from pathlib import Path import pandas as pd import hub.helpers.constants as cte class Results: def __init__(self, city, path): self._city = city self._path = path def print(self): print_results = None file = 'city name: ' + self._city.name + '\n' array = [None] * 12 for building in self._city.buildings: if cte.MONTH in building.heating.keys(): heating_results = building.heating[cte.MONTH].rename(columns={cte.INSEL_MEB: f'{building.name} heating Wh'}) else: heating_results = pd.DataFrame(array, columns=[f'{building.name} heating demand Wh']) if cte.MONTH in building.cooling.keys(): cooling_results = building.cooling[cte.MONTH].rename(columns={cte.INSEL_MEB: f'{building.name} cooling Wh'}) else: cooling_results = pd.DataFrame(array, columns=[f'{building.name} cooling demand Wh']) if cte.MONTH in building.lighting_electrical_demand.keys(): lighting_results = building.lighting_electrical_demand[cte.MONTH]\ .rename(columns={cte.INSEL_MEB: f'{building.name} lighting electrical demand Wh'}) else: lighting_results = pd.DataFrame(array, columns=[f'{building.name} lighting electrical demand Wh']) if cte.MONTH in building.appliances_electrical_demand.keys(): appliances_results = building.appliances_electrical_demand[cte.MONTH]\ .rename(columns={cte.INSEL_MEB: f'{building.name} appliances electrical demand Wh'}) else: appliances_results = pd.DataFrame(array, columns=[f'{building.name} appliances electrical demand Wh']) if cte.MONTH in building.domestic_hot_water_heat_demand.keys(): dhw_results = building.domestic_hot_water_heat_demand[cte.MONTH]\ .rename(columns={cte.INSEL_MEB: f'{building.name} domestic hot water demand Wh'}) else: dhw_results = pd.DataFrame(array, columns=[f'{building.name} domestic hot water demand Wh']) if cte.MONTH in building.heating_consumption.keys(): heating_consumption_results = pd.DataFrame(building.heating_consumption[cte.MONTH], columns=[f'{building.name} heating consumption Wh']) else: heating_consumption_results = pd.DataFrame(array, columns=[f'{building.name} heating consumption Wh']) if cte.MONTH in building.cooling_consumption.keys(): cooling_consumption_results = pd.DataFrame(building.cooling_consumption[cte.MONTH], columns=[f'{building.name} cooling consumption Wh']) else: cooling_consumption_results = pd.DataFrame(array, columns=[f'{building.name} cooling consumption Wh']) if cte.MONTH in building.domestic_hot_water_consumption.keys(): dhw_consumption_results = pd.DataFrame(building.domestic_hot_water_consumption[cte.MONTH], columns=[f'{building.name} domestic hot water consumption Wh']) else: dhw_consumption_results = pd.DataFrame(array, columns=[f'{building.name} domestic hot water consumption Wh']) if cte.MONTH in building.heating_peak_load.keys(): heating_peak_load_results = building.heating_peak_load[cte.MONTH] else: heating_peak_load_results = pd.DataFrame(array, columns=[f'{building.name} heating peak load W']) if cte.MONTH in building.cooling_peak_load.keys(): cooling_peak_load_results = building.cooling_peak_load[cte.MONTH] else: cooling_peak_load_results = pd.DataFrame(array, columns=[f'{building.name} cooling peak load W']) if print_results is None: print_results = heating_results else: print_results = pd.concat([print_results, heating_results], axis='columns') print_results = pd.concat([print_results, cooling_results, lighting_results, appliances_results, dhw_results, heating_consumption_results, cooling_consumption_results, dhw_consumption_results, heating_peak_load_results, cooling_peak_load_results], axis='columns') file += '\n' file += f'name: {building.name}\n' file += f'year of construction: {building.year_of_construction}\n' file += f'function: {building.function}\n' file += f'floor area: {building.floor_area}\n' if building.average_storey_height is not None and building.eave_height is not None: file += f'storeys: {int(building.eave_height / building.average_storey_height)}\n' else: file += f'storeys: n/a\n' file += f'heated_volume: {0.85 * building.volume}\n' file += f'volume: {building.volume}\n' full_path_results = Path(self._path / 'demand.csv').resolve() print_results.to_csv(full_path_results, na_rep='null') full_path_metadata = Path(self._path / 'metadata.csv').resolve() with open(full_path_metadata, 'w') as metadata_file: metadata_file.write(file)