matsim-proto/matsim_engine.py
2024-02-06 11:16:41 -05:00

137 lines
3.9 KiB
Python

import math
import subprocess
import xmltodict
import geopandas as gpd
from shapely.geometry import Point
from matsim_activity_to_matsim_schedule import MatsimActivityToMatsimSchedule
from hub_function_to_matsim_activity import HubFunctionToMatsimActivity
class MatSimEngine:
def __init__(self, city, output_file_path):
self._city = city
self._output_file_path = output_file_path
facilities_dict = {
'facilities': {
'@name': 'Montreal Facilities',
'facility': []
}
}
hub_function_to_matsim = HubFunctionToMatsimActivity()
matsim_schedule = MatsimActivityToMatsimSchedule()
buildings_shape_data = {
'id': [],
'geometry': []
}
# 1- Facilities
# TODO: this should come from the factories, please check idf generation
for building in city.buildings:
activity = hub_function_to_matsim.dictionary[building.function].split(',')
for surface in building.grounds:
for coord in surface.solid_polygon.coordinates:
buildings_shape_data['id'].append(f"{building.name}")
buildings_shape_data['geometry'].append(Point(coord[0], coord[1]))
facility = {
'@id': building.name,
'@x': str(building.centroid[0]),
'@y': str(building.centroid[1]),
'activity': []
}
if len(building.thermal_zones_from_internal_zones) > 1:
raise NotImplementedError("multi-zone buildings aren't yet supported")
building_schedules = []
capacity = 0
for thermal_zone in building.thermal_zones_from_internal_zones:
capacity = thermal_zone.occupancy.occupancy_density * building.floor_area * building.storeys_above_ground
for schedule in thermal_zone.occupancy.occupancy_schedules:
building_schedules.append(schedule)
for new_activity in activity:
activity_info = {
'@type': new_activity,
'capacity': {
'@value': math.ceil(capacity)
},
'opentime': []
}
for schedule in building_schedules:
opening_hour = 0
closing_hour = 0
# Find opening hour (first hour > 0)
for i, value in enumerate(schedule.values):
if value > 0:
opening_hour = i
break
for i, value in reversed(list(enumerate(schedule.values))):
if value > 0:
closing_hour = i
break
for day in schedule.day_types:
if day[0:3] != 'hol':
activity_info['opentime'].append({
'@day': day[0:3],
'@start_time': opening_hour,
'@end_time': closing_hour
})
facility['activity'].append(activity_info)
facilities_dict['facilities']['facility'].append(facility)
gdf = gpd.GeoDataFrame(
buildings_shape_data,
crs=city.srs_name
)
gdf.to_file("input_files/buildings_shapefile.shp")
# Convert the Python dictionary to an XML string
xml_content = xmltodict.unparse(facilities_dict, pretty=True, short_empty_elements=True)
# Write the XML to the file
with open(f"{output_file_path}/{city.name}_facilities.xml", 'w') as file:
file.write(xml_content)
# 2- Network
# First get only the part of the network necessary for the simulation
java_path = "java"
jar_path = "matsim-network-from-osm.jar"
command = [
java_path,
"-jar", jar_path,
"input_files/merged-network.osm.pbf",
"input_files/buildings_shapefile.shp",
f"{output_file_path}/network.xml.gz"
]
subprocess.run(command)
# 3- Population
# 3.1 - Public Transport
# 4- Config Generation
def run(self):
java_path = "java"
jar_path = "matsim.jar"
command = [java_path, "-jar", jar_path]
# Must generate this config file first.
# command.append(config_file_path)
subprocess.run(command)