67 lines
2.5 KiB
Python
67 lines
2.5 KiB
Python
"""
|
|
Monthly demand calculation using the monthly energy balance methodology based on the norm...
|
|
SPDX - License - Identifier: LGPL - 3.0 - or -later
|
|
Copyright © 2020 Project Author Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
|
|
"""
|
|
|
|
from pathlib import Path
|
|
import pandas as pd
|
|
import sys
|
|
import csv
|
|
from insel.insel import Insel
|
|
from hub.hub_logger import logger
|
|
|
|
|
|
class MonthlyDemandCalculation(Insel):
|
|
def __init__(self, city, main_path, weather_format):
|
|
super().__init__(main_path)
|
|
self._city = city
|
|
self._weather_format = weather_format
|
|
|
|
def results(self):
|
|
for building in self._city.buildings:
|
|
file_name = building.name + '.out'
|
|
full_path_out = Path(self._path / file_name).resolve()
|
|
full_path_out.parent.mkdir(parents=True, exist_ok=True)
|
|
if Path(full_path_out).is_file():
|
|
building.heating['month'], building.cooling['month'] = self._demand(full_path_out)
|
|
else:
|
|
building.heating['month'] = pd.DataFrame([0] * 12, columns=['INSEL'])
|
|
building.cooling['month'] = pd.DataFrame([0] * 12, columns=['INSEL'])
|
|
logger.error(f'Building {building.name} could not be processed. Heating and cooling set to 0\n')
|
|
sys.stderr.write(f'Building {building.name} could not be processed. Heating and cooling set to 0\n')
|
|
|
|
heating_year = 0
|
|
for value in building.heating['month']['INSEL']:
|
|
if value == 'NaN':
|
|
value = '0'
|
|
heating_year += float(value)
|
|
yearly_heating = pd.DataFrame([heating_year], columns=['INSEL'])
|
|
building.heating['year'] = yearly_heating
|
|
|
|
cooling_year = 0
|
|
for value in building.cooling['month']['INSEL']:
|
|
if value == 'NaN':
|
|
value = '0'
|
|
cooling_year += float(value)
|
|
yearly_cooling = pd.DataFrame([cooling_year], columns=['INSEL'])
|
|
building.cooling['year'] = yearly_cooling
|
|
|
|
@staticmethod
|
|
def _demand(insel_outputs_path):
|
|
heating = []
|
|
cooling = []
|
|
with open(Path(insel_outputs_path).resolve()) as csv_file:
|
|
csv_reader = csv.reader(csv_file)
|
|
for line in csv_reader:
|
|
demand = str(line).replace("['", '').replace("']", '').split()
|
|
for i in range(0, 2):
|
|
if demand[i] != 'NaN':
|
|
aux = float(demand[i])*1000 # kWh to Wh
|
|
demand[i] = str(aux)
|
|
heating.append(demand[0])
|
|
cooling.append(demand[1])
|
|
monthly_heating = pd.DataFrame(heating, columns=['INSEL'])
|
|
monthly_cooling = pd.DataFrame(cooling, columns=['INSEL'])
|
|
return monthly_heating, monthly_cooling
|