""" Monthly energy balance main SPDX - License - Identifier: LGPL - 3.0 - or -later Copyright © 2020 Project Author Pilar Monsalvete Álvarez de Uribarri pilar.monsalvete@concordia.ca """ import sys from pathlib import Path from argparse import ArgumentParser import ast import pandas as pd import datetime import helpers.constants as cte from helpers import monthly_values as mv from simplified_radiosity_algorithm import SimplifiedRadiosityAlgorithm from imports.geometry_factory import GeometryFactory from imports.weather_factory import WeatherFactory from imports.construction_factory import ConstructionFactory from imports.usage_factory import UsageFactory from exports.energy_building_exports_factory import EnergyBuildingsExportsFactory from insel.monthly_demand_calculation import MonthlyDemandCalculation parser = ArgumentParser(description='Monthly energy balance workflow v1.0.') required = parser.add_argument_group('required arguments') parser.add_argument('--geometry_type', '-g', help='Geometry type {citygml}', default='citygml') required.add_argument('--input_geometry_file', '-i', help='Input geometry file', required=True) parser.add_argument('--use_cached_sra_file', '-u', help='Use sra files from cache, instead of freshly calculated sra ' 'files', default=False) required.add_argument('--project_folder', '-f', help='Project folder', required=True) required.add_argument('--weather_file_name', '-w', help='Weather file', required=True) required.add_argument('--climate_reference_city', '-c', help='Closest city with climate weather', required=True) try: args = parser.parse_args() except SystemExit: sys.exit() keep_files = True print('begin_time', datetime.datetime.now()) # Step 1: Initialize the city model file = Path(args.input_geometry_file).resolve() city = GeometryFactory(args.geometry_type, file).city for building in city.buildings: volume = building.volume if str(volume) == 'inf': sys.stderr.write(f'Building {building.name} has geometry errors. It has been removed from the city\n') city.remove_city_object(building) print('begin_populating_time', datetime.datetime.now()) # Step 2: Populate city adding thermal- and usage-related parameters for building in city.buildings: building.year_of_construction = 2006 if building.function is None: building.function = 'large office' building.attic_heated = 0 building.basement_heated = 1 ConstructionFactory('nrel', city).enrich() UsageFactory('comnet', city).enrich() print('begin_weather_time', datetime.datetime.now()) # Step 3: Populate city adding climate-related parameters weather_format = 'epw' city.climate_reference_city = args.climate_reference_city tmp_path = (Path(args.project_folder) / 'tmp').resolve() city.climate_file = (tmp_path / f'{args.climate_reference_city}.cli').resolve() WeatherFactory(weather_format, city, file_name=args.weather_file_name).enrich() for building in city.buildings: if cte.HOUR not in building.external_temperature: print('No external temperature found') sys.exit() if cte.MONTH not in building.external_temperature: building.external_temperature[cte.MONTH] = mv.MonthlyValues().\ get_mean_values(building.external_temperature[cte.HOUR][[weather_format]]) max_buildings_handled_by_sra = 500 sra = SimplifiedRadiosityAlgorithm(city, Path(args.project_folder).resolve(), args.weather_file_name) if ast.literal_eval(args.use_cached_sra_file): sra.set_irradiance_surfaces(city) else: total_number_of_buildings = len(city.buildings) if total_number_of_buildings > max_buildings_handled_by_sra: radius = 80 for building in city.buildings: new_city = city.region(building.centroid, radius) sra_new = SimplifiedRadiosityAlgorithm(new_city, Path(args.project_folder).resolve(), args.weather_file_name) sra_new.call_sra(weather_format, keep_files=True) sra_new.set_irradiance_surfaces(city, building_name=building.name) else: sra.call_sra(weather_format, keep_files=keep_files) sra.set_irradiance_surfaces(city) print('begin_insel_time', datetime.datetime.now()) # Step 5: Demand calculation calling INSEL EnergyBuildingsExportsFactory('insel_monthly_energy_balance', city, tmp_path).export() insel = MonthlyDemandCalculation(city, tmp_path, weather_format) insel.run() insel.results() print('begin_write_results_time', datetime.datetime.now()) # Step 6: Print results print_results = None file = 'city name: ' + city.name + '\n' for building in city.buildings: insel_file_name = building.name + '.insel' heating_results = building.heating[cte.MONTH].rename(columns={'INSEL': f'{building.name} heating Wh'}) cooling_results = building.cooling[cte.MONTH].rename(columns={'INSEL': f'{building.name} cooling Wh'}) if print_results is None: print_results = heating_results else: print_results = pd.concat([print_results, heating_results], axis='columns') print_results = pd.concat([print_results, cooling_results], axis='columns') file += '\n' file += 'name: ' + building.name + '\n' file += 'year of construction: ' + str(building.year_of_construction) + '\n' file += 'function: ' + building.function + '\n' file += 'floor area: ' + str(building.internal_zones[0].area) + '\n' file += 'storeys: ' + str(building.storeys_above_ground) + '\n' file += 'heated_volume: ' + str(building.volume) + '\n' file += 'volume: ' + str(building.volume) + '\n' full_path_results = Path(args.project_folder + '/outputs/demand.csv').resolve() print_results.to_csv(full_path_results) full_path_metadata = Path(args.project_folder + '/outputs/metadata.csv').resolve() with open(full_path_metadata, 'w') as metadata_file: metadata_file.write(file) print('end_time', datetime.datetime.now())