adjasted workflow to new concept of the libs

This commit is contained in:
Pilar 2021-04-13 19:01:30 -04:00
parent a17e575948
commit 248438f4ab
7 changed files with 120 additions and 175 deletions

View File

@ -24,7 +24,7 @@ class MonthlyEnergyBalance:
file += 'p 4' + '\n'
# BUILDING PARAMETERS
file += str(0.85*building.heated_volume) + ' % BP(1) Heated Volume (vBrutto)\n'
file += str(0.85*building.volume) + ' % BP(1) Heated Volume (vBrutto)\n'
file += str(building.average_storey_height) + ' % BP(2) Average storey height / m\n'
file += str(building.storeys_above_ground) + ' % BP(3) Number of storeys above ground\n'
file += str(building.attic_heated) + ' % BP(4) Attic heating type (0=no room, 1=unheated, 2=heated)\n'
@ -43,12 +43,13 @@ class MonthlyEnergyBalance:
i = 0
for usage_zone in building.usage_zones:
percentage_usage = 1
file += str(float(building.foot_print.area) * percentage_usage) + ' % BP(11) #1 Area of zone ' + \
file += str(float(building.floor_area) * percentage_usage) + ' % BP(11) #1 Area of zone ' + \
str(i + 1) + ' (sqm)' + '\n'
total_internal_gains = 0
for ig in usage_zone.internal_gains:
total_internal_gains += float(ig.average_internal_gain) * \
(float(ig.convective_fraction) + float(ig.radiative_fraction))
# total_internal_gains += float(ig.average_internal_gain) * \
# (float(ig.convective_fraction) + float(ig.radiative_fraction))
total_internal_gains += 10.45 * (float(ig.convective_fraction) + float(ig.radiative_fraction))
file += str(total_internal_gains) + ' % BP(12) #2 Internal gains of zone ' + str(i + 1) + '\n'
file += str(usage_zone.heating_setpoint) + ' % BP(13) #3 Heating setpoint temperature zone ' + \
str(i + 1) + ' (tSetHeat)' + '\n'
@ -59,7 +60,12 @@ class MonthlyEnergyBalance:
file += str(usage_zone.hours_day) + ' % BP(16) #6 Usage hours per day zone ' + str(i + 1) + '\n'
file += str(usage_zone.days_year) + ' % BP(17) #7 Usage days per year zone ' + str(i + 1) + '\n'
if usage_zone.mechanical_air_change is None:
if thermal_zone.infiltration_rate_system_off is None:
raise Exception('Ventilation air rate is not initialized')
else:
file += str(thermal_zone.infiltration_rate_system_off) + ' % BP(18) #8 Minimum air change rate zone ' + \
str(i + 1) + ' (h^-1)' + '\n'
else:
file += str(usage_zone.mechanical_air_change) + ' % BP(18) #8 Minimum air change rate zone ' + \
str(i + 1) + ' (h^-1)' + '\n'
i += 1
@ -79,11 +85,17 @@ class MonthlyEnergyBalance:
# todo: this method has to be reviewed for more than one thermal opening per thermal boundary
for thermal_boundary in building.thermal_zones[0].bounded:
type_code = lc.construction_types_to_code(thermal_boundary.type)
string = type_code + ' ' + str(thermal_boundary.area_above_ground) + ' ' + \
if thermal_boundary.surface.holes_polygons is None:
window_area = float(thermal_boundary.surface.perimeter_polygon.area) * float(thermal_boundary.window_ratio)
else:
window_area = 0
for hole_polygon in thermal_boundary.surface.holes_polygons:
window_area += hole_polygon.area
string = type_code + ' ' + str(0.85*thermal_boundary.area_above_ground) + ' ' + \
str(thermal_boundary.area_below_ground) + ' ' + str(thermal_boundary.u_value) + ' ' + \
str(thermal_boundary.window_area) + ' '
str(0.85*window_area) + ' '
if thermal_boundary.window_area <= 0.001:
if window_area <= 0.001:
string = string + '0 0 0 '
else:
string = string + str(thermal_boundary.thermal_openings[0].frame_ratio) + ' ' + \
@ -153,6 +165,10 @@ class MonthlyEnergyBalance:
csv_reader = csv.reader(csv_file)
for line in csv_reader:
demand = str(line).replace("['", '').replace("']", '').split()
for i in range(0, 2):
if demand[i] != 'NaN':
aux = float(demand[i])*1000 # kWh to Wh
demand[i] = str(aux)
heating.append(demand[0])
cooling.append(demand[1])
monthly_heating = pd.DataFrame(heating, columns=['INSEL'])

65
main.py
View File

@ -1,7 +1,7 @@
"""
Monthly energy balance main
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2020 Project Author Pilar Monsalvete pilar_monsalvete@yahoo.es
Copyright © 2020 Project Author Pilar Monsalvete Álvarez de Uribarri pilar.monsalvete@concordia.ca
"""
import sys
@ -19,6 +19,7 @@ from imports.geometry_factory import GeometryFactory
from imports.weather_factory import WeatherFactory
from city_model_structure.city import City
import datetime
import time
parser = ArgumentParser(description='Monthly energy balance workflow v0.1.')
required = parser.add_argument_group('required arguments')
@ -33,8 +34,8 @@ parser.add_argument('--weather_step_in_pickle', '-ws', help='Weather parameters
parser.add_argument('--use_cached_sra_file', '-u', help='Use sra files from cache, instead of freshly calculated sra '
'files', default=False)
required.add_argument('--project_folder', '-f', help='Project folder', required=True)
required.add_argument('--cli_weather_file', '-c', help='weather cli file', required=True)
required.add_argument('--city_name', '-n', help='city name for dat file', required=True)
required.add_argument('--weather_file_name', '-w', help='Weather file', required=True)
required.add_argument('--climate_reference_city', '-c', help='Closest city with climate weather', required=True)
try:
args = parser.parse_args()
@ -54,14 +55,11 @@ else:
city = GeometryFactory(args.geometry_type, file).city
city.save(pickle_file)
print('begin_populating_time', datetime.datetime.now())
# Step 2: Populate city adding thermal- and usage-related parameters
populated_step_in_pickle = ast.literal_eval(args.populated_step_in_pickle)
if populated_step_in_pickle:
populated_city = city
for building in populated_city.buildings:
for usage_zone in building.usage_zones:
usage_zone.heating_setpoint = 20
usage_zone.heating_setback = 17
else:
populated_city = Populate(city).populated_city
pickle_file = Path(str(pickle_file).replace('.pickle', '_populated.pickle'))
@ -70,12 +68,14 @@ if populated_city.buildings is None:
print('No building to be calculated')
sys.exit()
print('populating_time', datetime.datetime.now())
print('begin_weather_time', datetime.datetime.now())
# Step 3: Populate city adding climate-related parameters
weather_step_in_pickle = ast.literal_eval(args.weather_step_in_pickle)
if not weather_step_in_pickle:
city_name = args.city_name
WeatherFactory('dat', populated_city, city_name)
city.climate_reference_city = args.climate_reference_city
path = (Path(args.project_folder) / 'tmp').resolve()
city.climate_file = (path / f'{args.climate_reference_city}.cli').resolve()
WeatherFactory('epw', populated_city, file_name=args.weather_file_name).enrich()
for building in populated_city.buildings:
if 'hour' not in building.external_temperature:
print('No external temperature found')
@ -83,13 +83,10 @@ if not weather_step_in_pickle:
if 'month' not in building.external_temperature:
building.external_temperature['month'] = mv.MonthlyValues().\
get_mean_values(building.external_temperature['hour'][['inseldb']])
get_mean_values(building.external_temperature['hour'][['epw']])
max_buildings_handled_by_sra = 500
sra_file_name = 'SRA'
sra = SimplifiedRadiosityAlgorithm(Path(args.project_folder).resolve(), sra_file_name,
Path(args.cli_weather_file).resolve(),
city.city_objects, lower_corner=city.lower_corner)
sra = SimplifiedRadiosityAlgorithm(Path(args.project_folder).resolve(), city, args.weather_file_name)
if ast.literal_eval(args.use_cached_sra_file):
sra.results()
sra.set_irradiance_surfaces(populated_city)
@ -99,11 +96,7 @@ if not weather_step_in_pickle:
radius = 100
for building in city.buildings:
new_city = city.region(building.location, radius)
sra_file_name = 'SRA'
sra_new = SimplifiedRadiosityAlgorithm(Path(args.project_folder).resolve(), sra_file_name,
Path(args.cli_weather_file).resolve(),
new_city.city_objects, lower_corner=new_city.lower_corner)
sra_new = SimplifiedRadiosityAlgorithm(Path(args.project_folder).resolve(), city, args.weather_file_name)
sra_new.call_sra(keep_files=True)
sra_new.set_irradiance_surfaces(city, building_name=building.name)
else:
@ -115,28 +108,17 @@ if not weather_step_in_pickle:
print('begin_insel_time', datetime.datetime.now())
# Step 4: Demand calculation (one model per building)
print_results = None
# todo: city.name needs location and so, internet connection
# file = 'city name: ' + city.name + '\n'
file = 'city name: Kelowna\n'
file = 'city name: ' + city.name + '\n'
i = 0
init = time.process_time_ns()
for building in populated_city.buildings:
if building.name != 'BLD122177':
print(building.name)
# todo: default values to be defined at each specific workflow!
building.heated = True
building.cooled = False
building.attic_heated = 2
building.attic_heated = 1
building.basement_heated = 1
for thermal_boundary in building.thermal_zones[0].bounded:
thermal_boundary.hi = 10
thermal_boundary.he = 25
for thermal_opening in thermal_boundary.thermal_openings:
thermal_opening.hi = 10
thermal_opening.he = 25
building.thermal_zones[0].indirectly_heated_area_ratio = 0.25
building.thermal_zones[0].additional_thermal_bridge_u_value = 0.05
building.usage_zones[0].mechanical_air_change = 0.35
building.thermal_zones[0].infiltration_rate_system_on = 0
# building.usage_zones[0].internal_gains[0].average_internal_gain = '10.45'
full_path_out = Path(args.project_folder + '/outputs/' + building.name + '_insel.out').resolve()
full_path_out.parent.mkdir(parents=True, exist_ok=True)
insel_file_name = building.name + '.insel'
@ -145,6 +127,13 @@ for building in populated_city.buildings:
insel = Insel(Path(args.project_folder).resolve(), insel_file_name, content, mode=2, keep_files=keep_files).run()
building.heating['month'], building.cooling['month'] = templates.demand(full_path_out)
new_building = building.heating['month'].rename(columns={'INSEL': building.name})
demand_year = 0
for value in building.heating['month']['INSEL']:
if value == 'NaN':
value = '0'
demand_year += float(value)
yearly_heating = pd.DataFrame([demand_year], columns=['INSEL'])
building.heating['year'] = yearly_heating
if print_results is None:
print_results = new_building
else:
@ -155,7 +144,7 @@ for building in populated_city.buildings:
file += 'function: ' + building.function + '\n'
file += 'floor area: ' + str(building.thermal_zones[0].floor_area) + '\n'
file += 'storeys: ' + str(building.storeys_above_ground) + '\n'
file += 'heated_volume: ' + str(building.heated_volume) + '\n'
file += 'heated_volume: ' + str(building.volume) + '\n'
file += 'volume: ' + str(building.volume) + '\n'
except ValueError:
@ -164,11 +153,13 @@ for building in populated_city.buildings:
continue
i += 1
full_path_results = Path(args.project_folder + '/outputs/heating_demand.csv').resolve()
print_results.to_csv(full_path_results)
full_path_metadata = Path(args.project_folder + '/outputs/metadata.csv').resolve()
with open(full_path_metadata, 'w') as metadata_file:
metadata_file.write(file)
pickle_file = Path(str(pickle_file).replace('.pickle', '_demand.pickle'))
populated_city.save(pickle_file)
print('end_time', datetime.datetime.now())

View File

@ -32,7 +32,9 @@ class Populate:
self._errors = []
# Step 2.1: Thermal parameters
tmp_city = City(self._city.lower_corner, self._city.upper_corner, self._city.srs_name)
PhysicsFactory(self.handler, self._city)
# todo: just for Rabeehs case!!
#PhysicsFactory(self.handler, self._city)
PhysicsFactory('ca', self._city).enrich()
print('original:', len(self._city.buildings))
for building in self._city.buildings:
# infiltration_rate_system_off is a mandatory parameter.
@ -45,7 +47,10 @@ class Populate:
# Step 2.2: Usage parameters
print('physics:', len(tmp_city.buildings))
UsageFactory(self.handler, tmp_city)
# todo: just for Rabeehs case!!
#UsageFactory(self.handler, tmp_city)
UsageFactory('ca', tmp_city).enrich()
self._populated_city = City(self._city.lower_corner, self._city.upper_corner, self._city.srs_name)
for building in tmp_city.buildings:
# heating_setpoint is a mandatory parameter.
@ -54,4 +59,5 @@ class Populate:
self._populated_city.add_city_object(building)
if self._populated_city.buildings is None:
self._errors.append('no archetype found per usage')
print('usage:', len(tmp_city.buildings))
return self._populated_city

View File

@ -10,82 +10,56 @@ from pathlib import Path
import pandas as pd
from helpers import monthly_values as mv
import subprocess
import xmltodict
from collections import OrderedDict
from subprocess import SubprocessError, TimeoutExpired, CalledProcessError
from exports.exports_factory import ExportsFactory
from imports.weather_factory import WeatherFactory
class SimplifiedRadiosityAlgorithm:
# todo: define executable as configurable parameter
# _executable = 'citysim_sra' # for linux
_executable = 'shortwave_integer' # for windows
def __init__(self, sra_working_path, sra_file_name, full_path_cli, city_objects=None,
begin_month=1, begin_day=1, end_month=12, end_day=31, lower_corner=None):
self._full_path_cli = full_path_cli
self._sra_file_name = sra_file_name
self._begin_month = begin_month
self._begin_day = begin_day
self._end_month = end_month
self._end_day = end_day
if lower_corner is None:
lower_corner = [0, 0, 0]
self._lower_corner = lower_corner
def __init__(self, sra_working_path, city, weather_file_name):
self._city = city
self._sra_working_path = sra_working_path
tmp_path = (sra_working_path / 'tmp').resolve()
Path(tmp_path).mkdir(parents=True, exist_ok=True)
self._weather_file_name = weather_file_name
self._tmp_path = (sra_working_path / 'tmp').resolve()
Path(self._tmp_path).mkdir(parents=True, exist_ok=True)
# Ensure tmp file is empty
for child in tmp_path.glob('*'):
for child in self._tmp_path.glob('*'):
if child.is_file():
child.unlink()
cache_path = (sra_working_path / 'cache').resolve()
Path(cache_path).mkdir(parents=True, exist_ok=True)
self._full_path_in_sra = (tmp_path / (sra_file_name + '.xml')).resolve()
self._sra_out_file_name = sra_file_name + '_SW.out'
self._full_path_out_sra = (cache_path / self._sra_out_file_name).resolve()
print(self._full_path_in_sra, self._sra_out_file_name, self._full_path_out_sra)
self._cache_path = (sra_working_path / 'cache').resolve()
Path(self._cache_path).mkdir(parents=True, exist_ok=True)
self._sra_out_file_name = self._city.name + '_sra_SW.out'
self._out_values = None
self._radiation = []
self._content = OrderedDict()
climate = OrderedDict()
climate['@location'] = self._full_path_cli
climate['@city'] = self.city
simulation = OrderedDict()
simulation['@beginMonth'] = begin_month
simulation['@beginDay'] = begin_day
simulation['@endMonth'] = end_month
simulation['@endDay'] = end_day
city_sim = OrderedDict()
city_sim['@name'] = sra_file_name + '.xml'
city_sim['Simulation'] = simulation
city_sim['Climate'] = climate
self._content['CitySim'] = city_sim
if city_objects is not None:
self.add_city_objects(city_objects)
self.save()
def call_sra(self, keep_files=False):
self._create_cli_file()
ExportsFactory('sra', self._city, self._tmp_path).export()
try:
completed = subprocess.run([self._executable, str(self._full_path_in_sra)])
completed = subprocess.run([self._executable, str(Path(self._tmp_path / f'{self._city.name}_sra.xml').resolve())])
except (SubprocessError, TimeoutExpired, CalledProcessError) as error:
raise Exception(error)
file = (Path(self._sra_working_path) / 'tmp' / self._sra_out_file_name).resolve()
new_path = (Path(self._sra_working_path) / 'cache' / self._sra_out_file_name).resolve()
file = (self._tmp_path / self._sra_out_file_name).resolve()
new_path = (self._cache_path / self._sra_out_file_name).resolve()
try:
shutil.move(str(file), str(new_path))
except Exception:
raise Exception('No SRA output file found')
self._out_values = self.results()
if not keep_files:
os.remove(self._full_path_in_sra)
os.remove(Path(self._tmp_path / f'{self._city.name}_sra.xml').resolve())
return completed
def results(self):
if self._out_values is None:
try:
self._out_values = pd.read_csv(self._full_path_out_sra, sep='\s+', header=0)
path = (self._cache_path / self._sra_out_file_name).resolve()
self._out_values = pd.read_csv(path, sep='\s+', header=0)
except Exception:
raise Exception('No SRA output file found')
return self._out_values
@ -126,84 +100,52 @@ class SimplifiedRadiosityAlgorithm:
if city_object_name != building_name:
continue
city_object = city.city_object(city_object_name)
print(city_object.name)
for column in radiation.columns.values:
if column == 'month':
continue
header_name = column
surface_name = header_name.split(':')[2]
surface = city_object.surface(surface_name)
print('surface', surface)
new_value = pd.DataFrame(radiation[[header_name]].to_numpy(), columns=['sra'])
if mode == 0 or mode == 2:
month_new_value = mv.MonthlyValues().get_mean_values(new_value)
print(surface.global_irradiance)
print(month_new_value)
if 'month' not in surface.global_irradiance:
surface.global_irradiance['month'] = month_new_value
print('1', month_new_value)
else:
pd.concat([surface.global_irradiance['month'], month_new_value], axis=1)
print('rest', month_new_value)
if mode == 1 or mode == 2:
if 'hour' not in surface.global_irradiance:
surface.global_irradiance['hour'] = new_value
else:
pd.concat([surface.global_irradiance['hour'], new_value], axis=1)
@property
def content(self):
return xmltodict.unparse(self._content, pretty=True, short_empty_elements=True)
def save(self):
with open(self._full_path_in_sra, "w") as sra_file:
sra_file.write(self.content)
return
def _correct_points(self, points):
# correct the x, y, z values into the reference frame set by lower_corner parameter
# [0, 0, 0] by default means no correction.
x = points[0] - self._lower_corner[0]
y = points[1] - self._lower_corner[1]
z = points[2] - self._lower_corner[2]
correct_points = [x, y, z]
return correct_points
def add_city_objects(self, city_objects):
buildings = []
for i in range(len(city_objects)):
city_object = city_objects[i]
building = OrderedDict()
building['@Name'] = city_object.name
building['@id'] = i
building['@key'] = city_object.name
building['@Simulate'] = 'True'
walls, roofs, floors = [], [], []
for s in city_object.surfaces:
surface = OrderedDict()
surface['@id'] = s.name
surface['@ShortWaveReflectance'] = s.swr
for j in range(len(s.points - 1)):
points = self._correct_points(s.points[j])
vertex = OrderedDict()
vertex['@x'] = points[0]
vertex['@y'] = points[1]
vertex['@z'] = points[2]
surface['V' + str(j)] = vertex
if s.type == 'Wall':
walls.append(surface)
elif s.type == 'Roof':
roofs.append(surface)
def _create_cli_file(self):
file = self._city.climate_file
days_in_month = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
WeatherFactory('epw', self._city, file_name=self._weather_file_name).enrich()
content = self._city.name + '\n'
content += str(self._city.latitude) + ',' + str(self._city.longitude) + ',0.0,' + str(self._city.time_zone) + '\n'
content += '\ndm m h G_Dh G_Bn\n'
total_days = 0
for month in range(1, 13):
if month > 1:
total_days += days_in_month[month - 2]
for day in range(1, days_in_month[month-1]+1):
for hour in range(1, 25):
if month == 1:
i = 24 * (day-1) + hour - 1
else:
floors.append(surface)
building['Wall'] = walls
building['Roof'] = roofs
building['Floor'] = floors
buildings.append(building)
district = OrderedDict()
district['FarFieldObstructions'] = None
district['Building'] = buildings
self._content['CitySim']['District'] = district
i = (total_days+day-1)*24 + hour - 1
representative_building = self._city.buildings[0]
content += str(day) + ' ' + str(month) + ' ' + str(hour) + ' ' \
+ str(representative_building.global_horizontal['hour'].epw[i]) + ' ' \
+ str(representative_building.beam['hour'].epw[i]) + '\n'
with open(file, "w") as file:
file.write(content)
return
@property
def city(self):
with open(self._full_path_cli, 'r') as file:
return file.readline().replace('\n', '')

View File

@ -12,9 +12,9 @@ from subprocess import SubprocessError, TimeoutExpired, CalledProcessError
from insel.insel import Insel
from insel.templates.monthly_energy_balance import MonthlyEnergyBalance as templates
from factories.geometry_factory import GeometryFactory
from imports.geometry_factory import GeometryFactory
from populate import Populate
from factories.weather_factory import WeatherFactory
from imports.weather_factory import WeatherFactory
from helpers import monthly_values as mv
from simplified_radiosity_algorithm.simplified_radiosity_algorithm import SimplifiedRadiosityAlgorithm as sralgorithm
from city_model_structure.city import City
@ -32,7 +32,7 @@ class TestMebWorkflow(TestCase):
self._example_path = (Path(__file__).parent.parent / 'tests_data').resolve()
self._geometry_type = 'citygml'
self._use_cached_sra_file = False
self._input_geometry_file = (self._example_path / 'gis' / '2050 bp_2buildings.gml').resolve()
self._input_geometry_file = (self._example_path / 'gis' / '2050_bp_2buildings.gml').resolve()
self._project_folder = Path(__file__).parent.parent
self._cli_weather_file = (self._example_path / 'weather' / 'inseldb_new_york_city.cli').resolve()
self._city_gml = None
@ -67,10 +67,10 @@ class TestMebWorkflow(TestCase):
if self._city_with_weather is None:
self._city_with_weather = self._get_citygml(use_pickle=use_pickle)
weather_path = (self._example_path / 'weather').resolve()
WeatherFactory('dat', self._city_with_weather, city_name=self._city_name, base_path=weather_path)
WeatherFactory('epw', self._city_with_weather, base_path=weather_path)
for building in self._city_with_weather.buildings:
building.external_temperature['month'] = mv.MonthlyValues(). \
get_mean_values(building.external_temperature['hour'][['inseldb']])
get_mean_values(building.external_temperature['hour'][['epw']])
sra_file_name = 'SRA'
sra = sralgorithm(Path(self._project_folder).resolve(), sra_file_name, Path(self._cli_weather_file).resolve(),
@ -85,9 +85,9 @@ class TestMebWorkflow(TestCase):
def _get_cli_single_building(self, building_name, radius, use_pickle):
self._city_with_cli = self._get_citygml(use_pickle=use_pickle)
building = self._city_with_cli.city_object(building_name)
new_city = self._city_with_cli.region(building.location, radius)
new_city = self._city_with_cli.region(building.centroid, radius)
sra_file_name = 'SRA'
print('location', building.location)
print('location', building.centroid)
print('lower corner', new_city.lower_corner)
full_path_cli = (self._example_path / 'weather' / 'inseldb_Summerland.cli').resolve()
sra = sralgorithm(Path(self._project_folder).resolve(), sra_file_name, full_path_cli, new_city.city_objects,
@ -96,16 +96,6 @@ class TestMebWorkflow(TestCase):
sra.set_irradiance_surfaces(self._city_with_cli, building_name=building_name)
return self._city_with_cli
def _get_city_with_dat(self, use_pickle):
if self._city_with_dat is None:
self._city_with_dat = self._get_citygml(use_pickle=use_pickle)
weather_path = (self._example_path / 'weather').resolve()
WeatherFactory('dat', self._city_with_dat, city_name=self._city_name, base_path=weather_path)
for building in self._city_with_dat.buildings:
building.external_temperature['month'] = mv.MonthlyValues(). \
get_mean_values(building.external_temperature['hour'][['inseldb']])
return self._city_with_dat
def test_populate_city(self):
"""
Test populate class

View File

@ -420,7 +420,7 @@
</Solid>
</lod1Solid>
<yearOfConstruction>1965</yearOfConstruction>
<function>I1</function>
<function>residential</function>
</Building>
</cityObjectMember>
<cityObjectMember>
@ -620,7 +620,7 @@
</Solid>
</lod1Solid>
<yearOfConstruction>2045</yearOfConstruction>
<function>I1</function>
<function>residential</function>
</Building>
</cityObjectMember>
</CityModel>