Compare commits

..

6 Commits

8 changed files with 515 additions and 4105 deletions

249
input_files/eilat.geojson Normal file
View File

@ -0,0 +1,249 @@
{
"type": "FeatureCollection",
"features": [
{
"type": "Feature",
"id": 1,
"properties": {
"heightmax": 9,
"ANNEE_CONS": 1978,
"CODE_UTILI": "residential"
},
"geometry": {
"coordinates": [
[
[
34.95217088371581,
29.56694805860026
],
[
34.95262396587913,
29.566952667742285
],
[
34.95261999147337,
29.567024109421467
],
[
34.952169558914704,
29.567019500282157
],
[
34.95217088371581,
29.56694805860026
]
]
],
"type": "Polygon"
}
},
{
"type": "Feature",
"id": 3,
"properties": {
"heightmax": 16,
"ANNEE_CONS": 2012,
"CODE_UTILI": "dormitory"
},
"geometry": {
"coordinates": [
[
[
34.95176644317411,
29.56827388702702
],
[
34.95176550020565,
29.568180388329026
],
[
34.95179850408434,
29.568180388329026
],
[
34.95179850408434,
29.5681303582886
],
[
34.95176644317411,
29.5681303582886
],
[
34.95176644317411,
29.568038499789708
],
[
34.951874884488376,
29.568038499789708
],
[
34.951874884488376,
29.568058183760357
],
[
34.95192391882168,
29.568058183760357
],
[
34.951922032885705,
29.56804178045124
],
[
34.95205216246262,
29.568042600617147
],
[
34.952051219494166,
29.568129538124154
],
[
34.95201821561636,
29.5681303582886
],
[
34.95201821561636,
29.568176287507143
],
[
34.95204839059062,
29.568176287507143
],
[
34.95205027652662,
29.56827552735433
],
[
34.95195503676348,
29.568274707190284
],
[
34.95195597973188,
29.56825830391628
],
[
34.951849424353696,
29.56825830391628
],
[
34.951849424353696,
29.568274707190284
],
[
34.95176644317411,
29.56827388702702
]
]
],
"type": "Polygon"
}
},
{
"type": "Feature",
"id": 2,
"properties": {
"heightmax": 24,
"ANNEE_CONS": 2002,
"CODE_UTILI": "Hotel employ"
},
"geometry": {
"coordinates": [
[
[
34.94972280674813,
29.566224752287738
],
[
34.94974316291999,
29.56597561012454
],
[
34.94989147217407,
29.565980668855033
],
[
34.94987402402688,
29.566233605043536
],
[
34.94972280674813,
29.566224752287738
]
]
],
"type": "Polygon"
}
},
{
"type": "Feature",
"id": 4,
"properties": {
"heightmax": 24,
"ANNEE_CONS": 2002,
"CODE_UTILI": "Hotel employ"
},
"geometry": {
"coordinates": [
[
[
34.9492572120038,
29.565899295950373
],
[
34.949411568175805,
29.565906093785898
],
[
34.94939398329561,
29.56615761339161
],
[
34.94924158099852,
29.566149116117728
],
[
34.9492572120038,
29.565899295950373
]
]
],
"type": "Polygon"
}
},
{
"type": "Feature",
"id": 5,
"properties": {
"heightmax": 9,
"ANNEE_CONS": 1978,
"CODE_UTILI": "residential"
},
"geometry": {
"coordinates": [
[
[
34.95213398400861,
29.567197394967593
],
[
34.95258172690612,
29.56720586098278
],
[
34.95258172690612,
29.56727217807996
],
[
34.952132361751325,
29.56726935607685
],
[
34.95213398400861,
29.567197394967593
]
]
],
"type": "Polygon"
}
}
]
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

27
main.py
View File

@ -12,9 +12,10 @@ from sra_engine import SraEngine
try:
file_path = (Path(__file__).parent / 'input_files' / 'output_buildings.geojson')
construction_format = 'nrcan'
usage_format = 'nrcan'
file_path = (Path(__file__).parent / 'input_files' / 'eilat.geojson')
climate_reference_city = 'Montreal'
construction_format = 'eilat'
usage_format = 'eilat'
energy_systems_format = 'montreal_custom'
out_path = (Path(__file__).parent / 'output_files')
@ -23,30 +24,26 @@ try:
print('[simulation start]')
city = GeometryFactory('geojson',
path=file_path,
height_field='height',
year_of_construction_field='year_of_construction',
function_field='function',
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
height_field='heightmax',
year_of_construction_field='ANNEE_CONS',
function_field='CODE_UTILI',
function_to_hub=Dictionaries().eilat_function_to_hub_function).city
print(f'city created from {file_path}')
ConstructionFactory(construction_format, city).enrich()
print('enrich constructions... done')
UsageFactory(usage_format, city).enrich()
print('enrich usage... done')
i = 1
x = len(city.buildings)
for building in city.buildings:
if i < x:
building.energy_systems_archetype_name = 'system 1 gas'
else:
building.energy_systems_archetype_name = 'system 6 gas'
i = i + 1
building.energy_systems_archetype_name = 'system 1 gas pv'
EnergySystemsFactory(energy_systems_format, city).enrich()
print('enrich systems... done')
print('exporting:')
SraEngine(city, tmp_folder)
sra_file = (tmp_folder / f'{city.name}_sra.xml').resolve()
SraEngine(city, sra_file, tmp_folder)
print(' sra processed...')
MonthlyEnergyBalanceEngine(city, tmp_folder)
print(' insel processed...')

44
peak_load_class.py Normal file
View File

@ -0,0 +1,44 @@
from pathlib import Path
import pandas as pd
import hub.helpers.constants as cte
def Peak_load (building):
array = [None] * 12
heating = 0
cooling = 0
for system in building.energy_systems:
for demand_type in system.demand_types:
if demand_type == cte.HEATING:
heating = 1
if demand_type == cte.COOLING:
cooling = 1
if cte.MONTH in building.heating_peak_load.keys() and cte.MONTH in building.cooling_peak_load.keys():
peak_lighting = 0
peak_appliances = 0
for thermal_zone in building.internal_zones[0].thermal_zones:
lighting = thermal_zone.lighting
for schedule in lighting.schedules:
for value in schedule.values:
if value * lighting.density * thermal_zone.total_floor_area > peak_lighting:
peak_lighting = value * lighting.density * thermal_zone.total_floor_area
appliances = thermal_zone.appliances
for schedule in appliances.schedules:
for value in schedule.values:
if value * appliances.density * thermal_zone.total_floor_area > peak_appliances:
peak_appliances = value * appliances.density * thermal_zone.total_floor_area
monthly_electricity_peak = [0.9 * peak_lighting + 0.7 * peak_appliances] * 12
conditioning_peak = []
for i, value in enumerate(building.heating_peak_load[cte.MONTH]):
if cooling * building.cooling_peak_load[cte.MONTH][i] > heating * value:
conditioning_peak.append(cooling * building.cooling_peak_load[cte.MONTH][i])
else:
conditioning_peak.append(heating * value)
monthly_electricity_peak[i] += 0.8 * conditioning_peak[i]
electricity_peak_load_results = pd.DataFrame(monthly_electricity_peak
, columns=[f'{building.name} electricity peak load W'])
else:
electricity_peak_load_results = pd.DataFrame(array, columns=[f'{building.name} electricity peak load W'])
return electricity_peak_load_results

View File

@ -9,50 +9,68 @@ class Results:
self._path = path
def print(self):
print_results = None
file = 'city name: ' + self._city.name + '\n'
array = [None] * 12
for building in self._city.buildings:
if cte.MONTH in building.heating_demand.keys():
heating_results = building.heating_demand[cte.MONTH]
heating_results = building.heating_demand[cte.MONTH].rename(columns={cte.INSEL_MEB: f'{building.name} heating Wh'})
else:
heating_results = [None] * 12
heating_results = pd.DataFrame(array, columns=[f'{building.name} heating demand Wh'])
if cte.MONTH in building.cooling_demand.keys():
cooling_results = building.cooling_demand[cte.MONTH]
cooling_results = building.cooling_demand[cte.MONTH].rename(columns={cte.INSEL_MEB: f'{building.name} cooling Wh'})
else:
cooling_results = [None] * 12
cooling_results = pd.DataFrame(array, columns=[f'{building.name} cooling demand Wh'])
if cte.MONTH in building.lighting_electrical_demand.keys():
lighting_results = building.lighting_electrical_demand[cte.MONTH]
lighting_results = building.lighting_electrical_demand[cte.MONTH]\
.rename(columns={cte.INSEL_MEB: f'{building.name} lighting electrical demand Wh'})
else:
lighting_results = [None] * 12
lighting_results = pd.DataFrame(array, columns=[f'{building.name} lighting electrical demand Wh'])
if cte.MONTH in building.appliances_electrical_demand.keys():
appliances_results = building.appliances_electrical_demand[cte.MONTH]
appliances_results = building.appliances_electrical_demand[cte.MONTH]\
.rename(columns={cte.INSEL_MEB: f'{building.name} appliances electrical demand Wh'})
else:
appliances_results = [None] * 12
appliances_results = pd.DataFrame(array, columns=[f'{building.name} appliances electrical demand Wh'])
if cte.MONTH in building.domestic_hot_water_heat_demand.keys():
dhw_results = building.domestic_hot_water_heat_demand[cte.MONTH]
dhw_results = building.domestic_hot_water_heat_demand[cte.MONTH]\
.rename(columns={cte.INSEL_MEB: f'{building.name} domestic hot water demand Wh'})
else:
dhw_results = [None] * 12
dhw_results = pd.DataFrame(array, columns=[f'{building.name} domestic hot water demand Wh'])
if cte.MONTH in building.heating_consumption.keys():
heating_consumption_results = building.heating_consumption[cte.MONTH]
heating_consumption_results = pd.DataFrame(building.heating_consumption[cte.MONTH],
columns=[f'{building.name} heating consumption Wh'])
else:
heating_consumption_results = [None] * 12
heating_consumption_results = pd.DataFrame(array, columns=[f'{building.name} heating consumption Wh'])
if cte.MONTH in building.cooling_consumption.keys():
cooling_consumption_results = building.cooling_consumption[cte.MONTH]
cooling_consumption_results = pd.DataFrame(building.cooling_consumption[cte.MONTH],
columns=[f'{building.name} cooling consumption Wh'])
else:
cooling_consumption_results = [None] * 12
cooling_consumption_results = pd.DataFrame(array, columns=[f'{building.name} cooling consumption Wh'])
if cte.MONTH in building.domestic_hot_water_consumption.keys():
dhw_consumption_results = building.domestic_hot_water_consumption[cte.MONTH]
dhw_consumption_results = pd.DataFrame(building.domestic_hot_water_consumption[cte.MONTH],
columns=[f'{building.name} domestic hot water consumption Wh'])
else:
dhw_consumption_results = [None] * 12
dhw_consumption_results = pd.DataFrame(array, columns=[f'{building.name} domestic hot water consumption Wh'])
if cte.MONTH in building.heating_peak_load.keys():
heating_peak_load_results = building.heating_peak_load[cte.MONTH]
heating_peak_load_results = pd.DataFrame(building.heating_peak_load[cte.MONTH],
columns=[f'{building.name} heating peak load W'])
else:
heating_peak_load_results = [None] * 12
heating_peak_load_results = pd.DataFrame(array, columns=[f'{building.name} heating peak load W'])
if cte.MONTH in building.cooling_peak_load.keys():
cooling_peak_load_results = building.cooling_peak_load[cte.MONTH]
cooling_peak_load_results = pd.DataFrame(building.cooling_peak_load[cte.MONTH],
columns=[f'{building.name} cooling peak load W'])
else:
cooling_peak_load_results = [None] * 12
cooling_peak_load_results = pd.DataFrame(array, columns=[f'{building.name} cooling peak load W'])
if cte.MONTH in building.onsite_electrical_production.keys():
monthly_onsite_electrical_production = building.onsite_electrical_production[cte.MONTH]
onsite_electrical_production = pd.DataFrame(monthly_onsite_electrical_production,
columns=[f'{building.name} onsite electrical production Wh'])
else:
onsite_electrical_production = pd.DataFrame(array, columns=[f'{building.name} onsite electrical production Wh'])
heating = 0
cooling = 0
for system in building.energy_systems:
@ -64,17 +82,17 @@ class Results:
if cte.MONTH in building.heating_peak_load.keys() and cte.MONTH in building.cooling_peak_load.keys():
peak_lighting = 0
peak_appliances = 0
thermal_zone = building.thermal_zones_from_internal_zones[0]
lighting = thermal_zone.lighting
for schedule in lighting.schedules:
for value in schedule.values:
if value * lighting.density * thermal_zone.total_floor_area > peak_lighting:
peak_lighting = value * lighting.density * thermal_zone.total_floor_area
appliances = thermal_zone.appliances
for schedule in appliances.schedules:
for value in schedule.values:
if value * appliances.density * thermal_zone.total_floor_area > peak_appliances:
peak_appliances = value * appliances.density * thermal_zone.total_floor_area
for thermal_zone in building.internal_zones[0].thermal_zones:
lighting = thermal_zone.lighting
for schedule in lighting.schedules:
for value in schedule.values:
if value * lighting.density * thermal_zone.total_floor_area > peak_lighting:
peak_lighting = value * lighting.density * thermal_zone.total_floor_area
appliances = thermal_zone.appliances
for schedule in appliances.schedules:
for value in schedule.values:
if value * appliances.density * thermal_zone.total_floor_area > peak_appliances:
peak_appliances = value * appliances.density * thermal_zone.total_floor_area
monthly_electricity_peak = [0.9 * peak_lighting + 0.7 * peak_appliances] * 12
conditioning_peak = []
@ -85,49 +103,37 @@ class Results:
conditioning_peak.append(heating * value)
monthly_electricity_peak[i] += 0.8 * conditioning_peak[i]
electricity_peak_load_results = monthly_electricity_peak
electricity_peak_load_results = pd.DataFrame(monthly_electricity_peak
, columns=[f'{building.name} electricity peak load W'])
else:
electricity_peak_load_results = [None] * 12
if cte.MONTH in building.onsite_electrical_production.keys():
monthly_onsite_electrical_production = building.onsite_electrical_production[cte.MONTH]
onsite_electrical_production = monthly_onsite_electrical_production
else:
onsite_electrical_production = [None] * 12
electricity_peak_load_results = pd.DataFrame(array, columns=[f'{building.name} electricity peak load W'])
if cte.MONTH in building.distribution_systems_electrical_consumption.keys():
extra_electrical_consumption = building.distribution_systems_electrical_consumption[cte.MONTH]
extra_electrical_consumption = pd.DataFrame(building.distribution_systems_electrical_consumption[cte.MONTH],
columns=[
f'{building.name} electrical consumption for distribution Wh'])
else:
extra_electrical_consumption = [None] * 12
extra_electrical_consumption = pd.DataFrame(array,
columns=[
f'{building.name} electrical consumption for distribution Wh'])
columns_names = [f'{building.name} heating demand J',
f'{building.name} cooling demand J',
f'{building.name} lighting demand J',
f'{building.name} appliances demand J',
f'{building.name} domestic hot water demand J',
f'{building.name} heating consumption J',
f'{building.name} cooling consumption J',
f'{building.name} domestic hot water consumption J',
f'{building.name} heating peak load W',
f'{building.name} cooling peak load W',
f'{building.name} electricity peak load W',
f'{building.name} onsite electrical production J',
f'{building.name} extra electrical consumption J'
]
print_results = pd.DataFrame([heating_results,
cooling_results,
lighting_results,
appliances_results,
dhw_results,
heating_consumption_results,
cooling_consumption_results,
dhw_consumption_results,
heating_peak_load_results,
cooling_peak_load_results,
electricity_peak_load_results,
onsite_electrical_production,
extra_electrical_consumption]).T
print_results.columns = columns_names
if print_results is None:
print_results = heating_results
else:
print_results = pd.concat([print_results, heating_results], axis='columns')
print_results = pd.concat([print_results,
cooling_results,
lighting_results,
appliances_results,
dhw_results,
heating_consumption_results,
cooling_consumption_results,
dhw_consumption_results,
heating_peak_load_results,
cooling_peak_load_results,
electricity_peak_load_results,
onsite_electrical_production,
extra_electrical_consumption], axis='columns')
file += '\n'
file += f'name: {building.name}\n'
file += f'year of construction: {building.year_of_construction}\n'
@ -139,8 +145,137 @@ class Results:
file += f'storeys: n/a\n'
file += f'volume: {building.volume}\n'
full_path_results = Path(self._path / f'demand_{building.name}.csv').resolve()
print_results.to_csv(full_path_results, na_rep='null')
full_path_results = Path(self._path / 'demand.csv').resolve()
print_results.to_csv(full_path_results, na_rep='null')
full_path_metadata = Path(self._path / 'metadata.csv').resolve()
with open(full_path_metadata, 'w') as metadata_file:
metadata_file.write(file)
def outputsforgraph(self):
outputs_energy =pd.DataFrame()
array = [None] * 12
for building in self._city.buildings:
if cte.MONTH in building.heating_demand.keys():
heating_results = building.heating_demand[cte.MONTH].rename(
columns={cte.INSEL_MEB: f'{building.name} heating Wh'})
else:
heating_results = pd.DataFrame(array, columns=[f'{building.name} heating demand Wh'])
if cte.MONTH in building.cooling_demand.keys():
cooling_results = building.cooling_demand[cte.MONTH].rename(
columns={cte.INSEL_MEB: f'{building.name} cooling Wh'})
else:
cooling_results = pd.DataFrame(array, columns=[f'{building.name} cooling demand Wh'])
if cte.MONTH in building.lighting_electrical_demand.keys():
lighting_results = building.lighting_electrical_demand[cte.MONTH] \
.rename(columns={cte.INSEL_MEB: f'{building.name} lighting electrical demand Wh'})
else:
lighting_results = pd.DataFrame(array, columns=[f'{building.name} lighting electrical demand Wh'])
if cte.MONTH in building.appliances_electrical_demand.keys():
appliances_results = building.appliances_electrical_demand[cte.MONTH] \
.rename(columns={cte.INSEL_MEB: f'{building.name} appliances electrical demand Wh'})
else:
appliances_results = pd.DataFrame(array, columns=[f'{building.name} appliances electrical demand Wh'])
if cte.MONTH in building.domestic_hot_water_heat_demand.keys():
dhw_results = building.domestic_hot_water_heat_demand[cte.MONTH] \
.rename(columns={cte.INSEL_MEB: f'{building.name} domestic hot water demand Wh'})
else:
dhw_results = pd.DataFrame(array, columns=[f'{building.name} domestic hot water demand Wh'])
if cte.MONTH in building.heating_consumption.keys():
heating_consumption_results = pd.DataFrame(building.heating_consumption[cte.MONTH],
columns=[f'{building.name} heating consumption Wh'])
else:
heating_consumption_results = pd.DataFrame(array, columns=[f'{building.name} heating consumption Wh'])
if cte.MONTH in building.cooling_consumption.keys():
cooling_consumption_results = pd.DataFrame(building.cooling_consumption[cte.MONTH],
columns=[f'{building.name} cooling consumption Wh'])
else:
cooling_consumption_results = pd.DataFrame(array, columns=[f'{building.name} cooling consumption Wh'])
if cte.MONTH in building.domestic_hot_water_consumption.keys():
dhw_consumption_results = pd.DataFrame(building.domestic_hot_water_consumption[cte.MONTH],
columns=[f'{building.name} domestic hot water consumption Wh'])
else:
dhw_consumption_results = pd.DataFrame(array, columns=[f'{building.name} domestic hot water consumption Wh'])
if cte.MONTH in building.heating_peak_load.keys():
heating_peak_load_results = pd.DataFrame(building.heating_peak_load[cte.MONTH],
columns=[f'{building.name} heating peak load W'])
else:
heating_peak_load_results = pd.DataFrame(array, columns=[f'{building.name} heating peak load W'])
if cte.MONTH in building.cooling_peak_load.keys():
cooling_peak_load_results = pd.DataFrame(building.cooling_peak_load[cte.MONTH],
columns=[f'{building.name} cooling peak load W'])
else:
cooling_peak_load_results = pd.DataFrame(array, columns=[f'{building.name} cooling peak load W'])
if cte.MONTH in building.onsite_electrical_production.keys():
monthly_onsite_electrical_production = building.onsite_electrical_production[cte.MONTH]
onsite_electrical_production = pd.DataFrame(monthly_onsite_electrical_production,
columns=[f'{building.name} onsite electrical production Wh'])
else:
onsite_electrical_production = pd.DataFrame(array,
columns=[f'{building.name} onsite electrical production Wh'])
heating = 0
cooling = 0
for system in building.energy_systems:
for demand_type in system.demand_types:
if demand_type == cte.HEATING:
heating = 1
if demand_type == cte.COOLING:
cooling = 1
if cte.MONTH in building.heating_peak_load.keys() and cte.MONTH in building.cooling_peak_load.keys():
peak_lighting = 0
peak_appliances = 0
for thermal_zone in building.internal_zones[0].thermal_zones:
lighting = thermal_zone.lighting
for schedule in lighting.schedules:
for value in schedule.values:
if value * lighting.density * thermal_zone.total_floor_area > peak_lighting:
peak_lighting = value * lighting.density * thermal_zone.total_floor_area
appliances = thermal_zone.appliances
for schedule in appliances.schedules:
for value in schedule.values:
if value * appliances.density * thermal_zone.total_floor_area > peak_appliances:
peak_appliances = value * appliances.density * thermal_zone.total_floor_area
monthly_electricity_peak = [0.9 * peak_lighting + 0.7 * peak_appliances] * 12
conditioning_peak = []
for i, value in enumerate(building.heating_peak_load[cte.MONTH]):
if cooling * building.cooling_peak_load[cte.MONTH][i] > heating * value:
conditioning_peak.append(cooling * building.cooling_peak_load[cte.MONTH][i])
else:
conditioning_peak.append(heating * value)
monthly_electricity_peak[i] += 0.8 * conditioning_peak[i]
electricity_peak_load_results = pd.DataFrame(monthly_electricity_peak
, columns=[f'{building.name} electricity peak load W'])
else:
electricity_peak_load_results = pd.DataFrame(array, columns=[f'{building.name} electricity peak load W'])
if cte.MONTH in building.distribution_systems_electrical_consumption.keys():
extra_electrical_consumption = pd.DataFrame(building.distribution_systems_electrical_consumption[cte.MONTH],
columns=[
f'{building.name} electrical consumption for distribution Wh'])
else:
extra_electrical_consumption = pd.DataFrame(array,
columns=[
f'{building.name} electrical consumption for distribution Wh'])
listgraph = [lighting_results.values.sum(),
appliances_results.values.sum(),
heating_consumption_results.values.sum(),
cooling_consumption_results.values.sum(),
dhw_consumption_results.values.sum(),
extra_electrical_consumption.values.sum()
]
outputs_energy[f'building {building.name}'] = listgraph
outputs_energy.index = ['Lighting consumption', 'Appliances consumption', 'Heating consumption',
'Cooling consumption', 'DHW consumption', 'Extra electrical consumption']
total_final_energy = (lighting_results.values.sum() + appliances_results.values.sum() + \
heating_consumption_results.values.sum() + cooling_consumption_results.values.sum() + \
dhw_consumption_results.values.sum() + extra_electrical_consumption.values.sum())/1000
return outputs_energy, total_final_energy

View File

@ -7,13 +7,14 @@ from hub.imports.results_factory import ResultFactory
class SraEngine:
def __init__(self, city, output_file_path):
def __init__(self, city, file_path, output_file_path):
"""
SRA class
:param city: City
:param file_path: _sra.xml file path
:param output_file_path: path to output the sra calculation
"""
self._city = city
self._file_path = file_path
self._output_file_path = output_file_path
if platform.system() == 'Linux':
self._executable = 'sra'
@ -28,8 +29,6 @@ class SraEngine:
Calls the software
"""
try:
subprocess.run([self._executable,
(self._output_file_path / f'{self._city.name}_sra.xml')],
stdout=subprocess.DEVNULL)
subprocess.run([self._executable, str(self._file_path)], stdout=subprocess.DEVNULL)
except (SubprocessError, TimeoutExpired, CalledProcessError) as error:
raise Exception(error)

View File