@y'])) for node in network_doc['network']['nodes']['node']} # Parse links self.links = [{ 'id': link['@id'], 'from': link['@from'], 'to': link['@to'] } for link in network_doc['network']['links']['link']] link_state = defaultdict(list) # Load and parse the events file with gzip.open(self.events_file_path, 'rb') as file: events_doc = xmltodict.parse(file.read().decode('utf-8')) for event in events_doc['events']['event']: link_id = event.get('@link') event_type = event.get('@type') tick = float(event.get('@time')) vehicle_id = event.get('@vehicle') if link_id is not None and event_type is not None and tick is not None: if event_type == 'entered link' or event_type == 'vehicle enters traffic': self.traffic_per_tick[tick][link_id] += 1 link_state[link_id].append(vehicle_id) elif event_type == 'left link' or event_type == 'vehicle leaves traffic': self.traffic_per_tick[tick][link_id] -= 1 link_state[link_id].remove(vehicle_id) for link in self.links: self.cumulative_traffic[0][link['id']] = 0 # Accumulate the counts to get the total number of vehicles on each link up to each tick actual_tick = 0 sorted_ticks = sorted(self.traffic_per_tick.keys()) for tick in sorted_ticks: if actual_tick not in self.cumulative_traffic: # Start with the vehicle counts of the previous tick self.cumulative_traffic[actual_tick] = defaultdict(int, self.cumulative_traffic.get(actual_tick - 1, {})) # Apply the changes recorded for the current tick for link_id, change in self.traffic_per_tick[tick].items(): self.cumulative_traffic[actual_tick][link_id] += change actual_tick += 1 # Move to the next tick def create_graph(self): for node_id, coords in self.nodes.items(): self.G.add_node(node_id, pos=coords) for link in self.links: self.G.add_edge(link['from'], link['to']) self.pos = nx.get_node_attributes(self.G, 'pos') def setup_color_mapping(self): # Find max traffic to setup the normalization instance max_traffic = max(max(self.cumulative_traffic[tick].values()) for tick in self.cumulative_traffic) self.norm = colors.Normalize(vmin=0, vmax=max_traffic) def update(self, frame_number): tick = sorted(self.cumulative_traffic.keys())[frame_number] traffic_data = self.cumulative_traffic[tick] edge_colors = [self.cmap(self.norm(traffic_data.get(link['id'], 0))) for link in self.links] edge_widths = [2 + self.norm(traffic_data.get(link['id'], 0)) * 3 for link in self.links] plt.cla() nx.draw(self.G, self.pos, node_size=0, node_color='blue', width=edge_widths, edge_color=edge_colors, with_labels=False, edge_cmap=self.cmap) plt.title(f"Time: {tick}") def visualize(self): self.load_data() self.create_graph() self.setup_color_mapping() fig, ax = plt.subplots() sm = plt.cm.ScalarMappable(cmap=self.cmap, norm=self.norm) sm.set_array([]) plt.colorbar(sm, ax=ax, label='Traffic Density') ani = FuncAnimation(fig, self.update, frames=len(self.cumulative_traffic), repeat=False) ani.save('traffic_animation.gif', writer='ffmpeg', fps=5) plt.show()