Final version summercourse with final graphs. Pie chart mistake correction
This commit is contained in:
parent
d48d811787
commit
4c49d51a26
44
peak_load_class.py
Normal file
44
peak_load_class.py
Normal file
|
@ -0,0 +1,44 @@
|
|||
from pathlib import Path
|
||||
import pandas as pd
|
||||
import hub.helpers.constants as cte
|
||||
|
||||
def Peak_load (building):
|
||||
array = [None] * 12
|
||||
heating = 0
|
||||
cooling = 0
|
||||
for system in building.energy_systems:
|
||||
for demand_type in system.demand_types:
|
||||
if demand_type == cte.HEATING:
|
||||
heating = 1
|
||||
if demand_type == cte.COOLING:
|
||||
cooling = 1
|
||||
if cte.MONTH in building.heating_peak_load.keys() and cte.MONTH in building.cooling_peak_load.keys():
|
||||
peak_lighting = 0
|
||||
peak_appliances = 0
|
||||
for thermal_zone in building.internal_zones[0].thermal_zones:
|
||||
lighting = thermal_zone.lighting
|
||||
for schedule in lighting.schedules:
|
||||
for value in schedule.values:
|
||||
if value * lighting.density * thermal_zone.total_floor_area > peak_lighting:
|
||||
peak_lighting = value * lighting.density * thermal_zone.total_floor_area
|
||||
appliances = thermal_zone.appliances
|
||||
for schedule in appliances.schedules:
|
||||
for value in schedule.values:
|
||||
if value * appliances.density * thermal_zone.total_floor_area > peak_appliances:
|
||||
peak_appliances = value * appliances.density * thermal_zone.total_floor_area
|
||||
|
||||
monthly_electricity_peak = [0.9 * peak_lighting + 0.7 * peak_appliances] * 12
|
||||
conditioning_peak = []
|
||||
for i, value in enumerate(building.heating_peak_load[cte.MONTH]):
|
||||
if cooling * building.cooling_peak_load[cte.MONTH][i] > heating * value:
|
||||
conditioning_peak.append(cooling * building.cooling_peak_load[cte.MONTH][i])
|
||||
else:
|
||||
conditioning_peak.append(heating * value)
|
||||
monthly_electricity_peak[i] += 0.8 * conditioning_peak[i]
|
||||
|
||||
electricity_peak_load_results = pd.DataFrame(monthly_electricity_peak
|
||||
, columns=[f'{building.name} electricity peak load W'])
|
||||
else:
|
||||
electricity_peak_load_results = pd.DataFrame(array, columns=[f'{building.name} electricity peak load W'])
|
||||
|
||||
return electricity_peak_load_results
|
Loading…
Reference in New Issue
Block a user