from pathlib import Path import pandas as pd import hub.helpers.constants as cte class Results: def __init__(self, city, path): self._city = city self._path = path def print(self): print_results = None file = 'city name: ' + self._city.name + '\n' for building in self._city.buildings: heating_results = building.heating[cte.MONTH].rename(columns={'INSEL': f'{building.name} heating Wh'}) cooling_results = building.cooling[cte.MONTH].rename(columns={'INSEL': f'{building.name} cooling Wh'}) if print_results is None: print_results = heating_results else: print_results = pd.concat([print_results, heating_results], axis='columns') print_results = pd.concat([print_results, cooling_results, building.lighting_electrical_demand, building.appliances_electrical_demand, building.domestic_hot_water_heat_demand], axis='columns') file += '\n' file += 'name: ' + building.name + '\n' file += 'year of construction: ' + str(building.year_of_construction) + '\n' file += 'function: ' + building.function + '\n' file += 'floor area: ' + str(building.floor_area) + '\n' file += 'storeys: ' + str(int(building.eave_height / building.average_storey_height)) + '\n' file += 'heated_volume: ' + str(0.85 * building.volume) + '\n' file += 'volume: ' + str(building.volume) + '\n' full_path_results = Path(self._path / 'demand.csv').resolve() print_results.to_csv(full_path_results) full_path_metadata = Path(self._path / 'metadata.csv').resolve() with open(full_path_metadata, 'w') as metadata_file: metadata_file.write(file)