adjasted workflow to new concept of the libs

This commit is contained in:
Pilar 2021-04-15 17:24:30 -04:00
parent 248438f4ab
commit c254c42608
4 changed files with 19 additions and 166 deletions

4
cache/.gitignore vendored Normal file
View File

@ -0,0 +1,4 @@
# Ignore everything in this directory
*
# Except this file
!.gitignore

View File

@ -9,7 +9,7 @@ from imports.weather_feeders.helpers.weather import Weather as wt
class MonthlyEnergyBalance: class MonthlyEnergyBalance:
@staticmethod @staticmethod
def generate_meb_template(building, insel_outputs_path): def generate_meb_template(building, insel_outputs_path, key):
lc = helpers.library_codes.LibraryCodes() lc = helpers.library_codes.LibraryCodes()
file = "" file = ""
@ -47,9 +47,8 @@ class MonthlyEnergyBalance:
str(i + 1) + ' (sqm)' + '\n' str(i + 1) + ' (sqm)' + '\n'
total_internal_gains = 0 total_internal_gains = 0
for ig in usage_zone.internal_gains: for ig in usage_zone.internal_gains:
# total_internal_gains += float(ig.average_internal_gain) * \ total_internal_gains += float(ig.average_internal_gain) * \
# (float(ig.convective_fraction) + float(ig.radiative_fraction)) (float(ig.convective_fraction) + float(ig.radiative_fraction))
total_internal_gains += 10.45 * (float(ig.convective_fraction) + float(ig.radiative_fraction))
file += str(total_internal_gains) + ' % BP(12) #2 Internal gains of zone ' + str(i + 1) + '\n' file += str(total_internal_gains) + ' % BP(12) #2 Internal gains of zone ' + str(i + 1) + '\n'
file += str(usage_zone.heating_setpoint) + ' % BP(13) #3 Heating setpoint temperature zone ' + \ file += str(usage_zone.heating_setpoint) + ' % BP(13) #3 Heating setpoint temperature zone ' + \
str(i + 1) + ' (tSetHeat)' + '\n' str(i + 1) + ' (tSetHeat)' + '\n'
@ -112,14 +111,14 @@ class MonthlyEnergyBalance:
file += 'p 20 12 % Monthly ambient temperature\r\n' file += 'p 20 12 % Monthly ambient temperature\r\n'
external_temperature = building.external_temperature['month'] external_temperature = building.external_temperature['month']
for i in range(0, len(external_temperature)): for i in range(0, len(external_temperature)):
file += str(i+1) + ' ' + str(external_temperature.at[i, 'inseldb']) + '\r\n' file += str(i+1) + ' ' + str(external_temperature.at[i, key]) + '\r\n'
file += '\r\n' file += '\r\n'
file += 's 21 polyg 1\r\n' file += 's 21 polyg 1\r\n'
file += 'p 21 12 % Monthly sky temperature\r\n' file += 'p 21 12 % Monthly sky temperature\r\n'
i = 1 i = 1
sky_temperature = wt.sky_temperature(external_temperature[['inseldb']].to_numpy().T[0]) sky_temperature = wt.sky_temperature(external_temperature[[key]].to_numpy().T[0])
for temperature in sky_temperature: for temperature in sky_temperature:
file += str(i) + ' ' + str(temperature) + '\r\n' file += str(i) + ' ' + str(temperature) + '\r\n'
i += 1 i += 1

19
main.py
View File

@ -14,12 +14,11 @@ from helpers import monthly_values as mv
from populate import Populate from populate import Populate
from insel.insel import Insel from insel.insel import Insel
from insel.templates.monthly_energy_balance import MonthlyEnergyBalance as templates from insel.templates.monthly_energy_balance import MonthlyEnergyBalance as templates
from simplified_radiosity_algorithm.simplified_radiosity_algorithm import SimplifiedRadiosityAlgorithm from simplified_radiosity_algorithm import SimplifiedRadiosityAlgorithm
from imports.geometry_factory import GeometryFactory from imports.geometry_factory import GeometryFactory
from imports.weather_factory import WeatherFactory from imports.weather_factory import WeatherFactory
from city_model_structure.city import City from city_model_structure.city import City
import datetime import datetime
import time
parser = ArgumentParser(description='Monthly energy balance workflow v0.1.') parser = ArgumentParser(description='Monthly energy balance workflow v0.1.')
required = parser.add_argument_group('required arguments') required = parser.add_argument_group('required arguments')
@ -86,7 +85,10 @@ if not weather_step_in_pickle:
get_mean_values(building.external_temperature['hour'][['epw']]) get_mean_values(building.external_temperature['hour'][['epw']])
max_buildings_handled_by_sra = 500 max_buildings_handled_by_sra = 500
sra = SimplifiedRadiosityAlgorithm(Path(args.project_folder).resolve(), city, args.weather_file_name) for building in city.buildings:
for surface in building.surfaces:
surface.swr = 0.2
sra = SimplifiedRadiosityAlgorithm(city, Path(args.project_folder).resolve(), args.weather_file_name)
if ast.literal_eval(args.use_cached_sra_file): if ast.literal_eval(args.use_cached_sra_file):
sra.results() sra.results()
sra.set_irradiance_surfaces(populated_city) sra.set_irradiance_surfaces(populated_city)
@ -96,7 +98,7 @@ if not weather_step_in_pickle:
radius = 100 radius = 100
for building in city.buildings: for building in city.buildings:
new_city = city.region(building.location, radius) new_city = city.region(building.location, radius)
sra_new = SimplifiedRadiosityAlgorithm(Path(args.project_folder).resolve(), city, args.weather_file_name) sra_new = SimplifiedRadiosityAlgorithm(city, Path(args.project_folder).resolve(), args.weather_file_name)
sra_new.call_sra(keep_files=True) sra_new.call_sra(keep_files=True)
sra_new.set_irradiance_surfaces(city, building_name=building.name) sra_new.set_irradiance_surfaces(city, building_name=building.name)
else: else:
@ -109,8 +111,7 @@ print('begin_insel_time', datetime.datetime.now())
# Step 4: Demand calculation (one model per building) # Step 4: Demand calculation (one model per building)
print_results = None print_results = None
file = 'city name: ' + city.name + '\n' file = 'city name: ' + city.name + '\n'
i = 0
init = time.process_time_ns()
for building in populated_city.buildings: for building in populated_city.buildings:
if building.name != 'BLD122177': if building.name != 'BLD122177':
# todo: default values to be defined at each specific workflow! # todo: default values to be defined at each specific workflow!
@ -118,12 +119,13 @@ for building in populated_city.buildings:
building.cooled = False building.cooled = False
building.attic_heated = 1 building.attic_heated = 1
building.basement_heated = 1 building.basement_heated = 1
# building.usage_zones[0].internal_gains[0].average_internal_gain = '10.45' building.usage_zones[0].internal_gains[0].average_internal_gain = 10.45
full_path_out = Path(args.project_folder + '/outputs/' + building.name + '_insel.out').resolve() full_path_out = Path(args.project_folder + '/outputs/' + building.name + '_insel.out').resolve()
full_path_out.parent.mkdir(parents=True, exist_ok=True) full_path_out.parent.mkdir(parents=True, exist_ok=True)
insel_file_name = building.name + '.insel' insel_file_name = building.name + '.insel'
try: try:
content = templates.generate_meb_template(building, full_path_out) key = 'epw'
content = templates.generate_meb_template(building, full_path_out, key)
insel = Insel(Path(args.project_folder).resolve(), insel_file_name, content, mode=2, keep_files=keep_files).run() insel = Insel(Path(args.project_folder).resolve(), insel_file_name, content, mode=2, keep_files=keep_files).run()
building.heating['month'], building.cooling['month'] = templates.demand(full_path_out) building.heating['month'], building.cooling['month'] = templates.demand(full_path_out)
new_building = building.heating['month'].rename(columns={'INSEL': building.name}) new_building = building.heating['month'].rename(columns={'INSEL': building.name})
@ -151,7 +153,6 @@ for building in populated_city.buildings:
print(sys.exc_info()[1]) print(sys.exc_info()[1])
print('Building ' + building.name + ' could not be processed') print('Building ' + building.name + ' could not be processed')
continue continue
i += 1
full_path_results = Path(args.project_folder + '/outputs/heating_demand.csv').resolve() full_path_results = Path(args.project_folder + '/outputs/heating_demand.csv').resolve()
print_results.to_csv(full_path_results) print_results.to_csv(full_path_results)

View File

@ -1,151 +0,0 @@
"""
Simplified Radiosity Algorithm
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2020 Project Author Pilar Monsalvete pilar_monsalvete@yahoo.es
"""
import os
import shutil
from pathlib import Path
import pandas as pd
from helpers import monthly_values as mv
import subprocess
from subprocess import SubprocessError, TimeoutExpired, CalledProcessError
from exports.exports_factory import ExportsFactory
from imports.weather_factory import WeatherFactory
class SimplifiedRadiosityAlgorithm:
# todo: define executable as configurable parameter
# _executable = 'citysim_sra' # for linux
_executable = 'shortwave_integer' # for windows
def __init__(self, sra_working_path, city, weather_file_name):
self._city = city
self._sra_working_path = sra_working_path
self._weather_file_name = weather_file_name
self._tmp_path = (sra_working_path / 'tmp').resolve()
Path(self._tmp_path).mkdir(parents=True, exist_ok=True)
# Ensure tmp file is empty
for child in self._tmp_path.glob('*'):
if child.is_file():
child.unlink()
self._cache_path = (sra_working_path / 'cache').resolve()
Path(self._cache_path).mkdir(parents=True, exist_ok=True)
self._sra_out_file_name = self._city.name + '_sra_SW.out'
self._out_values = None
self._radiation = []
def call_sra(self, keep_files=False):
self._create_cli_file()
ExportsFactory('sra', self._city, self._tmp_path).export()
try:
completed = subprocess.run([self._executable, str(Path(self._tmp_path / f'{self._city.name}_sra.xml').resolve())])
except (SubprocessError, TimeoutExpired, CalledProcessError) as error:
raise Exception(error)
file = (self._tmp_path / self._sra_out_file_name).resolve()
new_path = (self._cache_path / self._sra_out_file_name).resolve()
try:
shutil.move(str(file), str(new_path))
except Exception:
raise Exception('No SRA output file found')
self._out_values = self.results()
if not keep_files:
os.remove(Path(self._tmp_path / f'{self._city.name}_sra.xml').resolve())
return completed
def results(self):
if self._out_values is None:
try:
path = (self._cache_path / self._sra_out_file_name).resolve()
self._out_values = pd.read_csv(path, sep='\s+', header=0)
except Exception:
raise Exception('No SRA output file found')
return self._out_values
@property
def radiation(self) -> []:
if len(self._radiation) == 0:
id_building = ''
header_building = []
for column in self._out_values.columns.values:
if id_building != column.split(':')[1]:
id_building = column.split(':')[1]
if len(header_building) > 0:
self._radiation.append(pd.concat([mv.MonthlyValues().month_hour, self._out_values[header_building]],
axis=1))
header_building = [column]
else:
header_building.append(column)
self._radiation.append(pd.concat([mv.MonthlyValues().month_hour, self._out_values[header_building]], axis=1))
return self._radiation
def set_irradiance_surfaces(self, city, mode=0, building_name=None):
"""
saves in building surfaces the correspondent irradiance at different time-scales depending on the mode
if building is None, it saves all buildings' surfaces in file, if building is specified, it saves only that
specific building values
mode = 0, set only monthly values
mode = 1, set only hourly values
mode = 2, set both
:parameter city: city
:parameter mode: str (time-scale definition)
:parameter building_name: str
:return: none
"""
for radiation in self.radiation:
city_object_name = radiation.columns.values.tolist()[1].split(':')[1]
if building_name is not None:
if city_object_name != building_name:
continue
city_object = city.city_object(city_object_name)
print(city_object.name)
for column in radiation.columns.values:
if column == 'month':
continue
header_name = column
surface_name = header_name.split(':')[2]
surface = city_object.surface(surface_name)
print('surface', surface)
new_value = pd.DataFrame(radiation[[header_name]].to_numpy(), columns=['sra'])
if mode == 0 or mode == 2:
month_new_value = mv.MonthlyValues().get_mean_values(new_value)
print(surface.global_irradiance)
print(month_new_value)
if 'month' not in surface.global_irradiance:
surface.global_irradiance['month'] = month_new_value
print('1', month_new_value)
else:
pd.concat([surface.global_irradiance['month'], month_new_value], axis=1)
print('rest', month_new_value)
if mode == 1 or mode == 2:
if 'hour' not in surface.global_irradiance:
surface.global_irradiance['hour'] = new_value
else:
pd.concat([surface.global_irradiance['hour'], new_value], axis=1)
def _create_cli_file(self):
file = self._city.climate_file
days_in_month = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
WeatherFactory('epw', self._city, file_name=self._weather_file_name).enrich()
content = self._city.name + '\n'
content += str(self._city.latitude) + ',' + str(self._city.longitude) + ',0.0,' + str(self._city.time_zone) + '\n'
content += '\ndm m h G_Dh G_Bn\n'
total_days = 0
for month in range(1, 13):
if month > 1:
total_days += days_in_month[month - 2]
for day in range(1, days_in_month[month-1]+1):
for hour in range(1, 25):
if month == 1:
i = 24 * (day-1) + hour - 1
else:
i = (total_days+day-1)*24 + hour - 1
representative_building = self._city.buildings[0]
content += str(day) + ' ' + str(month) + ' ' + str(hour) + ' ' \
+ str(representative_building.global_horizontal['hour'].epw[i]) + ' ' \
+ str(representative_building.beam['hour'].epw[i]) + '\n'
with open(file, "w") as file:
file.write(content)
return