from pathlib import Path import pandas as pd import hub.helpers.constants as cte class Results: def __init__(self, city, path): self._city = city self._path = path def print(self): file = 'city name: ' + self._city.name + '\n' for building in self._city.buildings: if cte.MONTH in building.heating_demand.keys(): heating_results = building.heating_demand[cte.MONTH] else: heating_results = [None] * 12 if cte.MONTH in building.cooling_demand.keys(): cooling_results = building.cooling_demand[cte.MONTH] else: cooling_results = [None] * 12 if cte.MONTH in building.lighting_electrical_demand.keys(): lighting_results = building.lighting_electrical_demand[cte.MONTH] else: lighting_results = [None] * 12 if cte.MONTH in building.appliances_electrical_demand.keys(): appliances_results = building.appliances_electrical_demand[cte.MONTH] else: appliances_results = [None] * 12 if cte.MONTH in building.domestic_hot_water_heat_demand.keys(): dhw_results = building.domestic_hot_water_heat_demand[cte.MONTH] else: dhw_results = [None] * 12 if cte.MONTH in building.heating_consumption.keys(): heating_consumption_results = building.heating_consumption[cte.MONTH] else: heating_consumption_results = [None] * 12 if cte.MONTH in building.cooling_consumption.keys(): cooling_consumption_results = building.cooling_consumption[cte.MONTH] else: cooling_consumption_results = [None] * 12 if cte.MONTH in building.domestic_hot_water_consumption.keys(): dhw_consumption_results = building.domestic_hot_water_consumption[cte.MONTH] else: dhw_consumption_results = [None] * 12 if cte.MONTH in building.heating_peak_load.keys(): heating_peak_load_results = building.heating_peak_load[cte.MONTH] else: heating_peak_load_results = [None] * 12 if cte.MONTH in building.cooling_peak_load.keys(): cooling_peak_load_results = building.cooling_peak_load[cte.MONTH] else: cooling_peak_load_results = [None] * 12 heating = 0 cooling = 0 for system in building.energy_systems: for demand_type in system.demand_types: if demand_type == cte.HEATING: heating = 1 if demand_type == cte.COOLING: cooling = 1 if cte.MONTH in building.heating_peak_load.keys() and cte.MONTH in building.cooling_peak_load.keys(): peak_lighting = 0 peak_appliances = 0 thermal_zone = building.thermal_zones_from_internal_zones[0] lighting = thermal_zone.lighting for schedule in lighting.schedules: for value in schedule.values: if value * lighting.density * thermal_zone.total_floor_area > peak_lighting: peak_lighting = value * lighting.density * thermal_zone.total_floor_area appliances = thermal_zone.appliances for schedule in appliances.schedules: for value in schedule.values: if value * appliances.density * thermal_zone.total_floor_area > peak_appliances: peak_appliances = value * appliances.density * thermal_zone.total_floor_area monthly_electricity_peak = [0.9 * peak_lighting + 0.7 * peak_appliances] * 12 conditioning_peak = [] for i, value in enumerate(building.heating_peak_load[cte.MONTH]): if cooling * building.cooling_peak_load[cte.MONTH][i] > heating * value: conditioning_peak.append(cooling * building.cooling_peak_load[cte.MONTH][i]) else: conditioning_peak.append(heating * value) monthly_electricity_peak[i] += 0.8 * conditioning_peak[i] electricity_peak_load_results = monthly_electricity_peak else: electricity_peak_load_results = [None] * 12 if cte.MONTH in building.onsite_electrical_production.keys(): monthly_onsite_electrical_production = building.onsite_electrical_production[cte.MONTH] onsite_electrical_production = monthly_onsite_electrical_production else: onsite_electrical_production = [None] * 12 if cte.MONTH in building.distribution_systems_electrical_consumption.keys(): extra_electrical_consumption = building.distribution_systems_electrical_consumption[cte.MONTH] else: extra_electrical_consumption = [None] * 12 columns_names = [f'{building.name} heating demand J', f'{building.name} cooling demand J', f'{building.name} lighting demand J', f'{building.name} appliances demand J', f'{building.name} domestic hot water demand J', f'{building.name} heating consumption J', f'{building.name} cooling consumption J', f'{building.name} domestic hot water consumption J', f'{building.name} heating peak load W', f'{building.name} cooling peak load W', f'{building.name} electricity peak load W', f'{building.name} onsite electrical production J', f'{building.name} extra electrical consumption J' ] print_results = pd.DataFrame([heating_results, cooling_results, lighting_results, appliances_results, dhw_results, heating_consumption_results, cooling_consumption_results, dhw_consumption_results, heating_peak_load_results, cooling_peak_load_results, electricity_peak_load_results, onsite_electrical_production, extra_electrical_consumption]).T print_results.columns = columns_names file += '\n' file += f'name: {building.name}\n' file += f'year of construction: {building.year_of_construction}\n' file += f'function: {building.function}\n' file += f'floor area: {building.floor_area}\n' if building.average_storey_height is not None and building.eave_height is not None: file += f'storeys: {int(building.eave_height / building.average_storey_height)}\n' else: file += f'storeys: n/a\n' file += f'volume: {building.volume}\n' full_path_results = Path(self._path / f'demand_{building.name}.csv').resolve() print_results.to_csv(full_path_results, na_rep='null') full_path_metadata = Path(self._path / 'metadata.csv').resolve() with open(full_path_metadata, 'w') as metadata_file: metadata_file.write(file)